


SOME USEFUL PHYSICAL PROPERTIES 
(USCS UNITS AND SI UNITS)

Property1 USCS SI

Aluminum

specific weight 169 lb ft3 26.6 kN m3

mass density 5.26 slugs ft3 2710 kg m3

Concrete2

specific weight 150 lb ft3 23.6 kN m3

mass density 4.66 slugs ft3 2400 kg m3

Steel

specific weight 490 lb ft3 77.0 kN m3

mass density 15.2 slugs ft3 7850 kg m3

Water (fresh)

specific weight 62.4 lb ft3 9.81 kN m3

mass density 1.94 slugs ft3 1000 kg m3

Acceleration of gravity (g) 

(at earth’s surface)

recommended value 32.2 ft sec2 9.81 m sec2

standard international value 32.1740 ft sec2 9.80665 m sec2

Atmospheric pressure 

(at sea level)

recommended value 14.7 psi 101 kPa

standard international value 14.6959 psi 101.325 kPa

1Except as noted, the tabulated values are typical, or average, values.
2The specific weight of concrete made of cement, sand, and stone or gravel ranges from 140 to 150 lb ft3. The values tabulated 

here are average values for steel-reinforced concrete.The specific weight of concrete made with lightweight aggregate ranges from 

90 to 115 lb ft3.�
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CONVERSION FACTORS BETWEEN THE SI 
AND U.S CUSTOMARY SYSTEMS

Quantity U.S Customary to SI SI to U.S Customary

Acceleration 1 in. s2 � 0.0254 m s2* 1 m s2 � 39.37 in. s2

1 ft s2 � 0.3048 m s2* 1m s2 � 3.281 ft s2

Area 1 in2 � 645.2 mm2 1 mm2 � 1.550(10�3) in2

1 ft2 � 0.092 90 m2 1 m2 � 10.76 ft2

Distributed load 1 lb ft � 14.59 N m 1 kN m � 68.52 lb ft

Force 1 lb � 4.448 N 1 N � 0.2248 lb

Length 1 in � 25.4 mm* 1 m � 39.37 in.

1 ft � 0.3048 m* 1 m � 3.281 ft

1 mi � 1.609 km 1 km � 0.6214 mi

Mass 1 slug � 14.59 kg 1 kg � 0.06852 slug

Moment of force; torque 1 1b � ft � 1.356 N � m 1 N � m � 0.7376 1b � ft

1 1b � in. � 0.1130 N � m 1 N � m � 8.851 1b � in.

Power 1 lb � ft s � 1.356 W 1 W � 0.7376 lb � ft s

1 hp � 745.7 W 1 kW � 1.341 hp

Pressure; stress 1 psi � 6.895 kPa 1 kPa � 0.1450 psi

1 ksi � 6.895 MPa 1 MPa � 145.0 psi

1 psf � 47.88 Pa 1 Pa � 0.02089 psf

Second moment of area 1 in4 � 0.4162(106) mm4 1 m4 � 2.402(10�6) in4

Velocity 1 in. s � 0.0254 m s* 1 m s � 39.37 in. s

1 ft s � 0.3048 m s* 1 m s � 3.281 ft s

1 mi h � 1.609 km h 1 km h � 0.6241 mi h

Volume 1 in3 � 16.39(103) mm3 1 mm3 � 61.02(10�6) in3

1 ft3 � 0.028 32 m3 1 m3 � 35.31 ft3

Work; energy 1 lb � ft � 1.356 J 1 J � 0.7376 lb � ft

Temperature2 32�F � 0�C � 273.15K

1 C 1K 70 F 21 C 294K

T(K) � T(�C) � 273.15 212�F � 100�C 373K

*Exact value
1After conversion, the resulting value should be rounded off to an accuracy comparable to that of the original number.
2Use of �C is permissible in SI.

�
�°�°�°

T(°C) � 5
9 [T(°F) � 32]
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CP-2 An example of the use of finite element analysis in

support of the design of a mechanical latch member from a

Space Shuttle payload. (MSC/NASTRAN finite element

analysis with SDRC 1-DEAS postprocessing. Courtesy

NASA-Johnson Space Center.)

CP-3 Finite element analysis of the stress concentration due

to a hole in an axially loaded flat bar, as described in Section

12.2. The adjacent color bar indicates that the stress depicted

is the von Mises stress, which is discussed in Section 12.3.

(ABAQUS finite element analysis by Courtesy Greg

Swadener.)
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PREFACE

iii

TO THE STUDENT

This textbook is an introduction to the topic of mechanics of materials, an engineer-

ing subject that also goes by the names mechanics of solids, mechanics of deformable
bodies, and strength of materials. You should already have a thorough background

in statics, that is, you should know how to analyze the equilibrium of ‘‘rigid’’ bodies

by constructing free-body diagrams and formulating and solving the appropriate

equilibrium equations. In this course you will learn how to extend equilibrium

analysis to deformable bodies, specifically to various members that make up struc-

tures and machines. This requires not only careful attention to equilibrium require-

ments, but also consideration of the behavior of the material (e.g., aluminum, steel,

or wood) of which the member is made, and consideration of the geometry of de-

formation. Therefore, you will learn to apply the three fundamental concepts of
solid mechanics: (1) Equilibrium, (2) Force-Temperature—Deformation Behavior of
Materials, and (3) Geometry of Deformation.

You will learn a number of important new topics, such as: how the external

forces that are applied to a body are distributed throughout the body, and whether

the body will fail under the action of the applied forces (the topic of stress); how the

body will deform under the action of the applied external forces and temperature

changes (the topic of strain); what material properties affect the way that the

body responds to the applied forces and temperature changes (the topic of stress-
strain-temperature behavior of materials); and other important solid-mechanics topics.

With the aid of this textbook you will learn systematic problem-solving methods,
including ways to assess the probable accuracy of your homework solutions. You

will enjoy using the computer program MDSolids that is available for use with this

textbook. Its intuitive graphical interface will help you develop problem-solving

skills by showing you the important factors affecting various problem types, by help-

ing you visualize the nature of internal stresses and member deformations, and by

providing you an easy-to-use means of investigating a greater number of problems

and variations. Nevertheless, the emphasis in this textbook remains on your devel-

oping an understanding of the fundamentals of elementary solid mechanics, not on

writing computer programs or on using an existing computer program just to get

immediate answers.

Please take time now to look at the color photographs that are included as a

color-photo insert in Chapter 1. They illustrate how the Finite Element Method, a

direct extension of this introduction to solid mechanics, is used to design and ana-

lyze everything from airplanes to cars, from skyscrapers and bridges to bicycle

frames and tennis racquets, from offshore oil rigs to computer chips. The goal of this
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book is to prepare you to study further courses in solids and structures that will en-

able you to carry out such complex analyses, opening the door to the exciting world

of Computer-Aided Engineering, whether your application is to aerospace engi-

neering, architectural engineering, civil engineering, mechanical engineering, petro-

leum engineering, or even to electrical engineering.

SPECIAL FEATURES

The philosophy guiding the development of this introductory solid-mechanics text-

book has been that students learn engineering topics best: (1) when they are made

aware of the fundamental concepts involved in the subject, (2) when they are taught

systematic problem-solving procedures and are provided many example problems
that are solved in a systematic manner and are complete, (3) when they have ample

opportunity for drill and practice in solving problems and obtaining feedback, and

(4) when they are given real engineering examples and shown the relevance of what

they are studying. To implement this philosophy, the following features have been

incorporated in this textbook.

• A Strong Emphasis on the Three Basic Concepts of Deformable-Body
Mechanics. Throughout this book students are reminded that solid mechan-

ics problems involve three fundamental concepts: Equilibrium, Material
Behavior, and Geometry of Deformation. In the Example Problems, the

equations that correspond to each of these three concepts are highlighted

and identified by name, so that the student should thoroughly understand the

important role played by each one of these three fundamental concepts.

• A Four-Step Problem-Solving Procedure. The following four steps are in-

cluded in the solution of most of the Example Problems in this book.

• State the Problem

• Plan the Solution

• Solve the Problem

• Review the Solution

Once an engineering student leaves the university environment and be-

comes a practicing engineer, with powerful computer programs to carry out

the detailed solution of complex problems, the importance of being able to

Plan the Solution and Review the Solution for probable accuracy will be-

come readily apparent.

• Example Problems; Systematic Problem-Solving Procedures. In this textbook,

over 140 Example Problems provide the student with detailed illustrations of

systematic procedures for solving solid-mechanics problems. In addition,

as part of the accompanying MDSolids software, there are an additional
90 Example Problems, with complete solutions provided in the same nota-

tion and style as the solutions in the textbook itself.

As noted above, the distinct contribution of each of the three fundamental

concepts—Equilibrium, Material Behavior, and Geometry of Deformation—is

highlighted and identified by name. Once the basic equations have been

written down, solutions are completed by combining these equations to

obtain the final answer(s). Procedure lists indicate convenient and system-

atic procedures for solving problems, and flow charts summarize these

procedures graphically. These problem-solving procedures, labeled the

Basic Force Method, the Displacement Method, and the Force Method, are

first presented in Chapter 3.

iv
Preface
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Sign conventions for forces, displacements, etc. are established and are

consistently followed, and wherever equilibrium equations are required, a

complete free-body diagram is drawn. Because equilibrium analysis plays

such a central role in mechanics of solids, a special section in Chapter 1 is de-

voted to reviewing statics of rigid bodies and to introducing the concept of

internal resultants for deformable bodies.

• Computer Exercises and Computer Software. Thirty computer exercises are

included as homework problems; these are identified by a C-superscripted

problem number. Students are presented the opportunity to develop their

own computer programs, and the award-winning MDSolids software is avail-

able via download for use on PCs running the Windows operating system.1

Appendix G describes the software that accompanies this textbook. To

download the software, you must register on the Wiley Student Companion

Site for this book at www.wiley.com/college/craig. For details, see the regis-

tration card provided in the book.

• Design. There is a multifaceted treatment of the topic of design. For exam-

ple, Section 2.8 discusses the philosophy of design, introduces the student to

straightforward allowable-stress design, and closes with an example of opti-

mum (minimum-weight) design of a simple statically determinate truss. The

final chapter, Chapter 12, discusses three special design-related topics: stress

concentrations, failure theories, and fatigue and fracture.Throughout the text

and among the special MDSolids Example Problems there are design-related

examples. Homework problems with design content are identified by a

D-superscripted problem number.

• Accuracy. Special efforts have been made to provide as error-free a book as

possible. At least two independent solutions have been obtained for every

homework problem, and the Solutions Manual was prepared directly by the

author in order to insure consistency and accuracy.

• Communication with the Authors. Comments regarding the book or the

Solutions Manual may be addressed to the author at the following e-mail ad-

dress: roy_craig@mail.utexas.edu. Please address your comments or inquiries

regarding MDSolids by e-mail to Dr. Timothy Philpot: philpott@mst.edu.

v
Preface

1The MDSolids software suite, developed by Dr. Timothy A. Philpot, was awarded the 1998 Premier

Award for Excellence in Engineering Education Courseware.

NEW IN THIS EDITION

This third edition of Mechanics of Materials retains the hallmark features of the first

two editions—a strong emphasis on the three fundamental types of equations of solid

mechanics and on systematic procedures for solving problems. Listed below are the

new features of the Third Edition, followed by the major modifications that have

been incorporated into this edition

• From the student’s standpoint, the most significant new feature is the addi-

tion of a Chapter Review table at the end of each chapter. These Chapter

Reviews summarize the key points of the chapter, and they include the major

equations and figures from the chapter. In addition, students will find a list

of problems that will be useful to them in reviewing the chapter and prepar-

ing for examinations.
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• Two new topics have been added in this edition—Mechanical Properties of
Composite Materials as a new Section 2.14, and Wire Rope as a topic in Sec-

tion 3.3.This new material was written by the author’s colleague, Dr. Eric Taleff,

Professor of Mechanical Engineering at The University of Texas at Austin.

Other modifications and additions that have been incorporated into this Third

Edition include:

• There are over 1300 homework problems in this edition–approximately one-

third of them are in US Customary Units, one-third are in SI Units, and one-

third are stated in symbolic form. Approximately 30% of the problems in

this edition are either completely new or are significantly modified versions

of homework problems from the two previous editions.

• The theory of axial deformation in Sections 3.2 through 3.4 has been reor-

ganized, with examples of nonuniform axial deformation now in Section 3.3,

preceding the examples of statically determinate structures with uniform

axial-deformation members.

• The steps that are used in solving various problems are summarized in

Procedure Lists, and these steps are often summarized graphically in Flow
Charts (e.g., p. 146).

• As in the previous edition, the topic of statically indeterminate structures is

introduced in the “classical” way.2 There is still a strong emphasis on the

three distinct equations of deformable-body mechanics: equilibrium, force-
temperature-deformation behavior of materials, and geometry of deformations.

• There has been a substantial re-organization of Chapter 3–Axial Deformation–
with the derivation of the force-deformation behavior of uniform linearly

elastic axial-deformation elements, including the definitions of flexibility co-
efficient and stiffness coefficient, moved into Section 3.2–Basic Theory of
Axial Deformation.

• As in the previous edition, sections that introduce the Displacement Method
(Sections 3.8 and 4.7) are not considered to be “optional” sections, since this

topic forms the basis of courses that quite likely will follow Mechanics of

Materials in the student’s curriculum (e.g., Matrix Structural Analysis and/or

Finite Element Analysis).

• The topic of Shear-Force and Bending-Moment Diagrams has been divided

into two sections, one (Section 5.4) treating the “Equilibrium Method” and

the other (Section 5.5) treating the “Graphical Method.” This change, to-

gether with the table in Section 5.5, will permit instructors to place special

emphasis on graphical procedures for constructing and interpreting Shear-

Force and Bending-Moment Diagrams.

2The so-called “classical” solution procedure consists of simultaneously solving the equations of equilib-

rium and the compatibility equations written in terms of forces. This is labeled the “Basic Force Method”

because, as with the Force Method of Section 3.9, the quantities that are obtained first in a solution are

the unknown forces.

SUPPLEMENTS

MDSolids Software with 90 Special Example Problems. The MDSolids computer

program, winner of the 1998 Premier Award for Excellence in Engineering

Education Courseware, is available to students and instructors. MDSolids has a

vi
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superb graphical user interface, is extremely user friendly, and covers a very broad

range of mechanics of materials topics. Ninety special MDSolids example problems

are closely linked to the examples in the book and to homework problems. (See

Appendix G for further description of MDSolids.)

Solutions Manual. As was the case for previous editions, the Solutions Manual for

the third edition includes original problem statements and text figures in addition

to complete solutions. Instructors who have adopted this textbook for their course

can visit www.wiley.com/college/craig and click on the Instructor Companion

Website to download the Solutions Manual.

Website The publisher maintains a website where additional descriptions, feedback,

and ordering information are located. The URL is: www.wiley.com/college/craig.

vii
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INTRODUCTION TO MECHANICS
OF MATERIALS

1.1 WHAT IS MECHANICS OF MATERIALS?

Mechanics is the physical science that deals with the conditions of rest or motion of

bodies acted on by forces or by thermal disturbances. The study of bodies at rest is

called statics, whereas dynamics is the study of bodies in motion. You have been

introduced to the fundamental principles of statics and dynamics and have applied

these principles to particles and to rigid bodies, which are both simplified idealiza-

tions of real physical systems. The principles of statics and dynamics are also funda-

mental to the mechanics of solids and to the mechanics of fluids, two major branches

of applied mechanics that deal, respectively, with the behavior of solids and with the

behavior of fluids.This book is an introduction to mechanics of materials, a topic that

is also known by several other names, including ‘‘strength of materials,’’ ‘‘mechanics

of solids,’’ and ‘‘mechanics of deformable bodies.’’

This book deals almost exclusively with the behavior of solids under static-loading

conditions (the exception is Section 11.9). However, studies of the dynamics of solids
(e.g., earthquake excitation of buildings and bridges) utilize most of the same con-

cepts that are covered here.This topic is generally referred to as “structural dynamics”

or “mechanical vibrations.”1

Mechanics of Materials. We can begin to answer the question, ‘‘What is me-

chanics of materials?’’ by considering Fig. 1.1. First, a deformable body is a solid that

changes size and/or shape as a result of loads that are applied to it or as a result of

temperature changes. The diving board in Fig. 1.1 visibly changes shape due to the

weight of the diver standing on it. Changes of size and/or shape are referred to as

deformation. The deformation may even be so small that it is invisible to the naked

eye, but it is still very important. To relate the deformation to the applied loading, it

is necessary to understand how materials (i.e., solids) behave under loading.

Whereas it would be possible from rigid-body equilibrium alone, given the

weight of the diver and the lengths L1 and L2, to determine the diving-board

1

1

1See, for example, Fundamentals of Structural Dynamics, Ref. [1-1] in the References section near the

back of the book.
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support reactions at A and B in Fig. 1.1, questions of the following type can only be

answered by employing the principles and procedures of mechanics of materials:

1. What weight W would cause the given diving board to break, and where

would the break occur?

2. For a given diving board and given position of roller B, what is the relation-

ship between the tip deflection at C, C, and the weight, W, of the diver stand-

ing on the board at C?

3. Would a tapered diving board be ‘‘better’’ than one of constant thickness? If

so, how should the thickness, h, vary from A to C?

4. Would a diving board made of fiberglass be ‘‘preferable’’ to one made of

aluminum?

Stress and Strain. All of the preceding questions require consideration of the

diving board as a deformable body; that is, they require consideration not only of the

external forces applied to the diving board by the diver and by the diving-board sup-

ports at A and B, but they also involve the localized effects of these forces within

the diving board (i.e., the stress distribution and the strain distribution) and the be-

havior of the material from which the diving board is constructed (i.e., the stress-
strain behavior of the material). Stress and strain, the key concepts in the study of

mechanics of materials, are formally defined in Chapter 2.

Finite Element Analysis; Color Photos. Throughout this course you will be

learning how to analyze the distribution of stress and strain in various one-dimensional

deformable bodies, and how they deform, but the principles and procedures you

learn here are also the basis for computer programs that are used to analyze very

complex deformable bodies. Finite element analysis is a very powerful procedure for

analyzing complex structures and machines by treating them as assemblages of thou-

sands of small parts, or elements.2 The photos in the Color-Photo Insert illustrate

analyses (e.g., stress and strain distributions) that have been obtained by use of

various finite element computer programs. In the photos, different colors are used to

indicate different levels of stress, etc.

Analysis and Design. All deformable-body mechanics statics problems fall into one

of two categories—strength problems, or stiffness problems. A structure or machine

must be ‘‘strong enough’’; that is, it must satisfy prescribed strength criteria. It must also

be ‘‘stiff enough’’; that is, its deformation must be within acceptable limits. The first

diving-board question is a strength question; the second one addresses stiffness.

The first two diving-board questions above fall under the category of analysis. That

is, given the system (in this case the diving board) and the loads applied to it, your task

d

2
Introduction to Mechanics of
Materials

L1 L 2

W

h

C
Cδ

B

A

FIGURE 1.1 A diving

board as an example of a 

deformable body.

2See, for example, Refs. [1-2] and [1-3].
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FIGURE 1.2 An airplane

wing undergoing an ultimate-

load test. (Copyright © Boeing)

is to analyze the behavior of this particular system subjected to this particular loading

condition. Questions 3 and 4, on the other hand, are design questions. Given certain in-

formation about the loading and the performance criteria (e.g., the range of diver weight

to be accommodated, and what constitutes a better diving board), your task is to select

the configuration of the diving board and the material to be used in its construction.

The design process usually involves an iterative procedure whereby a design (a

specific configuration made of specific materials) is proposed, the response of the

designed system to given loads is analyzed, and the response is compared with the

response of other designs and with the stated design criteria. The ‘‘best’’ of several

candidate designs is then selected. Finally, there may be a requirement that a proto-

type based on the selected design be manufactured and tested to verify that the sys-

tem meets all the design requirements in an acceptable manner. Figure 1.2 shows an

airplane wing undergoing an ultimate-load test, that is, a test to determine the max-

imum wing loading that can be applied without causing the wing to break. The de-

signers’ expectations were exceeded when, during the test, the wings were pulled to

approximately 24 ft above their normal position. (Of course, in normal service the

wing will only undergo deflections that are much smaller than those experienced in

an ultimate-load test like this.)

Applications of Mechanics of Materials. The applications of deformable-

body mechanics are practically endless and can be found in every engineering disci-

pline. The impressive Brooklyn Bridge, shown in Fig. 1.3, is truly an engineering

marvel. It was designed by Johann Roebling in 1867–1869 and built under the

supervision of his son Washington Roebling in 1870–1883 at a cost of $25 million. Its

span of 1595 ft is suspended from towers that are 271 ft tall.

Since the 1960’s, finite element analysis (FEA) computer programs (e.g.,

NASTRAN, ANSYS, ABAQUS, SAP 2000) have been employed extensively for

carrying out the numerical computations required in applying deformable-body me-

chanics principles to the design of mechanical systems and structures. Very detailed
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finite element models were used to create the color plots shown in the Color-Photo

Insert. In designing modern airplanes, automobiles, and other mechanical and struc-

tural systems, Computer-Aided-Design (CAD) plays an essential role in defining

the geometry of components, creating mathematical models of these components,

and then performing the deformable-body analysis of these components.

Not only are the principles and procedures of deformable-body mechanics used

to analyze and design large objects like bridges and airplanes (e.g., the tilt-rotor

vehicle in color Fig. CP-1), but they also find application to very small objects as well.

For example, FEA has been used to determine the stress distribution in a small com-

puter chip at one stage in the heating-cooling cycle that occurs when the computer

is turned on and off. Color Fig. CP-3 illustrates how FEA can be used to depict the

effect of stress concentration, as discussed in Section 12.2.

Although many of the tasks involved in the design and analysis of the systems

illustrated in the Color-Photo Insert require a knowledge of the mechanics of

deformable bodies that is beyond the scope of this introductory textbook, the princi-

ples and procedures introduced in this book form a foundation on which more

advanced topics build, and on which the design of complex applications, like those

illustrated in the Color-Photo Insert, depends.

4
Introduction to Mechanics of
Materials

FIGURE 1.3 The Brooklyn

Bridge, New York, (Andreas

Feininger/Time & Life

Pictures/Getty Images, Inc.)

1.2 THE FUNDAMENTAL EQUATIONS OF 
DEFORMABLE-BODY MECHANICS

Throughout this textbook, the three fundamental types of equations that are used 

in solving strength and stiffness problems of deformable-body mechanics will be

stressed repeatedly. They are:

1. The equilibrium conditions must be satisfied.

2. The geometry of deformation must be described.

3. The material behavior (i.e., the force-temperature-deformation relationships

of the materials) must be characterized.
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Here these fundamental equations are applied to fairly simple deformable bodies,

but the same three basic types of equations apply, in more advanced mathematical

form in many cases, to all studies of deformable solids.

Equilibrium. We have already noted that the principles of statics, that is, the equa-
tions of equilibrium, are fundamental to the study of deformable-body mechanics.

Section 1.4 gives a brief review of static equilibrium and introduces the equilibrium

concepts that are particularly important in the study of mechanics of solids. It also

stresses the importance of drawing complete, accurate free-body diagrams. An en-

tire chapter, Chapter 5, is devoted to the topic of equilibrium of beams.

Geometry of Deformation. There are several ways in which the geometry
of deformation enters the solution of deformable-body mechanics problems,

including:

1. Definitions of extensional strain and shear strain (Chapter 2).

2. Simplifications and idealizations (e.g., ‘‘rigid’’ member, ‘‘fixed’’ support,

plane sections remain plane, displacements are small).

3. Connectivity of members, or geometric compatibility.

4. Boundary conditions and other constraints.

Several of these may be illustrated by a comparison of Fig. 1.1 with Fig. 1.4. In

Fig. 1.1, the diving board itself was considered to be deformable, but the supports

at A and B were assumed to be rigid. Therefore, the idealized model in Fig. 1.1 is

a deformable beam with rigid constraints at A and B. By contrast, the beam BD
in Fig. 1.4 is assumed to be ‘‘rigid’’ under the loading and support conditions

shown. Although BD does actually deform, that is, change shape, its deformation

is assumed to be small in comparison to the rotation, , that it undergoes if the

rod AB stretches significantly when load W is applied to the beam at D. Hence,

the idealized model depicted in Fig. 1.4 is a rigid beam, BD, connected by a fric-

tionless pin at end B to a deformable rod AB. As rod AB stretches, beam BD
rotates through a small angle about a fixed, frictionless pin at C.

Material Behavior. The third principal ingredient in deformable-body mechan-

ics is material behavior. Unlike equilibrium and geometry of deformation, which 

are purely analytical in nature, the constitutive behavior of materials, that is, the

force-temperature-deformation relationships that describe the materials, can only be

established by conducting experiments. These are discussed in Chapter 2.

u

5
The Fundamental Equations 

of Deformable-Body
Mechanics

θ
D

W

C
B

A

Deformable rod

Rigid beam

    Small angle

L1 L 2

FIGURE 1.4 A system that

illustrates several deformation

assumptions.
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It will be of great help to you in solving problems in the mechanics of deformable

bodies if you will always keep in mind these three distinct ingredients: equilibrium,
geometry of deformation, and material behavior.

6
Introduction to Mechanics of
Materials

1.3 PROBLEM-SOLVING PROCEDURES

A consistent, systematic procedure is required for solving most problems in engi-

neering practice, and this certainly applies to solving problems involving the mechan-

ics of deformable bodies. The five steps in such a problem-solving procedure are:

1. Select the system of interest. This may be based on an existing physical sys-

tem, or it may be defined by a set of design drawings and specifications.

2. Make simplifying assumptions that reduce the real system to an idealized
model, or idealization of the system. For example, Figs. 1.1 and 1.4 illustrate

two different idealized models of diving boards.

3. Apply the principles of deformable-body mechanics to the idealized model

to create a mathematical model of the system, and solve the resulting equa-

tions to predict the response of the system to the applied disturbances

(applied forces and/or temperature changes). Interpret the results that you

obtain, and seek to understand the behavior (stress and deformation) that

the system exhibits in response to the applied disturbances.

4. Perform a test to compare the predicted responses to the behavior of the actual

system. (A full-scale prototype or a scale model may have to be constructed if

the physical system does not already exist.)

5. If the response predicted in step 3 does not agree with the response of the

tested system, repeat steps 1–4, making changes as necessary until agreement

is achieved.

In the future, as a practicing engineer you will find steps 1, 2, and 4 to be very

important and very challenging. However, the main purpose of this textbook is to

introduce you to the fundamental concepts of mechanics of solids and to enable you

to solve deformable-body mechanics problems. Therefore, attention here will be de-

voted primarily to carrying out step 3, in which a mathematical model is formulated

and its behavior analyzed.

So, how do you apply the principles of deformable-body mechanics to create

mathematical equations, and how do you solve these equations to obtain the

response of the system? A glance at the Example Problems in this textbook will

indicate that the following four steps are clearly identified:

1. State the Problem 3. Carry Out the Solution

2. Plan the Solution 4. Review the Solution

1. State the Problem— This step involves:

• listing the given data,

• drawing any figures needed to describe the problem data, and

• listing the results that are to be obtained.

2. Plan the Solution— While you probably have not seen this step treated in a

formal manner in previous textbooks, your success in solving problems quickly and
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accurately depends on how carefully you plan your solution strategy in advance.

You should think about the given data and the results desired, identify the basic

principles involved and recall the applicable equations, and plan the steps that will

be needed to carry out the solution.

3. Carry Out the Solution— As noted in Section 1.2, your solution will involve

three basic ingredients: equilibrium, geometry of deformation, and material behav-

ior. Example problems and homework problems in this textbook appear in one of

two forms—problems where numerical values are employed directly in the solution,

and ones where algebraic symbols are used to represent the quantities involved and

where the final answer is essentially a formula. One advantage of the symbolic form

of solution is that a check of dimensional homogeneity may be easily made at each

step of the solution. A second advantage is that the symbols serve to focus attention

on the physical quantities involved. For example, the effect of a force designated by

the symbol P can be traced through the various steps of the solution. Finally, since

the end result is an equation in symbolic form, different numerical values can be

substituted into the equation if desired.

The importance of checking for dimensional homogeneity at each step of a so-

lution cannot be overemphasized! The principal quantities involved in static solid

mechanics problems are force (dimension F) and length (dimension L). If, at some

step in the solution of a problem, you check an equation for dimensional homogene-

ity and obtain the result that

you should realize that some error has been made. It is a waste of time and effort to

proceed further without rectifying the error and establishing a dimensionally homo-

geneous equation! Other checks for accuracy should also be made frequently as the

solution progresses.

Appendix B provides a discussion of the units used in solving deformable-body

mechanics problems, and Appendix A discusses the number of significant digits
required.

4. Review the Solution— This step, like the Plan the Solution step, may be one that

you have not previously encountered in a formal manner. However, it is important

for you to get into the habit of always checking your results by asking yourself the

following types of questions:

• Is the answer dimensionally correct?

• Do the quantities involved appear in the final solution in a reasonable 

manner?

• Is the sign of the final answer reasonable, and is the numerical magnitude

reasonable?

• Is the final result consistent with the assumptions that were made in order to

achieve the solution? (For example, an assumption that ‘‘the slope is small’’

is violated if the final slope turns out to be 45�.)

You may be tempted to think that Review the Solution means for you to

compare your answer with one in the back of the book. However, in the ‘‘real

world’’ there are no ‘‘answer books.’’ Hence, you should begin now, if you have

not already done so, to make a habit of testing by any means possible the reason-

ableness, dimensional homogeneity, and accuracy of your own answers. But, it is

not enough just to solve problems and get correct answers. You should also learn

F � L � F�L2

7
Problem-Solving Procedures
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to interpret your answers, so that you begin to develop that indispensable quality

called engineering judgment.
Although the Carry Out the Solution step will undoubtedly occupy a major por-

tion of your problem-solving time as you work on problems from this textbook, you

will probably find that, as a practicing engineer, most of your time is involved in the

other three steps, since a computer may quickly and obediently carry out the actual

numerical solutions of your engineering problems. It then becomes your task to set

up the problem correctly (State the Problem and Plan the Solution) and to evaluate

carefully the results of the computer solution (Review the Solution).

Finally, you should heed the advice of the authors of a popular statics text:3

It is also important that all work be neat and orderly. Careless solutions that cannot

be easily read by others are of little or no value. The discipline involved in adher-

ence to good form will in itself be an invaluable aid to the development of the abil-

ities for formulation and analysis. Many problems that at first may seem difficult

and complicated become clear and straightforward when begun with a logical and

disciplined method of attack.

Communication is a vital part of any engineering project, and only work that is neat

and orderly can serve to communicate technical information, like the solution of a

deformable-body mechanics problem.

Finally, engineers who design machines and structures (e.g., commercial 

airplanes or high-rise office buildings) using the principles of deformable-body 

mechanics assume not only legal responsibility, but also moral and ethical responsibility

that their designs will not fail in service in ways that could lead to serious loss of life

or property.4

8
Introduction to Mechanics of
Materials

3See Ref. [1-4], p. 14.
4The National Transportation Safety Board “cited a design flaw as the likely cause of the collapse” of the

I-35W Mississippi River Bridge in Minneapolis, Minnesota on August 1, 2007. Thirteen people were

killed and 145 people were injured in the collapse of this bridge. See, for example, wikipedia.com.
5For a rigid body, Eqs. 1.1 also constitute sufficient conditions for equilibrium of the body.That is, if Eqs. 1.1

are satisfied, then the rigid body is in equilibrium. However, the necessary and sufficient condition for

equilibrium of a deformable body is that the sets of external forces that act on the body and on every

possible subsystem isolated out of the original body all be sets of forces that satisfy Eqs. 1.1. (See, for ex-

ample, [Ref. 1-5] p. 16.)

1.4 REVIEW OF STATIC EQUILIBRIUM; EQUILIBRIUM 
OF DEFORMABLE BODIES

In this textbook we consider deformable bodies at rest, that is, bodies whose accel-

eration and velocity are both zero. In your previous study of statics, you learned the

equations of equilibrium and you learned how to apply these equations to particles

and to rigid bodies through the use of free-body diagrams. In this section we will re-

view the fundamental equations and problem-solving procedures of statics and will

begin to indicate how they apply to the study of deformable bodies.

Equations of Equilibrium. Recall that the necessary conditions for equilibrium

of a body (rigid or deformable) are:5

(1.1)aaMb
o
  � 0a F � 0, 
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That is, if a body is in equilibrium,

• the sum of the external forces acting on the body is zero, and

• the sum of the moments, about any arbitrary point O, of all the external

forces acting on the body is zero.

These equations are usually expressed in component form with the components referred

to a set of rectangular Cartesian axes x, y, z.Then, the resulting scalar equations are:

(1.2)

When the number of independent equilibrium equations available is equal to

the number of unknowns, the problem is said to be statically determinate. When

there are more unknowns than available independent equations of equilibrium, the

problem is said to be statically indeterminate. For example, if a body has more exter-

nal supports or constraints than are required to maintain the body in a stable equi-

librium state, the body is statically indeterminate. Supports that could be removed

without destroying the equilibrium of the body are called redundant supports, and

their reactions are called, simply, redundants.
In order to apply equilibrium equations to a body, it is always wise to draw a

free-body diagram (FBD) of the body. However, before reviewing the procedure for

drawing a free-body diagram, let us consider the types of external loads that may act

on a body and several ways in which the body may be supported or connected to

other bodies.

External Loads. The external loads acting on a deformable body are the known

force and moments that are applied to the body. They may be classified in four cat-

egories, or types. These types, together with their appropriate dimensions, are:

• Concentrated loads, including point forces (F ) and couples (F L),

• Line loads (F/L),

• Surface loads (F/L2), and

• Body forces (F/L3).

The first three types of external loads are illustrated on the generic deformable

body in Fig. 1.5a. Body forces are produced by action-at-a-distance. Like the force

of gravity (weight), they are proportional to volume, and they act on particles

throughout the body.

Although, in reality, all external loads that act on the surface of a deformable

body must act on a finite area of that surface, line loads and concentrated forces are

considered to act along a ‘‘line’’ or to act at a single ‘‘point,’’ respectively, as indi-

cated in Fig. 1.5a. Concentrated loads and line loads are, therefore, idealizations.

Nevertheless, they permit accurate analysis of the behavior of the deformable body,

except in the immediate vicinity of the loads.6 In Fig. 1.5b a cross-beam at C (shown

in end view as an I) exerts a downward concentrated force PC on the horizontal

�

a Fz � 0,  aaMzb
o

� 0

a Fy � 0,  aaMyb
o

� 0

a Fx � 0,  aaMxb
o

� 0

9
Review of Static Equilibrium;

Equilibrium of Deformable
Bodies

6See the discussion of St. Venant’s Principle in Section 2.10.
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frame member BE, and a horizontal line load of uniform intensity p acts on the

vertical frame member AB.

Concentrated forces have the units of force [e.g., newtons (N) or pounds (lb)],

and line loads have the units of force per unit length (e.g., N/m or lb/ft). Other

external loads are expressed in units appropriate to their dimensionality.

Support Reactions and Member Connections. The external loads that are

applied to a member must generally be transmitted to adjacent members that are

connected to the given member, or carried directly to some form of support.7 For ex-

ample, the vertical loads PC and PD that act on the horizontal beam BE in Fig. 1.5b
are eventually ‘‘transmitted’’ to the ground at supports A and F.Where there is a sup-
port, as at points A and F in Fig. 1.5b, the displacement (i.e., the change of position)

is specified to be zero, but the force is unknown.Therefore, forces (including couples)

at supports are called reactions, since they react to the loads that are applied else-

where. We say that the support enforces a constraint, that is, the support constrains

(i.e., makes) the displacement to be zero.

Table 1.1 gives the symbols that are used to represent idealized supports and

member connections. Also shown are the force components and the couples that

correspond to these. In this textbook, all reactions are indicated by an arrow

(straight for forces, curved for couples) that has a single slash through its shank, as

illustrated in Table 1.1. For the most part, in this text we will consider loading and

supports that lie in a single plane, that is, coplanar loading and support.

Occasionally, however, we will consider a three-dimensional situation.

Internal Resultants. In the study of mechanics of deformable bodies, we must

consider not only external forces and couples, that is, the applied loads and reac-

tions, but we also must consider internal resultants, that is, forces and couples that

are internal to the original body. For example, to analyze the L-shaped two-force

linkage in Fig. 1.6a,8 it is necessary to imagine a cutting plane, like the one indicated

10
Introduction to Mechanics of
Materials

Line load

Surface

load

A

PC

p

PD

F

B EC D

Concentrated

force Concentrated

couple

(a)  A generic deformable body. (b)  A portal frame.

FIGURE 1.5 External

loads acting on deformable

bodies.

7The exception is a self-equilibrated system, like an airplane, whose (upward) distributed lift force equals

its (downward) weight.
8You may recall from statics that, if a body in equilibrium is subjected only to concentrated forces acting

at two points in the body, the forces must be equal and opposite and must be directed along the line join-

ing the points of application of the forces, as illustrated in Fig. 1.6a. Such a body is referred to as a two-
force member.
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Description

Table 1.1  Support Reactions and Member Connections

REACTIONS – 2D

1. Roller support

2. Cable or rod

3. Pin support

4. Cantilever support

(fixed end)

Symbol Required Forces/Couples

x
Ay

Ax

Ax

Ax Ay

Fy

Cy

C

C

Cx

Cx
CxCy

Cy

MC

MC

Cx

Cy

Fx

Fz

My

Mx

Mz

Az

Ay

Ay

MA

FA

A

A

A

A

y

REACTIONS – 3D

CONNECTIONS – 2D

A

5. Ball joint

6. Cantilever support

(fixed end)

7. Pinned connection

8. Rigid connection

(e.g., welded, bolted)

Ay

x

y

x

x

z

y

y

x

z

y

x

y

x

y

A
Ax Ay

A

θθ

in Fig. 1.6a, and to show the (unknown) internal resultants acting on this plane, as

has been done in Fig. 1.6b. This procedure may be called the method of sections.
The engineering theories that are developed in this textbook apply to de-

formable bodies for which one dimension is significantly greater than the other two

dimensions; that is, we will consider long, thin members.9 The six internal resultants

that result from general loading of such a member are indicated on the sketch in

Fig. 1.7, where the x axis is taken to lie along the longitudinal direction of the

member, and a cutting plane normal to the x axis, called a cross section, is passed

through the member at coordinate x(x � L).

On an arbitrary cutting plane through a body subject to general three-dimen-

sional loading there will be three components of the resultant force and three

9The only exception is the thin-wall pressure vessels discussed in Section 9.2.
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components of the resultant moment. When the body is slender, as in Fig. 1.7, these

resultants are given special names. The force normal to the cross section, labeled

F(x), is called the normal force, or axial force. The two components of the resultant

force that are tangent to the cutting plane, Vy(x) and Vz(x), are called transverse

shear forces, or just shear forces. The component of moment about the axis of the

member is called the torque, or twisting moment, and is labeled T(x). Finally, the

other two components of moment, My(x) and Mz(x), are called bending moments.
Much of the remainder of this book is devoted to the determination of how these

six resultants are distributed over the cross section.

Free-body Diagram (FBD). Let us now review the steps that are involved in

drawing a complete free-body diagram. They may be summarized as follows:

• Determine the extent of the body to be included in the FBD. Completely

isolate this body from its supports and from any other bodies attached to it.

When internal resultants are to be determined, pass a sectioning plane

through the member at the desired location. Sketch the outline of the result-

ing free body.

• Indicate on the sketch all of the applied loads, that is, all known external

forces and couples, acting on the body.These include distributed and concen-

trated forces applied to the body and also, when it is not negligible, the dis-

tributed weight of the body itself. The location, magnitude, and direction of

each applied load should be clearly indicated on the sketch.

• Where the body is supported or is connected to other bodies, or where it has

been sectioned, show the unknown forces and couples that are exerted on this

body by the adjacent bodies.Assign a symbol to each such force (or force com-

ponent or couple) and, where the direction of an unknown force or couple is

12
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Materials

F(x)

T(x)
Mz(x)

My(x)

Vy(x)

Vz(x)

x

z

y

External
loads

Internal
resultants

x

FIGURE 1.7 The six inter-

nal resultants on an arbitrary

cross section of a slender

member of length L � X.

xP

A

B
P

M(x) M(x)

V(x)

V(x)

F(x)A

x

(a)  A two-force member. (b)  Internal resultants: F, V, and M.
FIGURE 1.6 An illustra-

tion of internal resultants.
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known, use this information. Often there is a sign convention that establishes

the proper sense to be assumed as positive.This is particularly true for the in-

ternal resultants. However, in some cases the sense of an unknown can be as-

sumed arbitrarily.

• Label significant points and include significant dimensions. Also, if reference

axes are needed, show these on the sketch.

• Finally, keep the FBD as simple as possible so that it conveys the essential

equilibrium information quickly and clearly.

Except in Chapter 10, where we will examine stability of equilibrium and where

it will be necessary to draw a free-body diagram of the deformed system, we will as-

sume that deformations are small enough that the free-body diagram can be drawn
showing the body in its undeformed configuration, even though the forces acting on

it are those associated with the deformed configuration.

The following two example problems will serve as a review of the way that free-

body diagrams are chosen, and will illustrate how equilibrium equations are used to

determine internal resultants. Example Problem 1.1 reviews the method of joints
and the method of sections for solving truss equilibrium problems. Example 1.2 ap-

plies the method of sections to solve a frame-type problem.

13
Review of Static Equilibrium;

Equilibrium of Deformable
Bodies

E X A M P L E  1 . 1

A sign weighing 600 N hangs from a pin-jointed planar truss, as shown in

Fig. 1. (a) Use the method of joints to determine the internal axial forces

F1 and F2 in members CD and DE, respectively. Neglect the weight of the

truss members. (b) Use the method of sections to determine the axial

force F5 in member FG.

Plan the Solution This problem asks for the internal axial force in each

of three members, and specifies the types of free-body diagrams to use in

obtaining the appropriate equilibrium equations. In your Statics course

you were introduced to the two methods indicated, so this will give you

a good opportunity to review those methods.

The weight of the sign will tend to pull the truss away from the wall

at joint A, forcing the wall to push to the right at joint G. Therefore,

members along the top of the truss will be in tension, while the axial

forces in members along the bottom of the truss will be compressive.

A

(4)

(5) (2)

(3)

1.2 m

B

(1)
C

D
G F

E

Bert ′s
BAR-B-Q
Bert ′s
BAR-B-Q

1.2 m1.2 m

0.9 m

0.9 m

0.9 m

Fig. 1

c01IntroductionToMechanicsOfMaterials.qxd  8/21/10  9:30 AM  Page 13



Solution (a) Using the method of joints, determine F1 and F2. We draw a

free-body diagram of the joint at D (Fig. 2), taking F1 and F2 to be

positive in tension. Also, we select reference axes x and y as shown.

Equilibrium must be satisfied in both the x and y directions.

Ans. (a)

(b) Using the method of sections, determine F5, the force in truss member
FG. We make an imaginary sectioning ‘‘cut’’ as shown in Fig. 3, and draw

a free-body diagram of the portion of the truss to the right of this cut,

taking the axial forces in the three cut members to be positive in

tension. With this free-body diagram, there will be three unknown 

member forces, but by taking moments about joint B, only one equation

of equilibrium will be needed to obtain the required unknown force F5.

Ans. (b)

Review the Solution The force F1 has turned out to be in tension, and

forces F2 and F5 in compression, as we expected. Also, the magnitudes

are reasonable, so our solution appears to be correct.10

 F5 � �600 N, or F5 � 600 N (C)

(300 N)(1.2 m) � (300 N)(2.4 m) � F5(1.8 m) � 0aaMb
B
�  0:

�F2 � (4/5)F1 � 0

(3/5)F1 � 300 N � 0

F1 � (5/3)(300 N) � 500 N

F2 � �(4/5)F1 � �(4/5)(500 N) � �400 N

F1 � 500 N (T), F2 � 400 N (C)

10Note that the units (N) and (m) are stated when numerical values are used. It is good practice to show

the proper force units (F) and length units (L) in the solution of numerical problems. Also, note that the

answers are marked, and that tension (T) and compression (C) are identified in the answers.

300 N

D

x

y

3
4

5F2

F1

1.2 m
300 N 300 N

Sectioning
line

B

C

D
F

E

1.2 m

0.9 m

0.9 m

F5

F3

F4

Fig. 2 Free-body diagram of joint D.

Fig. 3 Free-body diagram of section

with cut through member FG.

Based on our experience in solving equilibrium problems, we could have as-

sumed at the outset that the unknown force in member FG acts to the right on joint

F (i.e., that member FG is in compression). Had we done so (by reversing the sense

of the arrow representing force F5), we would have gotten an answer of F5 � 600 N,

without the minus sign. Instead, we chose to show all unknown axial forces on the

free-body diagram assuming tension to be positive. As a consequence, the answer

for F5 turned out to be F5 � �600 N. That is, the minus sign indicates that the force

F5 is a compressive force rather than a tensile force.

As problems get more complex (e.g., several interconnected bodies) it will be-

come impossible to mentally solve all of the resulting equilibrium equations to the

extent that the ‘‘correct’’ sense of every force can be established at the outset

when the free-body diagram is drawn. The procedure of assuming internal axial
forces to be positive in tension makes it both easy to draw the free-body diagram
and easy to interpret the meaning of the answers (positive forces are tension; neg-
ative forces are compression). Hence, this sign convention will be followed

throughout this textbook.

14

Fy � 0:a

Fx � 0:a
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E X A M P L E  1 . 2

An electrical worker stands in the bucket that hangs from a pin at end D
of the boom of the cherry picker in Fig. 1. The worker and bucket 

together weigh a total of 300 lb. Between A and C the boom weighs 

1.1 lb/in., and between C and D it weighs 0.8 lb/in. Assume that AC and

CD are uniform beams.

Determine the normal force, the transverse shear force, and the

bending moment that act at cross section E, midway between A and B.

Plan the Solution Since there will be three unknowns on the cross sec-

tion at E and, in addition, an unknown force at the pin B, we cannot

solve for all four unknowns using a single free-body diagram. Hence, we

will have to determine the pin force first using a separate free-body dia-

gram; then we can determine the two components of the internal force

at E and the moment at E.

Solution Pin Reaction at B: First, we use the free-body diagram in Fig. 2

to determine the pin reaction at B.

(b) Telescopic aerial device. (Fig. 2/

Telescopic Aerial/Device (Bucket

Truck)/Used with permission of Altec

Industries)

60°

A
B

E

C D

10′′

5′′

10′′

50′′

40′′

20° Bucket

Fig. 1 (a) “Bucket truck.”

A

Ay

Ax
B

B

C

D

20′′

5′′

40°
60°

300 lb

WCD = 40 lb

WAC = 66 lb

10′′
25′′

25′′

30′′

20°

x
y

Fig. 2 A free-body diagram of boom AD.

15
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Internal Resultants: Next, we pass a section through the beam at E and

determine the forces and moment on this cross section (Fig. 3). (Let

point E be on the centerline of the beam AD.) On the section at E we

show the unknown normal force FE, the unknown transverse shear force

VE, and the unknown bending moment ME.

(i.e., 1018.2 lb acting opposite to the direction shown on the free-body

diagram).

The answers, rounded to the proper number of significant digits are:

Ans.FE � 1520 lb, VE � �1020 lb, ME � �10,100 lb � in.

ME � �10,129.9 lb � in.

� (2161.4 lb)(sin 50°)(5 in.) � 0

�(300 lb)(cos 20°)(100 in.) � (2161.4 lb)(cos 50°)(10 in.)

�ME � (55 lb)(cos 20°)(25 in.) � (40 lb)(cos 20°)(75 in.)

aaMb
E

� 0:

VE � �1018.2 lb

VE � (2161.4 lb)(cos 50°) � (55 lb � 40 lb � 300 lb)(cos 20°) � 0

�: a Fy � 0:

FE � 1520.6 lb

�FE � (2161.4 lb)(sin 50°) � (55 lb � 40 lb � 300 lb(sin 20°) � 0

�; a Fx � 0:

WEC � (1.1 lb/in.)(50 in.) � 55 lb

B � 2161.4 lb

� (B cos 40°)(5 in.) � 0

�(300 lb)(110 in.)(cos 20°) � (B cos 50°)(20 in.)

�(66 lb)(30 in.)(cos 20°) � (40 lb)(85 in.)(cos 20°)

aaMb
A

� 0:

WCD � (0.8 lb/in.)(50 in.) � 40 lb

WAC � (1.1 lb/in.)(60 in.) � 66 lb

C
E

D

10′′

y
x

300 lb

WCD = 40 lb

WEC = 55 lb

B = 2161.4 lb
50°

VE
ME

FE

15′′
25′′

25′′

25′′

20°

x

Fig. 3 A free-body diagram showing the resultants at section E.

16
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Review the Solution Because of the long moment arm of the 300-lb load

compared with the moment arm of the force at B, it is reasonable for the

magnitude of B to be much larger than the magnitude of the total load.The

magnitude and sense of FE, VE, and ME also seem to be reasonable in view

of the magnitude of B and the magnitude and location of the other loads.

17

REVIEW OF EQUILIBRIUM; DETERMINATION OF
INTERNAL RESULTANTS

1.5 PROBLEMS

Problems 1.4-1 through 1.4-6. In these truss equilib-
rium problems, adopt the sign convention for axial
force that a tensile force is positive. That is, on your
free-body diagrams, show all unknown forces F1 as
tensile forces. Then, a force that is compressive will be
negative.

Prob. 1.4-1. The pin-jointed truss in Fig. P1.4-1 supports a

load of P � 2 kips at joint C. Determine the axial forces F1

through F5 in the truss members.

B

A
C

D

P

(1) (3)
(2)

(4) (5)

6 ft

6 ft8 ft

P1.4-1 and P2.2-12

B

A
0.7 m

1 kN
0.4 m

0.6 m

1.2 m0.6 m

C

D(1)

(2) (3)

x

y

P1.4-3

determine the axial force in each of the following mem-

bers: F1 (in member AB), F2 (in member BC), and F3 (in

member CD).

Prob. 1.4-2. Each member in the pin-jointed planar truss in

Fig. P1.4-2 is 6 ft long. The truss is attached to a firm base by

a frictionless pin at A, and it rests on a roller support at B.

For the loading shown, (a) determine the reactions at A and

B, and (b) determine the force in each of the three members

labeled (1) through (3).

B

A

10 ft

8 ft 

C

D

E

(1)

(2)

(3)10 ft

8 ft 8 ft 

x

y

W

P1.4-4

A B
(1)

6 kips

3 kips

(2)

(3)

P1.4-2

Prob. 1.4-3. For the pin-jointed truss in Fig. P1.4-3, (a) de-

termine the reactions at the supports at A and C, and (b)

Prob. 1.4-4. For the pin-jointed truss in Fig. P1.4-4, (a) deter-

mine the reactions at the supports at A and C; and (b) deter-

mine the axial force in each of the following members: F1 (in

member AB), F2 (in member BC), and F3 (in member CD).

Express all of your answers in terms of the weight W. Note:

CD and DE are two separate members that are pinned to

member BD at D.

Prob. 1.4-5. The pin-jointed truss in Fig. P1.4-5 supports

equal vertical loads P at joints B, C, and D. (a) Determine

the reactions at the supports A and E, and (b) use the

method of sections to determine the forces in the following

▼
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*Prob. 1.4-10. For the beam shown in Fig. P1.4-10, deter-

mine: (a) the reactions at supports B and C, and (b) the inter-

nal resultants—F(x), V(x), and M(x)—for 1.6 m � x � 4.0 m.

Prob. 1.4-11. Beam AD in Fig. P1.4-11 has a frictionless-pin

support at A and a roller support at D. The beam has a

linearly varying distributed load, of maximum intensity w0

(force per unit length), over two-thirds of its length. (a)

Determine the reactions at A and D, and (b) determine the

internal resultants (axial force, shear force, and bending mo-

ment) on the cross section at B.

A BL L

L LL

L L

H G F

C D E

P P P

(1)

(2)

(3)

P1.4-5

A
B

C

F

W

(1)

(2)

(4)
(3)

0.8 m
0.3 m

0.3 m

G

H
30°

I

D

E

0.8 m (typ.)

P1.4-6

In Probs. 1.4-7 through 1.4-8, adopt the sign convention
for axial force F, shear force V, and bending moment M
that is given in Fig. 1.6b.

CB

A

D

W W

E

L/4 L/4 

3L
8

L/2 

P1.4-8

A
B

D
C

1.6 m 1.2 m 1.2 m

2 kN/m1 kN/m
1 kN

x

P1.4-9 and P1.4-10

L/3

w0

A
B C

D

L/3L/3
x

P1.4-11 and P1.4-12

three truss members: F1 (in member BC), F2 (in member

BG) and F3 (in member HG). (Note: Joint E is supported by

a frictionless roller on a 45� inclined plane.)

Prob. 1.4-9. For the beam shown in Fig. P1.4-9, determine:

(a) the reactions at supports B and C, and (b) the internal

resultants—FD, VD, and MD—at section D, midway between

the supports.

18

Prob. 1.4-8. Weights W are attached by cables to beam BE
at its midpoint D and at its end E, as shown in Fig. P1.4-8.

The beam is supported by a fixed, frictionless pin at B and by

an inclined cable from A to D. (a) Determine the tension in

cable AD, and determine the reaction force at pin B. (b)

Determine the internal resultants (axial force, shear force,

and bending moment) on the cross section at C.

*Prob. 1.4-6. A portion of the boom of a crane at a construc-

tion site is shown in Fig. P1.4-6.The cable from the lift motor

to the cargo sling is parallel to BE and FI and passes over a

pulley that is supported by a frictionless pin at A. The weight

of the sling and pallet being lifted is W � 6 kN. Neglecting

the weight of the truss members and the weight of the pulley

and cable, (a) determine the axial force in each of the follow-

ing members: F1 (in member BC), F2 (in member CF), F3 (in

member FG), and F4 (in member DG). (b) If member 4 were

to be attached between joints C and H, instead of between

joints D and G, would the force F4 be the same in either

case? Show calculations to support your answer.

Prob. 1.4-7. For the beam shown in Fig. P1.4-7, determine:

(a) the reactions at support B and C, and (b) the internal

resultants at section E, midway between the supports.

A30°

B C

E D

2 kips/ft

3 kip⋅ft

4 kips 1 ft 1 ft 1 ft 1 ft

P1.4-7
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Prob. 1.4-12. Beam AD in Fig. P1.4-12 has a frictionless-

pin support at A and a roller support at D. It has a linearly

varying distributed load, of maximum intensity w0 (force

per unit length), over two-thirds of its length. (a)

Determine the reactions at A and D, and (b) determine

expressions for the internal resultants—F(x), V(x), and

M(x)—for 0 � x � 2L/3.

Prob. 1.4-13. For the overhanging beam shown in Fig. P1.4-13,

determine: (a) expressions for the internal resultants V1(x) and

M1(x) in interval AB (0 x � 6 in.), and (b) the internal

resultants VD and MD at section D, midway between the two

supports.

�

19

*Prob. 1.4-14. Beam AD is supported by a rollers at B and C
that are equidistant form the ends, as shown in Fig. P1.4-14.

The beam supports a uniformly distributed downward load

of intensity w0 (force per unit length) along its entire length.

(a) Determine an expression for the location a of the two

supports that will minimize the maximum bending moment

Mmax in the beam. (b) Also determine an expression for the

value of Mmax.

A
DB

x

C

6 in. 3 in.3 in.

40 lb/in.

P1.4-13

A D

W0

CB

a

L

a

P1.4-14

Prob.1.4-16. The right-angle frame in Fig. P1.4-16 has equal

legs of length L and is supported by a pin and roller as

shown. If the total weight of the frame is W, (a) determine

the reactions at supports A and B, and (b) determine the

internal resultants (axial force, shear force, and bending

moment) on the cross section at point C.

Prob. 1.4-15. One of the lift arms of a fork-lift truck has the

loading and support shown in Fig. P1.4-15.The load consists of

two identical crates, each weighing W � 400 lb. (Each of the

two lift arms supports half of the total load.) The ‘‘support’’

consists of a hoist cable attached to the lift arm at B and fric-

tionless rollers that react against the truck frame at A and at

C. Neglect the weight of the lift arm. (a) Determine the roller

T

RA

B

A

CRC

D

E

48 in.

6 in.

12 in.

12 in.

12 in. 18 in.

W__
2

W__
2

P1.4-15

L/2 L/2

L/4

3L
4

B

CA

P1.4-16

Prob. 1.4-17. Determine the internal resultants FG, VG,

and MG on the cross section at G of the horizontal frame

member in Fig. P1.4-17. The uniformly distributed load

on member AC has a magnitude w0 � 220 lb/ft. (See the

inset for a definition of the resultants.)

reactions RA and RC at A and C, respectively. (b) Determine

the internal resultants (axial force, shear force, and bending

moment) on a horizontal cross section at D. (c) Determine the

internal resultants on a vertical cross section at E.
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B

C

A

P

50 mm 400 mm

200 mm

100 mm

100 mm

Cφ

D

E

MC

FC

VC

B

P1.4-18

Problems 1.4-19 and 1.4-20. For these frame equilibrium
problems, use the sign convention that is indicated for
each member of each frame.

x2

x1

M1 M2

V1

V2

F1 F2

A

y

x

3 ft

C

B

P = 10 kips

3 ft

4 ft

P1.4-19 and P5.5-19

x2
W0 = 3.2 kN/m

x1

M1

M2

V1

V2

F1

F2

A

1.5 m 2.5 m

B

C

2 m

P1.4-20, P5.5-20 and P9.4-24

*Prob. 1.4-18. A vertical force P � 1 kN acts on frame ABE,

as shown in Fig. P1.4-18.The frame is supported, through fric-

tionless pins, by a wheel at B and by a fixed-pin support block

at E. (a) Determine the reaction at E, and (b) determine the

internal resultants (axial force, shear force, and bending mo-

ment) on the cross section at point C. See the inset for a def-

inition of the resultants. (Note: Use the given dimensions to

eliminate the angle from your answers. The radius of the

pulley at A is not negligible.)

f

Prob. 1.4-19. A vertical force P � 10 kips acts downward at

the apex B of frame ABC, as shown in Fig. P1.4-19. The

frame is supported by a frictionless pin at C and rests on a

roller support at A. (a) Determine the reactions at A and C,

and (b) determine the internal resultants (axial force, shear

force, and bending moment) at arbitrary cross sections of

legs AB and BC, using the respective notations shown in the

two cutaways.

20

A

3 ft

4 ft

1.5 ft

60°

B G
C

w0

D

E

2 ft

1.5 ft

MG

GB FG
VG

P1.4-17 and P2.2-16

Prob. 1.4-20. A uniformly distributed vertical load w0 � 3.2

kN/m acts over the entire 2.5 m length of the horizontal

member BC of frame ABC, as shown in Fig. P1.4-20. The

frame is supported by a frictionless pin at C and rests on a

roller support at A. (a) Determine the reactions at A and C,

and (b) determine the internal resultants (axial force, shear

force, and bending moment) at arbitrary cross sections of

members AB and BC, using the respective notations shown

in the two cutaways.

c01IntroductionToMechanicsOfMaterials.qxd  8/21/10  9:30 AM  Page 20



2121

Section
Suggested

Review

Problems

Section 1.1 gives you definitions of the

following: mechanics of materials, de-
formable body, stress and strain, and analy-
sis and design.

It also introduces you to the finite element
method, a powerful compatational tool for

analyzing complex structural and mechani-

cal systems.

Section 1.3 discusses a four-step problem-
solving procedure for you to use. The four

steps are:

1. State the Problem;

2. Plan the Solution;

3. Carry Out the Solution; and

4. Review the Solution.

1.4-5

1.4-11

1.4-17

Section 1.4 reviews important topics that

were covered in your Statics course.

It emphasizes the importance of carefully

drawn free-body diagrams.

Section 1.4 also introduces the topic of

internal resultants—axial force, transverse
shear force, and bending moment.

Table 1.1 describes symbols for external
reactions.

C H A P T E R  1  R E V I E W — I N T R O D U C T I O N  T O
M E C H A N I C S  O F  
M A T E R I A L S

Section 1.2 Introduces the three fundamen-
tal type of equation that you will be study-

ing throughout this course. They are:

1. equilibrium equations;

2. geometry of deformation equations; and

3. material behavior (i.e., force-

termerature-deformation) equations.

You should familiarize yourself with this 

material

You should always remember this Big 3 of mechan-

ics of materials!

You should use this four-step problem-solving 

procedure.

The statics review problems involve:

• pin-jointed planar trusses,

• beams, and

• planar frames.

Internal resultants (Fig. 1.6)

1.1

1.2

1.3

1.4

xP

A

B
P

M(x) M(x)

V(x)

V(x)

F(x)A

x

(a)  A two-force member. (b)  Internal resultants: F, V, and M.
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STRESS AND STRAIN;
INTRODUCTION TO DESIGN

2

The two most important concepts in mechanics of materials are the concepts of

stress and strain. The photographs in the Color-Photo Insert give a visual indication

of the complexity of the internal behavior of the members pictured in response to

the given external loads. (See the Color-Photo Insert.) Figure 2.1a, repeated from Fig.1.6,

shows an L-shaped bracket loaded as a two-force member, and Fig. 2.1b shows the

internal resultants, F(x), V(x), and M(x), that are required to maintain the equilib-

rium of the two sectioned parts of the bracket. Although we could compute the

internal resultants shown on Fig. 2.1b by using static equilibrium procedures (free-

body diagrams and equations of equilibrium), those procedures are clearly insufficient

for determining the complex internal force distribution making up those resultants.

The concept of stress is introduced in this chapter to enable us to quantify internal

force distributions.

The shape of the bracket also changes due to the applied loads; that is, the mem-

ber deforms. The concept of strain is introduced to permit us to give a detailed an-

alytical description of such deformation. In this chapter we will define the two key

forms of stress and corresponding two forms of strain.

Finally, stress and strain are related to each other. This relationship, which de-

pends on the material(s) used in the fabrication of the member, must be determined

by performing certain stress-strain tests, which are described in this chapter. Also

discussed are many other important mechanical properties of materials that must be

determined by laboratory testing.Throughout the remainder of this book we will be

2.1 INTRODUCTION

xP

A

B
P

M(x) M(x)

V(x)

V(x)

F(x)A

x

(a)  A two-force member. (b)  Internal resultants: F, V, and M.
FIGURE 2.1 An illustra-

tion of internal resultants.
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determining the stresses and strains produced in various structural members by the

forces and temperature changes acting on them.
23

Normal Stress

2.2 NORMAL STRESS

To introduce the concepts of stress and strain, we begin with the relatively simple

case of a straight bar undergoing axial loading, as shown in Fig. 2.2.1 In this section

we consider the stress in the bar, and in Section 2.3 we treat the corresponding strain.

Equal and opposite forces of magnitude P acting on a straight bar cause it to

elongate, and also to get narrower, as can be seen by comparing Figs. 2.2a and 2.2b.
The bar is said to be in tension. If the external forces had been applied in the oppo-

site sense, that is, pointing toward each other, the bar would have shortened and

would then be said to be in compression.

Definition of Normal Stress. The thin red arrows in Figs. 2.2c and 2.2d repre-

sent the distribution of force on cross sections at A and B, respectively. (A cross section
is a plane that is perpendicular to the axis of the bar.) Near the ends of the bar, for

example at section A, the resultant normal force, FA, is not uniformly distributed

over the cross section; but at section B, farther from the point of application of force

P, the force distribution is uniform. In mechanics, the term stress is used to describe

the distribution of a force over the area on which it acts and is expressed as force

intensity, that is, as force per unit area.

The units of stress are units of force divided by units of area. In the U.S.

Customary System of units (USCS), stress is normally expressed in pounds per square

inch (psi) or in kips per square inch, that is, kilopounds per square inch (ksi). In the

International System of units (SI), stress is specified using the basic units of force

(newton) and length (meter) as newtons per meter squared (N/m2). This unit, called

the pascal (1 Pa � 1 N/m2), is quite small, so in engineering work stress is normally

Stress �
Force

Area

1Axial loading is discussed here in order to introduce the concepts of stress and strain and the relationship

of stress to strain. Chapter 3 treats axial deformation in greater detail.

PP

P

P

FA = P

FB = P

A*

A*

B*

B*

A B

(a)

(b)

(c)

(d)

FIGURE 2.2 A straight 

bar undergoing axial loading.

(a) The undeformed bar, with

vertical lines indicating cross

sections. (b) The deformed

bar. (c) The distribution of 

internal force at section A.

(d) The distribution of 

internal force at section B.
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expressed in kilopascals (1 kPa � 103 N/m2), megapascals (1 MPa � 106 N/m2), or

gigapascals (1 GPa � 109 N/m2). For example, 1 psi � 6895 Pa � 6.895 kPa.

There are two types of stress, which are called normal stress and shear stress. In

this section we will consider only normal stress; shear stress is introduced in Section

2.7. In words, normal stress is defined by

The symbol used for normal stress is the lowercase Greek letter sigma (�).The normal
stress at a point is defined by the equation

(2.1)

where, as shown in Fig. 2.3a, �F is the normal force (assumed positive in tension)

acting on an elemental area �A containing the point (x, y, z) where the stress is to

be determined.

The sign convention for normal stress is as follows:

• A positive value for � indicates tensile stress, that is, the stress due to a force

�F that pulls on the area on which it acts.

• A negative value for � indicates compressive stress.

Thus, the equation � � 6.50 MPa signifies that � is a tensile stress of magnitude

6.50 MPa, or 6.50 MN/m2, and the equation � � �32.6 ksi indicates a compressive
stress of magnitude 32.6 kips/in2.

Average Normal Stress. Even when the normal stress varies over a cross sec-

tion, as it does in Fig. 2.2c, we can compute the average normal stress on the cross

section by letting

(2.2)

Thus, for Figs. 2.2c and 2.2d we get

(savg)A �
FA

A
�

P
A

,  (savg)B �
FB

A
�

P
A

Average
Normal
Stress

savg �
F
A

Normal
Stresss(x, y, z) � lim

¢A�0
 a ¢F

¢A
b

Normal Stress �
Force normal (i.e., perpendicular) to an area

Area on which the force acts

24
Stress and Strain;
Introduction to Design

z

y

z z

zR

y

x

x

x

R

(a) Distributed normal
      stress on a cross section.

(b) Resultant of distributed
      normal stress in (a).

ΔF
ΔA

F(x)

y yR

FIGURE 2.3 Normal force
on a cross section.
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Much of the rest of this textbook is devoted to determining how stress is distrib-

uted on cross sections of structural members under various loading conditions.

However, in many situations the normal stress on a cross section is either constant

or very nearly constant, as in the next two examples.

25
Normal Stress

E X A M P L E  2 . 1

A shop crane consists of a boom AC that is supported by a pin at A and by

a rectangular tension bar BD, as shown in Fig. 1. Details of the pin joints at

A and B are shown in Views a–a and b–b, respectively. The tension bar BD
has a width w � 1.5 in. and a thickness t � 0.5 in. If the vertical load at C is

P � 5 kips, what is the average tensile stress in the bar BD?

Plan the Solution Equilibrium of boom AC can be used to determine

the tensile force FB in two-force member BD. Then, the average tensile

stress can be calculated by using Eq. 2.2.

Solution

Equilibrium: Figure 2 shows a free-body diagram of the boom AC, with

two components of the reaction force at pin A, and with the force FB in

two-force member BD shown as a tensile force acting at B along the

direction BD. The 3–4–5 triangles in Fig. 2 can be used to establish that

3

P = 5 kips

3

4

5

C

a

 View a-a

 View b-b

a

D

B

w

A

b

t

b

4
5

6 ft

4 ft

Fig. 1 A shop crane.

Fig. 2 Free-body diagram.

P = 5 kips

FB

Ay

Ax

3

44
5

3

5

C

A

B

4 ft

8 ft
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AC and BD are perpendicular to each other, and that the horizontal pro-

jection of boom AC is 8 ft.

and from Eq. 2.2,

Rounded to three significant figures, the average normal stress on a 

typical cross section of the bar BD is

Ans.

where the (T ) stands for tension.

Review the Solution The above calculations are very straightforward,

but they should be double-checked. The answer seems reasonable.

savg � 13.3 ksi (T )

savg �
F
A

�
FB

wt
�

10 kips

(1.5 in.)(0.5 in.)
� 13.33 ksi

FB � 10 kips

�aMA � 0:   (5 kips)(8 ft) � FB(4 ft) � 0

E X A M P L E  2 . 2

The Washington Monument (Fig. 1a) stands 555 ft high and weighs

181,700 kips (i.e., approximately 182 million pounds). The monument

was made from over 36,000 blocks of marble and granite. As shown in

Fig. 1b, the base of the monument is a square that is 665.5 in. long on

each side, and the stone walls at the base are 180 in. thick.

Determine the compressive stress that the foundation exerts over

the cross section at the base of the monument, assuming that this normal

stress is uniform.

Solution From the free-body diagram in Fig. 2, the total normal force

on the base of the monument is equal to negative of the weight of the

monument, so

a F � 0:        F � �181,700 kips

(a) (b)

665.5 in.

180 in.

180 in.

Fig. 1 Washington Monument.

Fig. 2 Free-body diagram.

W = 181,700 kips

F

26
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The compressive stress that results when one object bears on another, like the

stress that the monument exerts on the foundation in the above example problem,

is frequently called bearing stress. Bearing stress is just a special case of compres-

sive normal stress.

Stress Resultant. Internal resultants were introduced in Section 1.4, and

Examples 1.1 and 1.2 show how equilibrium is used to relate these resultants on a

cross section to the external loads. Equation 2.2 relates the average normal stress on

a cross section to the normal force on the cross section. Let us now examine in

greater detail the relationship between the distributed normal stress on a cross sec-

tion and its resultant. Based on the definition of normal stress in Eq. 2.1, we can re-

place the �F in Fig. 2.3a by an elemental force dF � � dA. Referring again to Fig. 2.3a
and following the right-hand rule for moments, we can see that this elemental force

dF contributes a moment zdF about the �y axis and ydF about the �z axis. In Fig. 2.3b,

the resultant normal force on the cross section at x is labeled F(x), and it acts at

point (yR, zR) in the cross section. Given the distribution of normal stress on a cross

section, � �(x, y, z), we can integrate over the cross section to determine the mag-

nitude and point of application of the resultant normal force:2

(2.3)

F(x) � �
A
s dA

zRF(x) � �
A

zs dA

�yRF(x) � ��
A

ys dA

�

(Note: In accordance with the sign convention for normal stress, the

normal force F is taken positive in tension. The negative value for F
indicates that it is a compressive force, as is clearly evident in this case.)

The cross-sectional area of the base is

Therefore, from Eq. 2.2,

Rounded to three significant figures, the average normal stress on the

cross section of the monument at its base is

Ans.

where the (C) stands for compression. This is a very low stress, even for

stone. Figure 3 illustrates how this uniform compressive stress would be

distributed over the foundation at the base of the monument.

savg � 520 psi (C)

savg �
F
A

�
�181,700 kips

349,600 in2
� �519.8 psi

A � (665.5 in.)2 � (665.5 in. � 360 in.)2 � 349,600 in2

Fig. 3 Compressive stress at the base.

520 psi

2For generality, the normal force has been permitted to be a function of x in Fig. 2.3b and in Eqs. 2.3. Of

course, F(x) � P � const in the axial-loading case illustrated in Fig. 2.2.

27

aMz:

aMy:

a Fx:
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The two moment equations are used to locate the line of action of the force F(x).
Note that the sign convention for � implies that the force F in Eq. 2.3 is to be taken

positive in tension. This is the reason that we will consistently, as we did in Chapter 1,

take normal force resultants to be positive in tension.

Resultant of Constant Normal Stress on a Cross Section: Let us determine the

resultant of normal stress on the cross section at x (Fig. 2.3a) if the normal stress is

constant over the cross section. We will prove that normal stress that is constant on
a cross section corresponds to an axial force F(x) � A�(x) acting through the centroid
of the cross section at x. (In Section 3.2 you will learn the conditions under which

�(x) is constant over the cross section.)

Let the resultant be assumed to be a force F(x) acting parallel to the x axis and

passing through point (yR, zR), as in Fig. 2.3b. We must show that

For this we can use Eqs. 2.3. Substituting the condition �(x, y, z) � �(x) into Eqs. 2.3,

we get

Therefore, if the normal stress is uniform over a cross section, the normal stress on

the cross section, also called the axial stress, is given by

(2.4)

and corresponds to a force F(x) (tension positive) acting at the centroid of the cross

section, that is, at .

We would certainly expect uniform stress on a circular rod to correspond to a

force acting along the axis of the rod, and similarly for a square or rectangular bar.

Hence, it is ‘‘reasonable’’ that a uniform normal stress distribution acting over a

cross section of general shape produces a resultant force acting through the centroid

of the cross section. In most cases, the cross-sectional area is constant throughout

the length of the member, but Eq. 2.4 may also be used if the cross-sectional area

varies slowly with x. (See Example 3.2.)

Uniform Normal Stress in an Axially Loaded Bar: Under certain assumptions, an

axially loaded bar will have the same uniform normal stress on every cross section;

that is, �(x, y, z) � � � constant. These assumptions are:

• The bar is prismatic; that is, the bar is straight and it has the same cross sec-

tion throughout its length.

• The bar is homogeneous; that is, the bar is made of the same material

throughout.

• The load is applied as equal and opposite uniform stress distributions over

the two end cross sections of the bar.

zR � z. yR � y

Axial
Stress
Equation

s(x) �  
F(x)

A(x)

 �yRF(x) � �s(x)�
A

y dA � �s(x)y A

 zRF(x) � s(x)�
A

z dA � s(x)z A

 F(x) � s(x)�
A

dA � s(x) A

F(x) � A(x)s(x),  yR � y,  zR � z

28
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So long as the resultant force at each end of the bar is applied at the centroid of the

end cross section, the last assumption—that the loads are applied as uniform nor-

mal stress distributions on the end cross sections—can be relaxed. As illustrated in

Fig. 2.2 a–d, the stress is uniform on every cross section, except on cross sections that

are very near the points of application of load. This is an application of Saint-
Venant’s Principle, which is discussed further in Section 2.10.

The uniform, prismatic bar in Fig. 2.4a is labeled as member ‘‘i’’ and is subjected

to equal and opposite axial forces Fi acting through the centroids at its ends. Its

cross-sectional area is Ai.
The normal stress on cross sections of an axially loaded member, like the one in

Fig. 2.4, is called the axial stress. Since, from the free-body diagram in Fig. 2.4b, the

resultant force, F(x), on every cross section of the bar is equal to the applied load

Fi, and since the cross-sectional area is constant, from Eq. 2.4 we get the following

formula for the uniform axial stress:

(2.5)

Example 2.3 shows one application of the axial-stress equation. You will find

several other examples in the computer program, MDSolids, which accompanies

this book.

Axial-
Stress
Equation

si �  
Fi

Ai
� const

29
Normal Stress

E X A M P L E  2 . 3

Two solid circular rods are welded to a plate at B to form a single rod, as

shown in Fig. 1. Consider the 30-kN force at B to be uniformly distrib-

uted around the circumference of the collar at B and the 10 kN load at

C to be applied at the centroid of the end cross section. Determine the

axial stress in each portion of the rod.

d1 = 20 mm

d2 = 15 mm

30 kN 10 kN(2)

(1)

A
B

C

Fig. 1

C

xi

Fi

F(x) = Fi

σ

(a) (b)

Fi

Fi

FIGURE 2.4 Uniform

stress in an axially loaded

prismatic bar.
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The free-body diagrams in Fig. 2 of Example 2.3 illustrate the application of the

method of sections to structures that have axially loaded segments that are collinear.

For example, the free-body diagram in Fig. 2a makes it possible with a single free-body

diagram to relate the internal force F1 to the external forces applied at the two nodes

(joints) B and C; this is the most efficient way to determine F1. In Chapter 3 there are

many additional examples of this approach to equilibrium of axially loaded structures.

Plan the Solution Since each segment of the rod satisfies the conditions

for uniform axial stress, we can use Eq. 2.5 to calculate the two required

axial stresses. First, however, we need to compute the force in each rod

by using an appropriate free-body diagram and equation of equilibrium.

Solution

Free-body Diagrams: First we draw free-body diagrams that expose the

rod forces F1 (or FAB) and F2 (or FBC). We show F1 and F2 positive in

tension.

Equations of Equilibrium: From free-body diagram 1 (Fig. 2a),

and, from free-body diagram 2 (Fig. 2b),

Axial Stresses: Using Eq. 2.5, we obtain the axial stresses

Ans.

Review the Solution In this problem we could ‘‘mentally’’ solve the equilib-

rium problems and ‘‘see’’ that AB is in compression and that BC is in tension.

 
s1 � �63.7 MPa (63.7 MPa C)

s2 � 56.6 MPa (56.6 MPa T)
f

 s1 �
F2

A2

�
10 kN

176.7 mm2
� 56.6 

MN

m2

 s1 �
F1

A1

�
�20 kN

314.2 mm2
� �63.7 

MN

m2

�F2 � 10 kN � 0,  F2 � 10 kN

A1 �
p

4
d2

1 �
p

4
(20 mm)2 � 314.2 mm2

A2 �
p

4
d2

2 �
p

4
(15 mm)2 � 176.7 mm2

 S� aa Fb1 � 0:  �F1 � 30 kN � 10 kN � 0,  F1 � �20 kN

10 kN
30 kN

F1

B C

(1)

(a) Free-body diagram 1.

F2 10 kN

C

(2)

(b) Free-body diagram 2.

Fig. 2

30

S� aa Fb
2

� 0:

This is an excellent time for you to get acquainted with the MDSolids computer

program that accompanies this textbook. You should ‘‘play with’’ each of the

MDS examples in order to enhance and reinforce your understanding of the con-

cepts presented in the textbook. Also, many of the homework problems can be

checked by using MDSolids.

MDSolids
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Segmented Axial is a computer program for solving axial stress problems

like Example 2.3.

Beam and Two Rods is a computer program for solving statically deter-

minate problems having two non-collinear axial-deformation members.

Two-Bar Assembly is a program for analyzing the stresses in members

of simple statically determinate truss-like structures.

Truss Analysis is a program for analyzing the stresses in members of

statically determinate trusses..

MDS2.2

MDS2.1 31
Extensional Strain; 

Thermal Strain

MDS2.3

MDS2.4

2.3 EXTENSIONAL STRAIN; THERMAL STRAIN

When a solid body is subjected to external loading and/or temperature changes, it

deforms; that is, changes occur in the size and/or the shape of the body. The general

term deformation includes both changes of lengths and changes of angles. For

example, consider the axial deformation of a bar as shown in Fig. 2.5. To illustrate

how the bar deforms locally when it is stretched, two squares are drawn on the sur-

face of the undeformed bar (Fig. 2.5a); one square is aligned with the axis of the bar,

and one square is oriented at 45� to the axis of the bar. Local changes in length, such

as that of line segment BC when it elongates to become segment B*C*, are

described by extensional strain. Asterisk superscripts denote “after deformation has

occurred.” Local angle changes, like the change of right angle DEF to become acute

angle D*E*F* are described by shear strain. Both types of strain are important in

describing the geometry of deformation of deformable bodies. (Shear strain is

discussed in Section 2.7.)

Definition of Extensional Strain. To define extensional strain, let us consider

again the case of axial deformation, as illustrated by Fig. 2.5. The total elongation of

the bar is designated by �L,3 and the extensional strain, or normal strain, is desig-

nated by the lowercase Greek letter epsilon (�).4 The average extensional strain is
defined as the ratio of the total elongation �L to the original length L, that is,

(2.6)

If the bar stretches (i.e., L* � L), the strain � is positive and is called tensile strain.
A shortening of the bar results in a negative value for � and is referred to as

compressive strain. Although strain is a dimensionless quantity, it is common prac-

tice to report strain values in units of in./in., or �in./in. (1 microinch per inch � 10�6

in./in.), or �m/m. The magnitude of extensional strain is generally quite small, say 

	 0.001, so the latter two microstrain units are appropriate. Frequently just the sym-

bol � is used, like 100 �, which is read as 100 microstrain.

Average
Extensional
Strain

�avg �
¢L
L

�
L* � L

L

3The Greek capital letter delta (�) is frequently used to designate the change in a quantity, so �L is a

change in the length L.
4In Section 2.4 it is shown that the extensional strain � is related to the normal stress �. Therefore,

extensional strain is sometimes called normal strain.

A

B
C

D
E

F

L

A*

B*
C*

D*
E*

F*

L
L*

ΔL

(a) The undeformed bar.

(b) The deformed bar.

FIGURE 2.5 The deformation

of a bar under axial loading.
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For the remainder of this chapter we will consider only the case where the ex-

tensional strain is uniform along the length of a member.This type of uniform strain

is also called axial strain. Thus, the axial strain is given by

(2.7)

(Nonuniform extensional strain is discussed in Sections 2.12, 3.2 and 3.3.)

Strain-Displacement Analysis. Equations 2.6 and 2.7 are definitions that in-

volve only the geometry of deformation. They enable us to relate strain quantities to

displacement quantities, as will be illustrated in the following example of strain-
displacement analysis. Later we will consider the causes of the deformation, the

applied loads and/or temperature changes.

Axial
Strain� � �avg �

¢L
L
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E X A M P L E  2 . 4

When the bungee jumper in Fig. 1 stands on the jump platform, the un-

stretched length of the bungee cord is 12.0 ft. Assuming that the bungee

cord stretches uniformly along its length, determine the extensional

strain in the bungee cord when the jumper “hits bottom,” where the ex-

tended length of the cord is 37.1 ft.

Plan the Solution The initial length of the bungee cord and its final

length are given in the problem statement. Therefore, we can simply use

Eq. 2.6 to calculate the average extensional strain in the bungee cord

when the jumper hits bottom.

Solution From Eq. 2.6,

Ans.

Review the Solution The final extensional strain of the bungee cord,

209%, is very large by comparison with the strain in a steel or aluminum

rod when stretched until it fractures, which is about 10%. For information

on the elongation of bungee cord, see www.bungeezone.com/equip.

� �
L* � L

L
�

37.1 ft � 12.0 ft

12 .0 ft
� 2.09  

ft

ft

Fig. 1

E X A M P L E  2 . 5

When the “rigid” beam AB in Fig. 1 is horizontal, the rod BC is strain

free. (a) Determine an expression for the average extensional strain in

rod BC as a function of the angle of clockwise rotation of AB in the

range 0 
 
 (b) Determine an approximation for �( ) that gives

acceptable accuracy for values of � when rad.

Plan the Solution The defining equation for extensional strain, Eq. 2.6,

can be used to determine the required expression for the average exten-

sional strain of rod BC. To determine the geometrical relationship

u V 1

up/2.u

u
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between the extended length L* and the angle , we can draw a sketch

of the deformed rod-beam system (i.e., a deformation diagram).5 Since

beam AB is assumed to be rigid, end B moves in a circle about end A.

Solution (a) Obtain an expression for �( ). From Eq. 2.6,

From the original figure,

Deformation Diagram: Rigid beam AB rotates about A, while rod BC
stretches and rotates about C, as indicated in Fig. 2.

Geometry of Deformation: Using the Pythagorean theorem and dimen-

sions from the sketch of the deformed configuration in Fig. 2, we get

where

Then, from Eq. 2.6,

This can be simplified to

Ans. (a) (1)

(b) Approximate �( ) for rad.6 If , then .
Furthermore, the term under the radical has the form , with .

According to the binomial expansion theorem, for small values of 

Thus, for , �( ) takes the form

Ans. (b) (2)

Review the Solution In both answers, �( ) is dimensionless, as it should

be. If Eq. (1) is evaluated at � � , we get �( ) � 2/5. Since L* � 3a
� 4a � 7a when B* is directly below A, this value of �( ) is correct.p/2

p/2p/2

u

�(u) � a12

25
b u,  u V 1 rad

uu V 1

21 � b � 1 �
b

2

b

b V 11 � b
sin u � uu V 1u V 1u

�(u) �
B

1 � a24

25
b sin u � 1

� �
L* � L

L
�

a2(3 � 4 sin u)2 � (4 cos u)2 � 5a

5a

b* � 4a cos u,  c* � 4a sin u

L* � 2(3a � c*)2 � (b*)2

L � BC � 5a

� �
L* � L

L

u

u

5A deformation diagram is useful in the analysis of the geometry of deformation of a system, analogous

to the way a free-body diagram is useful in an equilibrium analysis.
6See Appendix A.2 for information regarding approximations of this nature.

Fig. 1

Fig. 2 Deformation diagram.
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3a

b*

θ

A

C

B

B*

c*

L*

4a

θ

A

C

B

3a
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Note that nothing was said in the preceding example about what caused the

deformation illustrated in Fig. 2. In fact, a downward force at B would cause beam

AB to rotate clockwise; but heating of rod BC could also be the cause. Thus,

Example 2.5 illustrates that we do not need to know what caused the deformation

in order to relate the extensional strain � to the rotation angle . That is purely a 

geometry problem!

Small-Displacement/Small-Strain Behavior. In Part (b) of Example 2.5, an

expression for the strain �( ) was obtained that is valid for very small values of the

angular displacement , namely

Two things may be noted about this approximation: (1) the strain is a linear function

of the displacement variable , and (2) since the displacement angle is assumed to

be very small, the strain � will also be very small.This small-displacement/small-strain

behavior is typical of the normal behavior of engineering structures (e.g., building

structures and machines) for which deformations are usually too small to be seen

with the naked eye, and for which strains are usually of the order of 0.001 in./in. (i.e.,

1000 �) or less.7

A small-displacement/small-strain situation that arises frequently is illustrated

in Fig. 2.6. Consider an extensible rod BC that is pinned at B to a “rigid” beam AB,

and let point B move downward by a small distance, where and .Since

AB is assumed to be rigid, point B actually moves in a circular path around a cen-

ter at A, as shown in Fig. 2.6a. Figure 2.6b illustrates a simplifying assumption: be-

dB V adB V LdB,

uu

�(u) � a12

25
b  u,  u V 1 rad

u

u

u
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7There are situations where large displacements occur, but the strain remains very small, like the deflec-

tion of the tip of a very flexible diving board under the weight of a heavy diver. However, throughout this

textbook assume that displacements are small unless stated otherwise.

cause and , point B can be assumed to move vertically downward
dB

L
V 1 

dB

a
V 1

to point B�, rather than along the circular path shown in Fig. 2.6a. By comparing the

expressions that we obtain in each case for the strain in rod BC and the angle , we

will show that it is acceptable to make the simplifying assumption that rod BC re-

mains vertical, as shown in Fig. 2.6b.
From Fig. 2.6a, where point B follows a circular path about A,

u

B

B*

C

A

a

L

δB
θa

a

a

B

B′

C

A

L

δB
θb

(a) Actual displacement of B.

Rigid

(b) Displacement of B approximated 
      to be vertical.

FIGURE 2.6 Small-displacement approximations.
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By neglecting the squared terms and higher in and a in the last line of the above

equation (see Appendix A.2), we obtain the approximation

(1a)

Since

therefore, angle can be approximated by

(2a)

From Fig. 2.6b, where rod BC is assumed to remain vertical,

(1b)

Therefore, angle can be approximated by

(2b)

From the above, it is evident that the results of the two small-displacement

analyses are the same; that is, Eq. (1a) is the same as Eq. (1b), and Eq. (2a) is the

same as Eq. (2b). It is clear, therefore, that the analysis in situations like this is made

much simpler if we just assume from the outset that points along rotating ‘‘rigid’’

bars move along straight lines perpendicular to the original bar, as in Fig. 2.6b,

rather than in circular paths.

Thermal Strain. We turn now to the relationship between extensional strain and

the change of temperature of a body, that is, to thermal strain.8 Although there are

some exceptions, most engineering materials respond to a uniform increase in tem-

perature, �T, by expanding in all directions by a uniform amount

(2.8)Thermal Strain�T � a ¢T

ub �
dB

a

ub

ub � tan�1adB

a
bS
dB

a
� ub �

u3b

3!
� p

�b �
dB

L

ua �
dB

a

ua

ua � sin�1adB

a
bS
dB

a
� ua �

u3a

3!
� p

�a �
dB

L

udB

   �
1

LB
L2 � 2LdB � d2

B � a2 
 au2a

2
�
u4a

4!
� pb � 1

 �a �
B*C � L

L
�

2(L � dB)2 � [a(1 � cos ua)]2 � L

L
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Thermal Strain

8Although some texts refer to thermal stress, a uniform temperature change only results in stresses in a

body if the body is restrained, that is, if it is not completely free to expand. Here we will assume that the

solids that are heated or cooled are completely free to expand or contract. We will solve for thermally in-

duced stresses in Section 3.6.
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where �T is the thermal strain, � is the coefficient of thermal expansion, and �T is
the change in temperature. (A positive �T corresponds to an increase in tempera-

ture above the reference temperature.) When the temperature of a body decreases,

�T is negative, and the body shrinks a corresponding amount.The units of � and �T
must be consistent. For example, the U.S. Customary units of � are 1/�F (the recip-

rocal of degrees Fahrenheit). The SI units are 1/K (the reciprocal of kelvins) or 1/�C
(the reciprocal of degrees Celsius), depending on the units of �T.

Let the block of material in Fig. 2.7 be subjected to a uniform temperature

increase �T. Since it is free to expand in all directions,

Since this strain is uniform throughout the block, Eqs. 2.6 and 2.8 can be combined

to give the elongations of the block:

(2.9)

The coefficient of thermal expansion is a property of the material; it is determined

experimentally by applying a change in temperature and measuring the change in di-

mensions of the specimen, as in Fig. 2.7.Values for � are given in tables of Mechanical

Properties of Engineering Materials, such as those in Table F.3 in Appendix F.

¢LxT � (a ¢T )Lx,  ¢LyT � (a ¢T )Ly,  ¢LzT � (a ¢T )Lz

�xT � �yT � �zT � a ¢T
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Lz
Lx

Ly

ΔLzT ΔLxT

ΔLyT

y

x

z

FIGURE 2.7 The free 

expansion of a uniform block

caused by a uniform increase

in the temperature of the

block.

E X A M P L E  2 . 6

If the rod BC in Example 2.5 is made of a high-strength steel for which

� � 8.0 � 10�6/�F, and if BC is uniformly heated by 100�F, through what

angle will beam AB rotate? Assume that AB and BC are weightless,

and that AB is horizontal before the heating of BC occurs.

Plan the Solution Equation 2.8 relates the temperature change �T to
the thermal strain, and the answers in Example 2.5 relate strain to .
Therefore, we can simply combine these.

Solution

Since the expression in Eq. (2) of Example 2.5 is simpler than the

expression in Eq. (1), let us try Eq. (2) first.

or

Ans.

Since this answer satisfies the requirement that rad, we do not

need to resort to Eq. (1).

Review the Solution Although a tenth of a degree rotation for a tem-

perature increase of 100�F may seem to be very small, the formulas are

so simple that all we can do to check our result is just to double-check

the calculations and the conversion from radians to degrees.

u V 1

u � 0.0955 deg

u �
25

12
 � �

25

12
 (8.0 � 10�4) � 1.667 � 10�3 rad

�T � a ¢T � (8.0 � 10�6/°F)(100°F) � 800 � 10�6 in./in.

u

u
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2.4 STRESS-STRAIN DIAGRAMS; MECHANICAL PROPERTIES 
OF MATERIALS

In order to relate the loads on engineering structures to the deformation produced

by the loads, experiments must be performed to determine the load-deformation
behavior of the materials (e.g., aluminum, steel, and concrete) used in fabricating

the structures. Many useful mechanical properties of materials are obtained from

tension tests or from compression tests, and these properties are listed in tables like

those in Appendix F. This section describes how a tension test is performed and dis-

cusses the material properties that are obtained from this type of test.

Tension Tests and Compression Tests. Figure 2.8 shows a computer-

controlled, hydraulically actuated testing machine that may be used to apply a

tensile load or a compressive load to a test specimen, like the steel tension specimen

in Fig. 2.9a or the concrete compression specimen in Fig. 2.9c.9 Figure 2.9b shows a

close-up view of a ceramic tension specimen mounted in special testing-machine

9Specimen dimensions and procedures for preparing and testing specimens are prescribed by various

standards organizations, like the American Society for Testing Materials (ASTM) and the American
Concrete Institute (ACI).

FIGURE 2.8 A computer-

controlled hydraulically 

actuated testing machine.

(Courtesy MTS Systems

Corporation, www.mts.com)
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grips. Electromechanical extensometers are mounted on the specimens in Figs. 2.9a
and 2.9b to measure the extension (i.e., the elongation) that occurs over the gage
length of the test section.

Figure 2.10a illustrates an underformed tension specimen with two points on

the specimen marking the original gage length, L0. The notation L0 is used here to

emphasize that this is the original gage length, not the total length of the specimen.

An axial load P causes the portion of the specimen between the gage marks to elon-

gate, as indicated in Fig. 2.10b. As the specimen is pulled, the load P is measured by

38
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L0

(a) Undeformed specimen.

L*

(b) Deformed specimen.

P P

FIGURE 2.9 Tension and

compression test specimens.

FIGURE 2.10 A typical tension-test specimen.

(a) A metal tension specimen with
extensometer attached. (Courtesy
Roy Craig)

(b) A ceramic tension 
specimen with extensometer 
attached. (Courtesy MTS Systems
Corporation, www.mts.com)

(c) A concrete cylinder before and after compression testing.
(Courtesy Roy Craig)
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the testing machine and recorded.The extensometer provides a simultaneous meas-

urement of the corresponding length, L* L*(P), of the test section, or else it

directly measures the elongation

(2.10)

In a static tension test the length of the specimen is increased very slowly, in

which case the loading rate need not be measured. In some situations, however, a

dynamic test must be performed. Then, the rate of loading must be measured and

recorded, since material properties are affected by high rates of loading.

Stress-Strain Diagrams. A plot of stress versus strain is called a stress-strain
diagram, and from such stress-strain diagrams we can deduce a number of significant

mechanical properties of materials.10 The values of normal stress and extensional

strain that are used in plotting a conventional stress-strain diagram are the engineer-
ing stress (load divided by original cross-sectional area of the test section) and

engineering strain (elongation divided by original gage length), that is,

(2.11)

Mechanical Properties of Materials. Figures 2.11a and 2.11b are stress-

strain diagrams for structural steel (also called mild steel, or low-carbon steel), which

is the metal commonly used in fabricating bridges, buildings, automotive and con-

struction vehicles, and many other machines and structures. A number of important

mechanical properties of materials that can be deduced from stress-strain diagrams

are illustrated in Fig. 2.11. In Fig. 2.11a the stress is plotted accurately, but the strain

is plotted to a variable scale so that all important features can be shown and dis-

cussed. In Fig. 2.11b, which gives typical numerical values of stress and strain for

structural steel, one stress-strain curve, the lower one, is plotted against a strain scale

that emphasizes the low-strain region; the upper curve is plotted against a strain

scale that emphasizes the high-strain region and puts the entire stress-strain history

into perspective.

Starting at the origin A in Fig. 2.11a and continuing to point B, there is a linear

relationship between stress and strain. The stress at point B is called the propor-
tional limit, �PL. The ratio of stress to strain in this linear region of the stress-strain

diagram is called Young’s modulus,11 or the modulus of elasticity, and is given by

(2.12)

Typical units for E are ksi or GPa.

At B the specimen begins yielding, that is, smaller and smaller increments of

load are required to produce a given increment of elongation. The stress at C is

called the upper yield point, (�YP)u, while the stress at D is called the lower yield
point, (�YP)l. The upper yield point has little practical importance, so the lower yield

point is usually referred to simply as the yield point, �YP. From D to E the specimen

Young’s
ModulusE �

¢s
¢�

,  s 6 sPL

s �
P

A0

,  � �
L* � L0

L0

¢L � L* � L0

�
39
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10These material properties are also called constitutive properties of materials.
11In two volumes entitled A Course of Lectures on Natural Philosophy and Mechanical Arts, London,

1807, Thomas Young (1773–1829) introduced the modulus of elasticity and discussed many other inter-

esting topics in mechanics of deformable bodies [Ref. 2-1].
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continues to elongate without any increase in stress. The region DE is referred to as

the perfectly plastic zone.The stress begins to increase at E, and the region from E to
F is referred to as the zone of strain hardening. The stress at F is called the ultimate
stress, or ultimate strength, �U. At F the load begins to drop, and the specimen begins

to “neck down.”This neck-down behavior continues until, at G, fracture occurs at the

fracture stress, �F. Figure 2.12a, shows a hot-rolled steel specimen at three stages of

tensile testing: (1) before testing, (2) as removed from the testing machine at a point

between F and G with pronounced reduction in area referred to as necking or neck-
down, and (3) after fracture. Figure 2.12b shows the typical cup and cone fracture of

a hot-rolled steel tensile specimen. In Section 2.9 it is shown that ductile fracture, like

the cup-and-cone fracture at 45� to the axis of the member in Fig. 2.12b, is due to

shear stress on the fracture surface.
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(σYP)l = 36

σPL = 35
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Yielding Strain
hardening

Necking

Elastic
behavior

Elastic
region

True fracture stress

True stress–
true strain

Δ�

Δσ

σ

σFt

σU

σF
(σYP)u

(σYP)l
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B

C D E

Gt

G

F

�

Plastic behavior

(a)

(b)

FIGURE 2.11 Stress-strain

diagrams for structural steel in

tension. (a) Strain not plotted

to scale. (b) Strain plotted to

two different scales.
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The true stress, �true, is the load at some instant during the test divided by the

actual minimum cross-sectional area of the specimen at that instant. Thus, when a

specimen starts to neck down, the true stress is taken as the load divided by the min-

imum cross-sectional area in the neck-down region. The true strain, �true, is the

instantaneous change in length of a test section divided by the instantaneous length

of that test section. True stress and true strain are given by the formulas

(2.13)

True strain can also be expressed in terms of area change12

The solid-line curve in Fig. 2.11a is a conventional stress-strain diagram of engineer-

ing stress versus engineering strain, while the dashed curve is a sketch of true stress

versus true strain. The curves differ only when strain is large and when the cross-

sectional area is decreasing significantly.

Figures 2.11a and 2.11b both illustrate the stress-strain behavior of structural

steel. Materials scientists and metallurgists have developed a number of processes

for altering the mechanical properties of metals, including alloying, work-hardening,

and tempering. Figure 2.13 contrasts the tensile stress-strain behavior of several fer-

rous metals. Stress-strain curves for several aluminum alloys are shown in Fig. 2.14.13

It is apparent from a comparison of Figs. 2.11 and 2.14 that several properties

exhibited by structural steel, for example, a definite yield point followed by a signif-

icant zone of yielding at constant stress, are not characteristic of all other materials.

For materials like aluminum that have no clearly defined yield point, a stress value

called the offset yield stress is used in lieu of a yield-point stress.

As illustrated in Fig. 2.15, the offset yield stress is determined by first drawing a

straight line that best fits the data in the initial (linear) portion of the stress-strain

diagram. A second line is then drawn parallel to the original line but offset by a

sYS,

�true � lna A0

Amin

b

strue �
P

Amin

,  �true � ln(1 � �)
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12This formula for true strain is given by D. C. Drucker in Introduction to Mechanics of Deformable
Solids, [Ref. 2-2], p. 12.
13ASM International, Materials Park, OH, 44073-0002, is an excellent source for information on the

mechanical properties of materials. ASM International publishes the Metals Handbook, the Engineered
Materials Handbook, and many other reference works. The ASM Handbook is available on CD-ROM.
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FIGURE 2.13 The stress-strain curves of plain carbon steel and three high-strength/low-

alloy steels. (Used with the permission of ASM International.)

(a)

(b)

FIGURE 2.12 A hot-rolled

steel tensile specimen.

(Courtesy Roy Craig)
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specified amount of strain. The intersection of this second line with the stress-strain

curve determines the offset yield stress. In Fig. 2.15 the commonly used offset

(strain) value of 0.002 (or 0.2%) is illustrated.

Stress-Strain Curves is a computer program for plotting stress-

strain curves from load-elongation data and for determining the yield stress from

the plotted data.

Design Properties. Now that you have some idea of the stress-strain behavior of

several common metallic materials, let us note the material properties that are of

primary interest to an engineer designing some structure or machine. From the

design standpoint the most significant stress-strain properties can be categorized

under the three headings—strength, stiffness, and ductility.

• Strength—There are three strength values of interest.14 (1) The yield strength,
�Y, is the highest stress that the material can withstand without undergoing

significant yielding. The yield-point stress or the offset yield stress, whichever

is appropriate for the particular material, is taken as the yield strength (i.e., �Y �
�YP or �Y � �YS as appropriate). (2) The ultimate strength, �U, is the maximum

value of stress (i.e., the maximum value of engineering stress) that the mate-

rial can withstand. Finally, (3) the fracture stress, �F, if different from the

ultimate stress, may be of interest. It is the value of the stress at fracture.

• Stiffness—The stiffness of a material is basically the ratio of stress to strain.

Stiffness is of interest primarily in the linearly elastic region; therefore,

Young’s modulus, E, is the value used to represent the stiffness of a material.

• Ductility—Materials that can undergo large strain before fracture are classi-

fied as ductile materials; those that fail at small values of strain are classified

as brittle materials. Strictly speaking, the terms ductile and brittle refer to

modes of fracture, and a material like structural steel, which behaves in a duc-

tile manner at room temperature, may exhibit brittle behavior at very low

MDS2.5 & 2.6

14The word strength is used to designate various critical stress quantities exhibited by materials.
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FIGURE 2.15 The procedure for

determining the offset yield stress.
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temperatures. Therefore, when we speak of a “brittle material” or a “ductile

material,” we are referring to the normal (room temperature) behavior of

the material.

Ductility. The two commonly used measures of ductility are the percent elonga-
tion (the final elongation expressed as a percentage of the original gage length) and

the percent reduction in area at the section where fracture occurs (the area reduc-

tion expressed as a percentage of the original area). The percent elongation is given

by the formula

where L0 is the original gage length and LF is the length of the gage section at frac-

ture. When percent elongation is stated, the gage length should also be stated,

since the elongation at fracture is not uniform over the entire gage length but is

concentrated in the necked-down region. The percent reduction in area is given by

the formula

where A0 is the original cross-sectional area of the test section, and AF is the final

cross-sectional area at the fracture location.

Structural steel is a highly ductile material with a percent elongation in 2 in. of

about 30% and a percent reduction in area of about 50%. High ductility permits this

type of steel to be pressed to form automobile sheet-metal parts and bent to form

concrete-reinforcing bars. Ductile materials permit large local deformation to occur

near cracks, rivet holes, and other stress concentrations, thereby preventing the oc-

currence of sudden, catastrophic failures. Other materials that may be classified as

ductile include pure aluminum and some of its alloys, brass, copper, nickel, nylon,

and teflon. Figure 2.16 shows the 1100% elongation of a superplastically deformed
alloy-steel tensile specimen.

As can be seen in Fig. 2.13, high-strength steels generally tend to be far less

ductile than mild steel; the dashed-line stress-strain curve labeled “GM 980X” is

for a special high-strength, high-ductility steel. Although there is no sharp dividing

line between ductile materials and brittle materials, glass, other ceramics, gray cast

iron and concrete are among the materials that are classified as brittle materials.

Figure 2.17a shows a typical stress-strain curve for a brittle material, with the

curve for a ductile material shown for comparison. The fracture surface of a brittle

tensile-test specimen is illustrated in Fig. 2.17b. Note that brittle fracture is a direct

Percent reduction is area � aA0 � AF

A0

b (100%)

Percent elongation � aLF � L0

L0

b (100%)
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Superplastically deformed sample

Original size

A steel-alloy specimen tested to over 1100% elongation.

FIGURE 2.16 A superplastically deformed steel-alloy specimen tested to over 1100%

elongation. (Courtesy MTS Systems Corporation, www.mts.com)
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result of the tensile stress on the cross section, and contrast this to the fracture of a

ductile specimen (Fig. 2.12b) where, as is discussed in Section 2.9, the fracture

occurs at an angle of 45�. Ordinary glass is a nearly ideal brittle material, exhibiting

linear stress-strain behavior up to a fracture stress in the neighborhood of 104 psi. It

has been found that the strength of glass is highly dependent on the type of glass,

the size of the specimen, and surface defects. Glass fibers with diameters on the

order of 10�4 in. may have an ultimate strength as high as 106 psi or more.

Compression Tests. In compression, a ductile metal like steel or aluminum

yields at a stress magnitude approximately equal to its tensile yield stress, and

Young’s modulus in compression is equal to the tensile modulus. Therefore, com-

pression tests are seldom performed on these materials. By contrast, periodic cast-

ing and testing of concrete compression specimens, like the one pictured in 

Fig. 2.9c, is required for quality control on reinforced-concrete construction proj-

ects. The compressive strength of concrete increases with age, as illustrated by the

compression stress-strain diagrams for Portland-cement concrete specimens, as

shown in Figure 2.18. Concrete is a brittle material with very little tensile strength,

so it is usually just assumed that the tensile strength of plain (i.e., unreinforced)

concrete is zero.

Plastics and Composites. Since the introduction of Bakelite in 1906, hundreds

of polymeric materials, called plastics, have been developed, and many of these, like

nylon, have found structural application.Their advantages, which include their light

weight, resistance to corrosion, ease of molding, and good electrical insulation

properties, have made them increasingly popular. On the other hand, their low

stiffness, tendency to creep (i.e., to continue to deform under constant load) and to

absorb moisture, and the strong dependence of their strength and stiffness proper-

ties on temperature, are disadvantages that must be carefully weighed against their

advantages.

Composite materials are materials that combine two constituent materials in a

manner that leads to improved mechanical properties. Reinforced concrete can be
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FIGURE 2.18 Stress-strain diagrams for concrete in compression. (Courtesy Roy Craig)

(b) Brittle-fracture surface.
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considered to be a composite material, in which the steel reinforcement is used to

overcome the inherent weakness of concrete in tension. It was previously noted

that glass can be made extremely strong when drawn into thin fibers and properly

protected against surface damage. It was also noted that some plastics have several

undesirable properties, including low stiffness. A material that is stronger and

stiffer than the plastic matrix material can be produced by embedding glass fibers

or other reinforcing fibers in the matrix. Furthermore, by placing the fibers in spe-

cific orientations in the matrix, a material with direction-dependent properties can

be fabricated. Figure 2.19 shows the 45� lay-up of graphite-epoxy layers to form

a tensile test specimen and the resulting tensile-test failure. In sports, composite

materials are being used in many applications, including tennis racquets, bicycle

frames, skis, and boat hulls.15

Section 2.14 discusses the mechanical properties of composites. Tables of

Mechanical Properties of Selected Engineering Materials are provided in Appendix F.

Because of the extremely large number of commercially available plastics, these

tables include only a small sample of the properties of engineering plastics.
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15Excellent sources of information on engineering composites are the International Encyclopedia of
Composites, [Ref. 2-4]; and Composites [Ref. 2-5].

2.5 ELASTICITY AND PLASTICITY; TEMPERATURE EFFECTS

In the previous section we considered the stress-strain behavior of tension specimens

under loading. Specifically, the tensile tests were assumed to be performed in a rela-

tively short time with monotonically increasing tensile strain. We consider now what

happens when the loading is reversed, that is, when the strain is allowed to decrease.

Elastic Behavior and Plastic Behavior. Consider the loading and unloading

behavior of a material, as illustrated in Fig. 2.20. The upward-pointing arrows in

Fig. 2.20a and Fig. 2.20b indicate the loading curves, that is, the curves that would be

followed for monotonically increasing initial loading. The stress-strain behavior of a

material is said to be elastic if the unloading path retraces the loading path. The

FIGURE 2.19 A graphite-

epoxy tensile test specimen;

45� graphite-fiber lamina.
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FIGURE 2.20 Illustrations

of elastic and plastic stress-

strain behavior.
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stress at C is called the elastic limit, �EL. Since the stress-strain curve from the origin

A in Fig. 2.20a to the elastic limit at C is not a straight line, material behavior in this

range is termed nonlinear elastic behavior. Unloading from a point below point C
(e.g., point B) retraces the loading path indicated in Fig. 2.20a, but unloading from

a point beyond C (e.g., point D) follows a path DE that is different than the loading

path. Unloading from a point on the stress-strain curve beyond the elastic limit typ-

ically follows a straight-line path whose slope is parallel to the tangent to the stress-

strain curve at the origin. The strain that remains at point E when the stress returns

to zero is called the permanent set, or residual strain, as illustrated in Fig. 2.20b.

For structural steel the elastic limit is very close to the proportional limit and

also to the yield point. Therefore, for structural steel the proportional limit stress

and the elastic limit stress are usually assumed to be equal to the yield-point stress.

It is sometimes convenient to approximate the stress-strain behavior of mild steel

and similar materials by the linearly elastic, perfectly plastic representation of Fig. 2.21.

In Sections 3.11, 4.11, and 6.7, we will use this model of stress-strain behavior in de-

scribing the inelastic behavior of members undergoing axial deformation, torsion,

and bending, respectively.

Time-dependent Stress-Strain Behavior. Stress-dependent plastic deforma-

tion such as the yielding of structural steel described above, is referred to as slip. It

is essentially an instantaneous process resulting from the slip that occurs within

crystals and along the boundaries between crystals that make up the solid.16

Depending on the material and its temperature, a time-dependent plastic deforma-

tion may occur. One form of time-dependent deformation is called creep. Creep

behavior may be demonstrated by the constant-stress experiment illustrated in

Fig. 2.22. A constant load is placed on a specimen, and the elongation (or strain)of

the specimen is then plotted versus time, as illustrated in Fig. 2.22b. Creep elonga-

tion is negligible in many materials at room temperature. However, when heated

sufficiently, most materials will exhibit creep behavior. Hence, creep is a significant

design consideration in high-temperature applications like turbine engines, boilers,

and so on. Since plastics exhibit creep behavior at much lower temperatures, they

may be unsuitable for certain applications even though they possess adequate static

strength and stiffness at room temperature.
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16The slip that occurs during yielding will be discussed further in Section 2.9.

FIGURE 2.21 Linearly
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A related form of time-dependent stress-strain behavior, called stress relax-
ation, can be demonstrated by a constant-strain experiment. Figure 2.23a shows a

specimen that has been stretched to give it an initial tensile stress �0 and then at-

tached to immovable supports, and Fig. 2.23b is a graph of the stress in the specimen

versus time. This stress relaxation at constant strain is a second manifestation of

time-dependent stress-strain behavior.

Temperature Effects on Material Properties. The coefficient of thermal

expansion, discussed in Section 2.3, is a measure of the direct effect that tempera-

ture change has on the deformation of a body. However, temperature also has a sig-

nificant effect on material properties like yield strength and modulus of elasticity.

Materials developed specifically to perform at very high temperatures are required

for applications like turbine blades in aircraft engines or the structure of a hyper-

sonic aircraft. Figure 2.24 illustrates the profound influence that temperature has

on the strength and ductility properties of a particular stainless steel. Note that

strength decreases with increasing temperature and vice versa. As indicated by the

strain at fracture, ductility decreases with decreasing temperature and increases

with increasing temperature. Temperature also affects the stiffness of a material

(i.e., the slope of the initial portion of the stress-strain curve), as can be clearly seen

in Fig. 2.25.
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FIGURE 2.23 A constant-strain stress-relaxation experiment.

FIGURE 2.24 The influence of temperature on the stress-strain behavior of type 304

stainless steel. (Used with the permission of ASM International.)
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In order to keep deformations small and stresses at safe levels, most structures and

machine parts are designed so that stresses remain well below the yield stress.

Fortunately, most engineering materials exhibit a linear stress-strain behavior at

these lower stress levels.

Hooke’s Law. Let us, for the present, restrict our discussion to the case of uniax-

ial stress applied to a homogeneous (same properties throughout), isotropic (same

properties in every direction) member oriented along the x axis (Fig. 2.26).The linear

relationship between stress and strain, given by Eq. 2.12, applies for 0 
 � 
 �Y.

Therefore,

(2.14)

This equation is called Hooke’s Law.17 The subscripts on � and � identify the axis of

the particular stress and strain.

Hooke’s Lawsx � E�x
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methacrylate. (From [Ref. 2-6]. Reprinted with the permission of the American Society for

Testing Materials.)

2.6 LINEAR ELASTICITY; HOOKE’S LAW 
AND POISSON’S RATIO

17Robert Hooke (1635–1703) was, for several years, curator of experiments of the Royal Society

(London). In a paper published in 1678, Hooke discussed his experiments with elastic bodies, describing

the relationship between the force applied to wires of various lengths and the elongation of the wires.

This is the first published paper in which the elastic properties of materials are discussed. The linear

relationship between force and deformation, called Hooke’s Law, became the foundation upon which

further development of the mechanics of elastic bodies was built. [Ref. 2-1]

z
y

Original specimen

x σx 

σx 

FIGURE 2.26 The deformation (much exaggerated) of a homogeneous, isotropic specimen

under uniaxial stress.
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Hooke’s Law is valid for uniaxial tension or compression within the linear por-

tion of the stress-strain diagram. As noted earlier, E is called the modulus of elastic-
ity, or Young’s modulus. It has the units of stress, typically ksi (or psi) in U.S.

Customary units, and GPa (or MPa) in SI units. Representative approximate values

of E are: 30 � 103 ksi (200 GPa) for steel, 10 � 103 ksi (70 GPa) for aluminum, and

300 ksi (2 GPa) for nylon. Values of the modulus of elasticity for selected materials

are listed in Table F.2 in Appendix F.

Poisson’s Ratio. Associated with the elongation of a member in axial tension,

there is a transverse contraction, which is illustrated in Fig. 2.26. The transverse con-

traction during a tensile test is related to the longitudinal elongation by

(2.15)

where � (Greek symbol nu) is Poisson’s ratio.18 This expression also holds when the

longitudinal strain is compressive; then, the lateral strain results in an expansion of

the transverse dimensions. Poisson’s ratio is dimensionless, with typical values in the

0.25–0.35 range. For the orientation of axes in Fig. 2.26 the transverse strains are re-

lated to the longitudinal strain by

(2.16)

Equations 2.14 and 2.16 apply to the simple case of uniaxial stress. More gen-

eral cases of linearly elastic behavior are treated in Section 2.13.

�y � �z � �n�x

Poisson’s Ratio�transv � �n�longit
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18In 1829 and in 1831 S. D. Poisson (1781–1840), a French mathematician and physicist, wrote important

memoirs on the mechanics of solids. He noted that, for simple tension of a prismatic bar, the axial elon-

gation � is accompanied by a lateral contraction of magnitude ��. [Ref. 2-1]

E X A M P L E  2 . 7

The cylindrical rod in Fig. 1 is made of steel with E � 30 � 103 ksi,

� 0.3, and �Y � 50 ksi. If the initial length of the rod is L � 4 ft and its

original diameter is d � 1 in., what is the change in length, �L, and

what is the change in diameter, �d, due to the application of an axial

load P � 10 kips?

n

Fig. 1

P

P = 10 kips

d* d = 1in.

L = 4 ft
x

ΔL

Plan the Solution From the load P and the cross-sectional area A we

can determine the stress �. Then, if � 
 �Y, we can use Hooke’s Law to

relate the stress � to the strain �. Then we can relate the uniform strain,

�, to the elongation �L. The change in diameter is due to the Poisson’s-

ratio effect.
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Solution

Equilibrium: From the free-body diagram in Fig. 2,

From Eq. 2.5,

(1)

Therefore, linearly elastic behavior occurs when the load P � 10 kips is

applied to the bar.

Material Behavior: From Eq. 2.14,

(2a)

and, from Eq. 2.15,

(2b)

Strain-Displacement: From Eq. 2.7,

(3a)

and

(3b)

Substituting numerical values into Eqs. (3), we get

. Ans. (4a)

and

Ans. (4b)

Review the Solution The changes in length and diameter are quite small

in comparison with the original length and the original diameter, respec-

tively, as they should be. �d should definitely be smaller than �L, and the

signs should be different, which is the case. The extensometer in Fig. 2.8a
is capable of measuring both �L and �d.

� �127(10�6) in.

 ¢d � d�radial � �
0.3(10 kips)(1 in.)

p(0.5 in.)2(30 � 103 ksi)

¢L � L�x �
(10 kips)(48 in.)

p(0.5 in.)2(30 � 103 ksi)
� 20.4(10�3) in

¢d � d�radial � �
nPd
AE

¢L � L�x �
PL
AE

�radial � �n�x � �
nP
AE

�x �
sx

E
�

P
AE

sx �
P
A

�
10 kips

p(0.5 in.)2
� 12.73 ksi 6 50 ksi

a Fx � 0:      F(x) � P � const

P = 10 kips

x

F(x)

Fig. 2 Free-body diagram.

Poisson’s Ratio is a program for determining the transverse deformation

of an axial-deformation member due to the Poisson’s ratio effect.

MDS2.7

50

c02StressAndStrainIntroductionToDesign.qxd  9/30/10  3:15 PM  Page 50



In the preceding sections of Chapter 2, you were introduced to stress and strain

through a discussion of normal stress and extensional strain. We turn now to a dis-

cussion of shear stress and shear strain, which are used, respectively, to quantify the

distribution of force acting tangent to a surface and the angle change produced by

tangential forces.

Definition of Shear Stress. Referring to Fig. 2.27a, we define the shear stress
at a point by the equation19

(2.17)

where �V is the tangential (shear) force acting on an infinitesimal area �A at the

point where the shear stress is to be determined. As in the case of normal stress �,

the units of shear stress are force/area; hence, usually psi or ksi in the USCS units,

and kPa or MPa in the SI system.

The resultant shear force, shown in Fig. 2.27b, is obtained by summing the �V’s

over the cross section, giving

(2.18)

Equations 2.17 and 2.18 will be used in Chapters 4 and 6, where we will determine

the shear stress distribution for torsion of circular rods and bending of beams,

respectively.

Average Shear Stress. Even when the exact shear stress distribution on a sur-

face cannot be readily determined, it is sometimes useful to calculate the average
shear stress on the surface. This is given by

(2.19)

where V is the total shear force acting on area As. In order to determine we

must first determine what area has shear stress acting on it, and then, using a free-

body diagram, determine the value of the shear force, V, acting on this area.

Direct Shear. The average shear stress can be readily calculated in the case of

direct shear, examples of which are shear in bolts, pins, and rivets, and shear in welds

and lap splices.20 Direct shear (or simple shear) is caused by forces that act parallel

to a particular surface of some part, with the direct result of shearing, or tending to

shear (i.e., sever), the material at that surface. For example, in the case of the

tavg

Average
Shear
Stress

tavg �
V
As

V � �
A

t dAa F:

Shear Stresst � lim
¢AS0

a¢V
¢A
b

2.7 SHEAR STRESS AND SHEAR STRAIN; SHEAR MODULUS

51

19Here we assume that all �V’s act in the same direction on the sectioning plane. More general cases are

treated in Section 2.12.
20The actual shear stress distribution in these situations is quite nonuniform and would be very difficult

to determine. Therefore, the average shear stress value is calculated, and an allowance is made, through

factors of safety (see Section 2.8), for the approximate nature of the calculated average stress.

(a) The distribution of shear
      force on a sectioning plane.

(b) The resultant shear force
      on the sectioning plane.

ΔAΔV

V

FIGURE 2.27 Shear force

on a sectioning plane.
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sheet-metal punch in Fig. 2.28a, the force P of the punch rod shears the sheet metal

on a cylindrical surface, producing a coin-shaped metal slug (Fig. 2.28b). The shear

stress for this example of direct shear is

where V � P is determined from the free-body diagram in Fig. 2.28b, As is the area

of the cylindrical surface, t is the thickness of the sheet metal, and d is the diameter

of the punch.

When the pliers in Fig. 2.28c are gripped, the pin that holds the two arms of

the pliers together is subjected to direct shear on the pin cross section indicated in

Fig. 2.28d.

Single Shear and Double Shear. Many of the circumstances that can be

characterized as direct shear may be further classified as single shear or as double
shear. This applies particularly to connections such as pinned, bolted, or welded

joints. A single-shear connection is one where there is a single plane on which shear

stress acts to transfer load from one member to the adjacent member.The pin of the

pliers in Fig. 2.28d is one example of a single-shear connection.

tavg �
V
As

�
P

(pd)t
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P

Sheet metal

Guide

Punch rod

Die

Metal disk (slug)

d

t

P

τ

d

V

t

A sheet-metal punch.(a) Free-body diagram
of sheet-metal slug.

(b) 

A pair of pliers.(c) Direct shear of pin.(d) 

P P

A

P

RA

VBB

Pin at B

τ

FIGURE 2.28 Examples of direct shear.
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As another example of single shear, consider the lap joint, or lap splice, in

Fig. 2.29a, where two rectangular bars are glued together to form a tension

member. (Assume that, because the bars are very thin, the moment Pt caused by

misalignment of the tensile forces, P, may be neglected.) Applying 

to the free-body diagram in Fig. 2.29b, we get V � P. The area on which the shear

V acts is As � Lsw. Therefore, from Eq. 2.19, the average shear stress on the splice

area is

Although the transfer of load from one member to another through a riveted

or bolted joint is not easily analyzed when there are several rows of bolts or rivets

at the joint, the case of load transfer through a single bolt or a single pin can be

treated as direct shear. The following example illustrates the calculation of direct

shear stress in single-shear and double-shear joints.21

tavg �
V
As

�
P

Lsw

gF � 0

P
PP

(a)  A lap splice.

τavg

(b) The free-body diagram. (c) The average-shear-stress distribution.

t

P V

w

Ls w Ls

21The book Structures, or Why Things Don’t Fall Down, by J. E. Gordon [Ref. 2-7] contains an interesting

discussion of joints. Composites [Ref. 2-5] contains a chapter on joints that discusses adhesively bonded

lap joints.

FIGURE 2.29 An illustration of direct shear—a lap splice.

E X A M P L E  2 . 8

In Fig. 1a, a bolted lap joint connects together two rectangular bars. In

Fig. 1b, a pin passes through an eye at the end of a rod to connect the rod

to a U-shaped support bracket. The diameter of the bolt is db and of the

pin is dp. If an axial load P is applied in each case, determine expressions

for the average shear stress in the bolt on surface S1 and the average

shear stress in the pin on surfaces S2 and S3.

Plan the Solution By drawing appropriate free-body diagrams, we can

determine the shear force transmitted across S1 from the upper rectan-

gular bar to the bolt in Fig. 1a and the shear forces transmitted across

surfaces S2 and S3 from the rod to the pin in Fig. 1b. Then we can apply

Eq. 2.19, the formula for average shear stress.

53
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Solution

Free-body Diagrams: Figures 2a,b show free-body diagrams for the sin-

gle-shear joint and the double-shear joint, respectively.

Equilibrium Equations: We pass cutting planes forming S1, S2, and S3, as

shown on the free-body diagrams, and write the equation of equilibrium

for each free body.

Because of symmetry,

Therefore, for the bolt in Fig. 1a, the average shear stress is

Ans.

and, for the pin in Fig. 1b, the average shear stress is

Ans.

Review the Solution The above answers account for the fact that a sin-

gle-shear surface, S1, transmits the force P across the lap splice, but that

there are two shear surfaces to transmit the force from the rod to the

bracket. The bolt in Fig. 1a is said to be in single shear, and the pin in 

Fig. 1b is said to be undergoing double shear.

(tp)avg �
V2

Ap
�

V3

Ap
�

2P

pd2
p

(tb)avg �
V1

Ab
�

4P

pd 2
b

V2 � V3 �
P
2

aa Fb
rod

� 0:      V2 � V3 � p

aa Fb
bar

� 0:      V1 � P

Fig. 1 Examples of single shear and double shear.

Fig. 2 Free-body diagrams.

PP

S1

S3S2

PP

PP

PP

A bracket and hanger rod.(b) A bolted lap joint.(a) 

P

V1

(a)

P

V2 V3

(b)
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In the preceding example of a bolted lap joint (Fig. 1a of Example 2.8), friction

on the mated surfaces of the two rectangular bars was disregarded. If, in such bolted

connections the nut is barely tightened, this assumption would certainly be valid. In

any case, whatever friction might exist between two members that are joined by a

bolt reduces the amount of force that must be transmitted across the joint by the

bolt. Hence, it is wise to be conservative and just neglect such friction forces.

Hole Punch is a program for determining the direct shear stress in a

hole-punch situation like the one illustrated in Figs. 2.28a and 2.28b.

Bolted Connection is a program for determining the direct shear

stress in single shear and in double shear situations, like the ones analyzed in

Example Problem 2.8.

Shear Key is a program for determining the direct shear stress in a

shear key.

Equilibrium Requirements for Shear Stresses; Pure Shear. In our study

of shear stress we have, so far, only considered the average shear stress on a partic-

ular surface. Before proceeding further to define shear strain and to discuss the dis-

tribution of shear stress under various loading conditions, we must examine the

equilibrium requirements that must be satisfied by shear stresses.

As a typical shear-stress example, consider the thin plate-like member of de-

formable material shown in Fig. 2.30a, and let us examine the stresses that act on

the six faces of the small (darker blue) elemental volume at point A when the

upper part of the member is sheared to the right relative to the bottom. The

lower part, after deformation, is depicted in Fig. 2.30b; and a free-body diagram

of the elemental volume is shown in Fig. 2.30c. First, there is no stress, normal

stress or shear stress, on the front (�z) face or the back (�z) face of the element,

so we need only examine the stresses on the other four faces. In Fig. 2.30b, and

on the free-body diagram, the shear force acting to the right on the top (�y) face

of the element has been labeled �VP. Let the average shear stress on the top face

be . Then,

To satisfy force equilibrium ( ) for the free body in Fig. 2.30c, an equal

force, �VP, must act to the left on the bottom (�y) face. Since the top face and

gF x � 0

¢VP � tP¢Ay � tP(t ¢x)

tP

MDS2.11

MDS2.9 & 2.10

MDS2.8

55
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ΔVP
ΔVP = τP(tΔx)

ΔVQ = τQ(tΔy) τ

τ

τ

τ
ΔVQ

ΔVP

Δ x

Δy

(c) Free-body diagram. (d) Pure shear.(b) Horizontal section at A.

Δy
Δx

A

t

y

z x

(a) Deformable body.

A A

FIGURE 2.30 Equilibrium

requirements for shear

stresses.
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bottom face have the same area, the average shear stress on the bottom face is 

the same as on the top face.

If the only forces on the free-body diagram in Fig. 2.30c were the equal and

opposite �VP forces on the top and bottom faces, moment equilibrium about an axis

in the z direction, for example, at corner A, could not be satisfied. Therefore, in

addition to the horizontal forces on the element there must also be equal and oppo-

site vertical forces, which are labeled �VQ on the free body. Let

So, to satisfy moment equilibrium, we get

Therefore,

(2.20)

The results of the above equilibrium analysis are summarized in Fig. 2.30d,

which depicts an elemental volume in pure shear. We can conclude, therefore, that

the shear stresses on an element in pure shear satisfy the following statements:

• The shear stresses on parallel faces are equal in magnitude and opposite in

sense.

• On adjacent faces at right angles to each other, the shear stresses are equal

in magnitude, and they must both point toward the intersection of the two

faces or both point away from the intersection (i.e., the shear-stress arrows

on an element must be “head-to-head” and “tail-to-tail”).

In Section 2.13 it is shown that these conclusions about shear stresses are valid even

if normal stresses as well as shear stresses act on the faces of the element.

Shear Strain. Referring to Fig. 2.31 let us now consider the shear strain that is as-

sociated with shear stress. As a result of the shear stress the original right angle at

A becomes an acute angle �*. The shear strain (lowercase Greek letter gamma) at

A is defined as the change in angle between two originally perpendicular line seg-

ments that intersect at A. Thus,

(2.21)

where is the angle at A before deformation, and �* is the angle at A after de-

formation. The corresponding shear stresses point toward the two corners where

the original right angle is decreased by , and they point away from the two cor-

ners where the angle is increased by . Although is dimensionless, it is frequently

stated in the same “dimensionless units” as extensional strain, that is, in./in.,

and so on, or, since shear strain is an angle, it may be stated in radians. Since shear

strains, like extensional strains, are usually very small in magnitude, we can use the

small-angle approximations and . Then, � can be computedsin(g) � gtan(g) � g

gg

g

p/2

Shear Straing �
p

2
� u*

g

t,

tQ � tP � t

aaMzb
A

� 0:      (tQ t ¢y)¢x � (tP t ¢x)¢y � 0

¢VQ � tQ ¢Ax � tQ(t ¢y)

tP,56
Stress and Strain;
Introduction to Design

γ

δs

A*

Ls

A

(a) Original
(undeformed) element.

(b) Pure shear
deformation.

τ

τ

τ

τ

π–
2

θ*

FIGURE 2.31 Illustrations

for a definition of shear 

strain.
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using the formula

(2.22)

where �s and Ls are defined in Fig. 2.31b.

Material Properties in Shear. Material properties relating to shear, like those

for normal-stress-extensional-strain behavior, must be determined experimentally.

The material properties in shear, such as yield stress in shear, shear modulus of elas-

ticity, and so on, may be obtained from a torsion test, which will be discussed later

in Section 4.4. For example, linearly elastic behavior in shear is described by

Hooke’s Law for shear, which

(2.23)

The constant of proportionality, G, is called the shear modulus of elasticity, or, sim-

ply, the shear modulus. Like E, the shear modulus G is usually expressed in units of

ksi or GPa. The shear properties are closely related to the extensional properties

through equations of equilibrium and geometry of deformation. For example, it is

shown in Section 2.11 that G, E, and are related through the equation

(2.24)

Values of the shear modulus for selected materials are given in Table F.2.

G �
E

2(1 � n)

n

Hooke’s Law
for Shear

t � Gg

g �
p

2
� u* � tanap

2
� u*b �

ds

Ls
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2.8 INTRODUCTION TO DESIGN—AXIAL LOADS 
AND DIRECT SHEAR

Design is the very heart of engineering. Engineering design is the process of devis-
ing components, systems, or processes to meet the needs of society in the areas of
housing, food production, transportation, communication, recreation, and many oth-
ers. To perform this important and fulfilling role, engineers must have an under-

standing of basic sciences, engineering sciences, manufacturing and construction

methods, and economics; whether they are designing an automobile or an airplane,

a bridge or a building, a microchip for a computer, or a chemical process.

Mechanics of materials topics are fundamental to the design of all objects that
support or transmit loads, including bridges, buildings, storage tanks, machines, land

vehicles, airplanes, etc., as well as the many individual components that make up

each of these (beams and columns of a building, ribs and spars of an airplane wing,

etc.). For simplicity, such objects will be referred to by the generic term structures.

Design of a structure involves selecting a promising configuration for the
structure and applying the principles and equations of deformable-body me-
chanics to select materials and dimensions of individual components so that no
failure occurs under the prescribed loading conditions.

In many cases, other factors such as weight, cost, or environmental impact must also

be considered in the design of a structure or machine.

From the mechanics of materials standpoint, several possible modes of failure
typically need to be considered.These can be grouped under three general headings:
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design for strength, design for stiffness, and design for ductility, which are mentioned

in Section 2.4. Failure by yielding, which is discussed in this section, and fatigue
failure, which is discussed in Section 12.4, fall under the broad category of design for

strength. Failure by buckling, which is the subject of Chapter 10, is related to the

bending stiffness of compression members. In this chapter, we will restrict our atten-

tion primarily to strength design, with application to members that are subjected to

axial loading or direct shear.

Factor of Safety. Suppose that your task as an engineer is to design the legs of

the tension-leg offshore oil platform depicted in Fig. 2.32. The platform is basically

a floating barge that is held in place by a number of large cables (tension legs) that

are anchored to the ocean floor. In this design, as is typical of all designs, there are

two factors to consider, which we will refer to as the load L, and the resistance R.22

The structural member, in this case the tension leg, must have the capacity (i.e.,

resistance) R that exceeds the demand (i.e., load) L. That is, the design must satisfy

the inequality

(2.25)

For the tension leg under consideration, the “load” L would be the maximum

tensile force that could occur in the leg during the service life of the platform.

Correspondingly, the “resistance” R would be the resisting force that a cable of a

certain diameter made of a certain type of steel would be able to provide without

exceeding its yield strength. There are many factors that enter into the determina-

tion of L and R, and all of these factors are subject to variability and uncertainty:

• Some Uncertainties Affecting L:

—Assumptions regarding external loads acting on the platform (location,

magnitude, direction, etc.)

—Assumptions and approximations made in computing estimates of L, the

force in the cable (boundary conditions, linear behavior, etc.)

• Some Uncertainties Affecting R:

—Assumptions made in calculating the strength of the cable

—Manufacturing uncertainties (material properties, cable dimensions, toler-

ances, etc.)

—Construction uncertainties (quality of workmanship, etc.)

In selecting member sizes and materials, the designer must account for uncer-

tainties like those listed above and must ensure that the failure load, or resistance,

R (the minimum value of the load required to cause failure of the member), is safely

above the allowable load, L (the maximum load that the member is expected to see

during its service lifetime).The inequality in Eq. 2.25 may be replaced by the follow-

ing equation that can be used directly in design:

(2.26)

where FS is called the factor of safety. Of course, FS � 1.

FS �
Failure load

Allowable load

Resistance 7 Load
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22The term “load” here refers to some internal member force, not to an external load acting on the

structure.

Tension
legs

L

L

R

FIGURE 2.32 A tension-

leg offshore oil platform.
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• Some Factors That Determine the Value of FS:
—Importance of failure of a single member to overall platform failure

—Accessibility of the member for inspection and repair

—Nature of possible failure(s) (e.g., “slow” ductile failure, or fast” brittle 

failure)

—“Cost” (economic and/or social) of failure.

The normal range of values for the factor of safety is from about 1.3 to 3.0, although

a value as high as ten might occasionally be applied. The use of a small value of

factor of safety (e.g., FS � 1.1) is justified only when it is possible, by analysis and

testing, to sufficiently minimize uncertainties, and when there is no likelihood that

failure will result in unacceptable circumstances such as serious personal injury or

death. On the other hand, it is undesirable to use a factor of safety that is unneces-

sarily large (e.g., FS � 3), since that would lead to excess structural weight, which,

in turn, entails excess initial costs and operating costs. Since the choice of a value of

factor of safety has such important economic and legal implications, design specifi-

cations, including the relevant factor(s) of safety to be used, conform to design codes

or other standards developed by groups of experienced engineers in engineering

societies or in various government agencies. Examples of such codes and specifica-

tions are: (1) for steel: Code of Standard Practice for Steel Buildings and Bridges, by

the American Institute of Steel Construction, and (2) for concrete: Building Code
Requirement for Structural Concrete (ACI 318-08), by the American Concrete

Institute.

Allowable-Stress Design. If there is a linear relationship between the loads on

a structure and the stresses caused by the loads, it is permissible to define the factor

of safety as the ratio of two stresses, the failure stress and the allowable stress. It is

convenient to write this relationship in the form

(2.27)

For axial deformation, the tensile (or compressive) yield strength �Y is taken as the

stress corresponding to failure by yielding; in direct shear, the shear yield strength
�Y is used.23

(2.28)

For simple loading situations like axial loading and direct shear, Eq. 2.28 can also be

used to define a factor of safety with respect to ultimate failure by using the ultimate
strength U (or ) as the failure stress.

Design based on Eq. 2.28 is referred to as allowable-stress design (ASD).
Equation 2.28 is the design equation that will be used most frequently in this text,

but Eq. 2.26 is required for the design of columns (Section 10.7). Design based on

either Eq. 2.26 or Eq. 2.28 may be referred to as factor-of-safety design (FSD). In

either case, a single factor of safety is used to incorporate all of the uncertainty

tUs

sallow �
sY

FS
, or tallow �

tY

FS

Allowable stress �
Yield strength

FS
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23Section 12.3 discusses Failure Theories for more complex loadings.
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related to the loads and all of the uncertainty associated with the structure’s ability

to resist the loads.24

There are two ways in which the above design information is used in practice:

1. Evaluation of an Existing Structure or a Proposed Design: The configuration

of a structure is known, together with the sizes of all of its components, the

materials used, the applicable code-specified FS, etc., and the allowable load
is to be determined.

2. Design of a New Structure: The configuration of a structure is given, but the

sizes of components (tension rods, pins, beams, etc.) are to be chosen so that

maximum stresses in the components do not exceed the allowable stress

(Eq. 2.28), or, if loads are to be considered, the maximum applied load does

not exceed the allowable load (Eq. 2.26).

Example 2.9 illustrates the calculation of allowable load; Example 2.10 illustrates

the sizing of components based on allowable-stress design.

60
Stress and Strain;
Introduction to Design

24In recent years, versions of probability-based design have been adopted by major standards organiza-

tions, for example, the Load and Resistance Factor Design (LRFD) method adopted in 1986 by the

American Institute of Steel Construction [Ref. 2-8]. Such methods provide a more rigorous accounting

for the uncertainties that affect L and R individually, resulting in separate load factors and resistance fac-
tors. Some typical references are: Probabilistic Methods in Structural Engineering, [Ref. 2-9]; Methods of
Structural Safety, [Ref. 2-10]; and Introduction to Reliability Engineering, [Ref. 2-11]. Such methods are

beyond the scope of this text.
25The magnitude of the compressive allowable stress is given. The allowable stress in compression is

frequently governed by elastic buckling or inelastic buckling, topics that are discussed in Chapter 10.

E X A M P L E  2 . 9

The pin-jointed planar truss in Fig. 1 is subjected to a single downward

force P at joint A. All members have a cross-sectional area of 500 mm2.

The allowable stress in tension is (�T)allow � 300 MPa, while the allowable

stress (magnitude) in compression is (�C)allow � 200 MPa.25 Determine

the allowable load, Pallow.

Plan the Solution Equilibrium (e.g., the “method of sections”) can be

used to determine all member forces in terms of the load P. The stress in

the member with the largest tensile axial force and the stress in the mem-

ber with the largest compressive axial force should be set equal to

(�T)allow and (�C)allow, respectively, to determine values of Pallow based on

each. The smaller of the two values governs.

Solution

Equilibrium: The results of an equilibrium analysis are shown in Fig. 2.

(The reader should verify the values shown in Fig. 2.)

B (1)

(2)

A

P

C

D(3)

(4)
3

5 5
3

4 4

Fig. 1 A pin-jointed truss.
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Allowable Force Based on Member BC: Members AB and BC are in

tension; member BC has the larger tensile force. Therefore,

Allowable Force Based on Member BD:

Since P1, the force based on the tension allowable, is smaller than P2,

the allowable force is

Ans.Pallow � 56.2 kN

P2 �
3

5
a200 � 106

 

N

m2
b (500 � 10�6 m2) � 60.00 kN

5

3
  

P2

A2

� (sC)allow � 200 MPa

P1 �
3

8
a300 � 106 N

m2
b (500 � 10�6 m2) � 56.25 kN

8

3
 

P1

A1

� (sT)allow � 300 MPa

B

A

P

C

DP (C)

P (T)5–
3

P (T)8–
3

4–
3

P (C)5–
3

Fig. 2 Member forces in a pin-jointed

truss.
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The shop crane in Fig. 1 consists of a boom AC that is supported by a pin

at A and a rectangular tension bar BD. Details of the pin joints at A and

B are shown in Views a � a and b � b, respectively. The tension bar is to

be made of structural steel with �Y � 36 ksi, while the pins at A and B
are to be of high-strength steel with �Y � 48 ksi.

The design (i.e., allowable) load is P � 5 kips, and there is to be a fac-

tor of safety with respect to yielding of FS � 3.0. (a) If the width of the

bar BD is w � 2 in., determine the required thickness, t, to the nearest

1/8 in. (b) Determine the required pin diameters at A and B to the near-

est 1/8 in.

Plan the Solution Equilibrium of boom AC can be used to determine

the tension FB in two-force member BD and the resultant force FA on

the pin at A. Then we can use allowable-stress design (Eq. 2.28) to

determine the cross-sectional area of bar BD and the required pin di-

ameters, noting that the pin at A is in double shear and the pin at B is
in single shear.

Solution

Equilibrium: Equilibrium equations were used to solve for the forces 

FA and FB that are shown on the free-body diagram in Fig. 2.

3

P = 5 kips

3

4

5

C

a

 View a-a

 View b-b

a

D

B

w

A

b

t

b

4
5

6 ft

4 ft

Fig. 1 A shop crane.
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Beam and Strut—a program for designing axial-load members and

bolt/pin connections, like the ones analyzed in Example Problem 2.10.

Two-Bar Assembly—a program for designing members of a two-bar 

truss or determining the allowable load on a given two-bar truss.

Bar and Pin—a program for designing axial-load members and bolt/pin

connections, like the ones analyzed in Example Problem 2.10.

Beam and Strut Design—a program for designing axial-load members

and bolt/pin connections, like the ones analyzed in Example Problem 2.10.

Optimal Design. In Example Problem 2.10 a straightforward application of

allowable-stress design led to the proper sizes for tension bar BD and for the pins

at A and B. In many design problems, however, there is not a unique design solu-

tion. There may be many acceptable solutions, so, from these acceptable solutions,

the engineer would like to pick the “best” solution, that is, the optimal solution.
Example Problem 2.11 illustrates such an optimal-design problem, where the opti-
mal solution is defined to be the minimum-weight solution among all solutions for
which no member has a stress that exceeds the allowable stress.

MDS2.15

MDS2.14

MDS2.13

MDS2.12

(a) Design of Bar BD: From Eq. 2.28,

Ans. (a)

(b) Design of Pins at A and B: From Eq. 2.28,

Ans. (b)

Ans. (b)

Review the Solution These calculations are very straightforward, but

should be double-checked, especially to make sure that the FS has been

properly applied. The answers seem to be “reasonable” numbers.

AB �
p d2

B

4
S dB � 0.892 in.  Select dB � 1.0 in.

FB � tallowAB S AB �
10 kips

16 ksi
� 0.625 in2

AA �
pd2

A

4
S dA � 0.517 in.  Select dA � 0.625 in.

1

2
FA � tallowAA S AA �

6.708 kips

2(16 ksi)
� 0.210 in2

tallow �
tY

FS
S tallow �

48 ksi

3.0
� 16 ksi

tBD � 0.417 in.  Select tBD � 0.5 in.

FBD � sallowABD S ABD � (2 in.)tBD �
10 kips

12 ksi

sallow �
sg

FS
Ssallow �

36 ksi

3.0
� 12 ksi

P = 5 kips

FB = 10 kips

FA = 6.708 kips

6 kips

3 kips

3

44
5

3

5

C

A

B

4 ft

8 ft

Fig. 2 Free-body diagram of boom

AC.
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E X A M P L E  2 . 11

The pin-jointed planar truss shown in Fig. 1a is to be made of three steel

two-force members and support a single vertical load P � 1.2 kips at

joint B. The locations of joints A and B are fixed, but the vertical posi-

tion of joint C can be changed by varying the lengths L1 and L3. For the

steel truss members, the allowable stress in tension is (�T)allow � 20 ksi,

the allowable stress in compression is (�C)allow � 12 ksi, and the weight

density is 0.284 lb/in3.You are to consider truss designs for which the ver-

tical member AC has lengths varying from L1 � 18 in. to L1 � 50 in.

(a) Show that, if each member has the minimum cross sectional area that

meets the strength criteria stated above, the weight W of the truss can be

expressed as a function of the length L1 of member AC by the function

that is plotted in Fig. 1b. (b) What value of L1 gives the minimum-weight

truss, and what is the weight of that truss?

Plan the Solution The member forces F1, F2, and F3 can be related to

the applied force P by writing equilibrium equations for joints B and C.
The length L1, which determines the geometry of the triangle ABC, will

enter into the expressions for these forces. Next we can use allowable-
stress design to determine expressions for the cross-sectional areas of

Fig. 1 Minimum-weight design for the three-bar planar truss.

(1)L1

A

B

C

(2)
18 in.

24 in.

(3)

P

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

18 24 30 36 42 48 5022 28 34 40 4620 26 32 38 44

W
 (

lb
)

L1 (in.)

Wmin = 1.40 lb @ L1 = 30.0 in.

(a) A three-bar planar truss.

(b) Plot of truss weight vs length of member (1).
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the bars. Finally, we can write an expression for the total weight of the

truss as the sum of the weights of its three members, an expression that

will contain the design variable L1; then evaluate this expression over the

specified range 18 in. 
 L1 
 50 in.

Solution

Truss Geometry: The length L2 is constant, L2 � 30 in., and, from Fig. 1,

the length L3 is given by

(1)

Equilibrium:

L3 � 2(24 in.)2 � (L1 � 18 in.)2

Fig. 2 Free-body diagrams.

B

CCx

P

x

y

3
4

24
L1 – 18

F3

F2 F1

24
L1 – 18

F3

By drawing free-body diagrams of joints B and C and writing equi-

librium equations, we can show that the following formulas relate mem-

ber forces F1, F2, and F3 to the load P:

(2)

Allowable-Stress Design Constraints: The allowable-stress criterion,

Eq. 2.28, leads to the following three equations for the minimum areas

that are required to carry the member forces given in Eqs. (2):

(3)

Minimum-Weight Optimal Design: The total weight of the truss is the

sum of the weights of its three members:

Ans. (4)

Figure 1b is a plot of Eq. (4), evaluated as follows:

1. Select a value for L1, starting with L1 � 18 in., and use Eq. (1) to

determine L3.

2. Use Eq. (2) to evaluate the corresponding values of the three mem-

ber forces.

3. Use Eq. (3) to determine the resulting cross-sectional areas required

to meet the stated allowable-stress criteria.

W � gV � g(A1L1 � A2L2 � A3L3)

A1 �
F1

(sT)allow

, A2 �
F2

(sT)allow

, A3 �
�F3�

(sC)allow

F1 �
(L1 � 18 in.)P

L1

, F2 �
(30 in.)P

L1

, F3 � �
L3P
L1
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Figure 2.5, illustrating the deformation of an axially loaded bar, clearly shows that

there are shear strains in the bar. For example, the right angle DEF in Fig. 2.5a
becomes the acute angle D*E*F* in Fig. 2.5b. Let us now consider how the normal

stress and the shear stress on an oblique plane, such as the plane whose normal

direction is labeled n in Fig. 2.33, are related to the axial stress, �x � P/A.
To satisfy equilibrium of the free body in Fig. 2.33b, we get

where � is the angle measured positive counterclockwise from the x axis (normal

to the cross section) to the n axis (normal to the oblique plane). The area of the

a Ft � 0:          V � �P sin u

a Fn � 0:          N � P cos u

65

4. Finally, use Eq. (4) to evaluate the weight of the truss that corre-

sponds to the given value of L1.
5. Repeat Steps (1) through (4) for about fifty values of L1 in the given

range 18 in. 
 L1 
 50 in. These values of the function W (L1) are

plotted in Fig. 1b.

A spreadsheet computer program was used to carry out the compu-

tations in the above optimal-design solution and to plot the curve of the

objective function (weight W) versus the design variable (length L1).

From Fig. 1b, the optimal design (i.e., the minimum-weight design) is the

design for which

Ans.

and the corresponding minimum weight is

Ans.

Review the Solution From the plot of the weight function, W(L1), we

can see how the weight depends on the configuration of the truss. The

optimum truss configuration is close to that shown in Fig. 1. With L1 �
30 in., the tension in member (2) and the compression in member 

(3) each has a significant vertical component that acts to support load

P; yet, the lengths L1 and L3 are not so long as to make the truss exces-

sively heavy.

Wmin � 1.40 lb

L1 � 30.0 in.

2.9 STRESSES ON AN INCLINED PLANE IN AN AXIALLY
LOADED MEMBER

FIGURE 2.33 The force resultants on an oblique section through an axial tension member.

n

P

(a)

P

(b)

P

N
θ

V
t

x

n
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oblique plane is related to the cross-sectional area of the bar, A, by

The average normal stress, �n, and the average shear stress, �nt, on the oblique plane

are obtained by dividing N and V, respectively, by the area An on which they act:

(2.29)

where the subscript n in �n and �nt designates the outward normal to the face on which
these stresses act. The subscript t identifies �nt as the shear stress acting in the �t di-
rection on the �n face. (Shear stress �nt is negative in Eq. 2.29b, since the shear force

actually acts in the �t direction on the �n face.)

Using trigonometric identities, we can write �n and �nt as functions of the double-

angle 2�. The resulting equations:

(2.30)

show that �n and �nt are periodic in � with a period of 180�. These expressions are

plotted in Fig. 2.34. For example, consider an element rotated at � � 45� with respect

to the x axis, as shown in Fig. 2.35. The subscripts 1 and 2 refer to the points desig-

nated 1 and 2 on Fig. 2.34 and to faces designated n1 and n2 in Fig. 2.35. The shear

stresses on the 45�-rotated element in Fig. 2.35 account for the shear deformation of

the 45�-rotated element at point E in Fig. 2.5.

Figure 2.35 illustrates the fact that shear stresses of magnitude �x/2 occur on

the planes oriented at 45� to the axis of a member undergoing axial deformation

with axial stress �x. One evidence of this shear can be obtained by performing a

tensile test of a low-carbon steel bar with polished surfaces. When the bar is loaded

to the yield point, slip bands can be observed to form at approximately 45� to the

 tnt � �(sx/2) sin 2u

 sn � (sx/2)(1 � cos 2u)

 tnt �
V
An

� �sx cos u sin u

 sn �
N
An

� sx cos2
 u

An �
A

cos u
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–90° –45° O

x

45°
τnt

,τnt

θ

σ
nσ

nσ

–0.5  xσ

0.5  xσ

1

90°

12 x

θ1 = 45°

n1

n2

t2

t1
σx––
2

σx––
2

σx––
2

σx––
2 σx––

2

σx––
2

σx––
2

σx––
2

FIGURE 2.34 The normal stress 

and shear stress on arbitrary oblique

planes.

FIGURE 2.35 The stresses on

a 45�-rotated element.
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axis of the bar. These slip bands are called Lüders’ bands or Piobert’s bands.26 Mild

steel and other highly ductile materials exhibit this type of failure in shear, rather

than a direct tensile failure.

Chapter 8 treats more general cases in which equilibrium is again used to relate

the stresses on various planes to each other.

67
Saint-Venant’s Principle

26Such slip bands were first observed by G. Piobert in 1842 and then by W. Lüders in 1860.

E X A M P L E  2 . 1 2

Several short pieces of timber are to be glued together end-to-end to

form a single longer piece of timber. Figure 1 shows a simple diagonal

splice joint. The glue that is to be used in the splice joint is 50% stronger

in shear than in tension. Is it possible to take advantage of this higher

shear strength by selecting a splice angle � such that the magnitude of

the average shear stress on the joint is 50% higher than the average

normal stress? If so, what is the appropriate angle?

Plan the Solution The stresses on an oblique plane are given by Eqs.

2.29 and plotted in Fig. 2.34. From Fig. 2.34 it appears that the answer

is, Yes, the cut should be somewhere between 50� and 60� (or between

�50� and �60�).

Solution We want to determine a splice angle �s such that �nt(�s) �
1.5�n(�s) Therefore, from Eqs. 2.29 we have

or

Therefore, the shear stress exceeds the normal stress by 50% on planes

oriented at

Ans.

Review the Solution When � � 0 we get no shear stress on the splice

joint. Therefore, a “long” splice, like one at 56.3�, makes sense as a

splice on which shear stress predominates over normal stress. The

stresses for these two cases are illustrated in Fig. 2.

us � 56.3°

tan us � 1.5

1.5(sx cos2 us) � sx cos us sin us

||

Glue joint
PP

θ

Fig. 1 A diagonal splice joint.

56.3°

56.3°
(θs = –56.3°)

σx

t1

t2

n1

σx

σn1

σn2

n2

1.5 σn2

1.5 σn1

θ

(θs = 56.3°)θ

Fig. 2

2.10 SAINT-VENANT’S PRINCIPLE

Up to this point we have treated the distribution of normal stress �x on a cross sec-

tion of a uniform member undergoing axial deformation as being uniform across

the cross section. However, near points of application of load, plane sections do
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not remain plane, and the normal stress is not uniform, as is the case depicted in

Fig. 2.2c.

In Section 12.2 we will take up the topic of stress concentration, the increase in

stress caused by abrupt changes in cross section, holes, and so on. Here, however, let

us briefly examine the stress distribution near points of application of concentrated

loads. Consider the short compression bar, with cross-sectional area A � bt, shown

in Fig. 2.36.27

From Fig. 2.36 we can make the following three observation:

• The average stress is the same on all cross sections, namely � � �P/A.
• Near the ends of the bar, where the concentrated load is applied (e.g., Fig.

2.36b), there is a stress concentration, with higher stress near the point of

application of the load.

• At distances from the point of application of the load that are greater than

the width of the compression bar (e.g., Fig. 2.36d), the stress distribution is

essentially uniform.

The third observation above is referred to as Saint-Venant’s Principle.28 The signif-

icance of the principle can be stated as follows:

The stresses and strains in a body at points that are sufficiently remote from points

of application of load depend only on the static resultant of the loads and not on the

distribution of the loads.

Thus, the stress distribution in Fig. 2.36d would not be greatly altered if the 

single load P at the bottom end of the bar in Fig. 2.36a were to be replaced by

two symmetrically placed loads of magnitude P/2, shown as dashed arrows in the

figure.

Throughout the remainder of this text on mechanics of deformable bodies we

will obtain expressions for stress distributions in and deformations of various mem-

bers under various types of loading. On the basis of Saint-Venant’s Principle we can

say that the expressions we derive are valid except very near to points of loading or

support, or near to an abrupt change in cross section.
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27Figure 2.36 is adapted from information in Section 24 of Theory of Elasticity, 3rd ed., [Ref. 2-12].
28Barré de Saint-Venant (1797–1886) is credited with many outstanding contributions to the theory of

elasticity, especially his theories for torsion and bending of prismatic bars with various cross-sectional

shapes. [Ref. 2-1].

P

b
x

y

P
P/2P/2

(b)

(d)

(c)

2.6 P/A

x = b/4

σavg = P/A

(a) (b)

1.4 P/A

x = b/2

σavg = P/A

(c)

P/A

x = b

(d)

FIGURE 2.36 The effect of a concentrated load on the distribution of normal stress.
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For a uniaxial stress state, �x, the linear relationship between stress and strain was

given in Section 2.6 by Hooke’s Law, Eq. 2.14:

(2.14) 

repeated

Poisson’s ratio, Eq. 2.16, relates the transverse strain, �y, to �x:

(2.16)
repeated

In Section 2.7 it was noted that, for linearly elastic materials, the shear modulus G
and Young’s modulus E are related by the equation

(2.24)
repeated

For this equation to apply, the material must not only be linearly elastic, it must

also be isotropic, that is, its material properties like E and must be independent of
orientation in the body. We will first extend the stress-strain laws for linearly

elastic materials to the two-dimensional loading case of plane stress. Then we will

derive Eq. 2.24.

Plane Stress. A body that is subjected to a two-dimensional state of stress with
�z � �xz � �yz � 0, is said to be in a state of plane stress. An element in plane stress

is shown in Fig. 2.37.

If the material of which the body is composed is linearly elastic and isotropic,

the effects of stresses �x, �y, and �xy can be superposed, giving Hooke’s Law for

n

G �
E

2(1 � n)

�y � �z � �n�x � �n 

sx

E

�x �
sx

E

2.11 HOOKE’S LAW FOR PLANE STRESS; THE RELATIONSHIP
BETWEEN E AND G

τxy

σy

σx

z x

y

(a) Three-dimensional view.

τyx(= τxy)

τxy

σy

σx

x

y

(b) Two-dimensional view.

FIGURE 2.37 A state of plane stress depicted in 3-D and in 2-D.
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Plane Stress:

(2.31)

It is because the material is isotropic, as well as linearly elastic, that E, G, and are

independent of the orientation of the x and y axes and that the effects of �x and �y

can be superposed in this manner.

The Relationship Between E and G. By considering the case of pure shear,
which is a special case of plane stress, and employing equations of equilibrium,

geometry of deformation, and isotropic material behavior, we will now derive Eq.

2.24.29 Consider a square plate of unit thickness subjected to pure shear relative to

the x, y axes, as shown in Fig. 2.38a, and let the n and t axes be the diagonals of the

square.

n

 gxy �
1

G
txy

 �y �
1

E
(sy � nsx)

 �x �
1

E
(sx � nsy)
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29The relationship in Eq. 2.24 is a general one that applies to any stress state in an isotropic, linearly

elastic body. It is most easily demonstrated by use of the case of pure shear, as is done here. Material

properties of linearly elastic, isotropic bodies are discussed further in Section 2.13.

A

B τ

τ

C
45°

a

x2

d =
 a

a

Stresses on an element
in pure shear.

(a) 

    γ –__
2
π

    γ +__
2
π

a*

a*

B*

A*

C*

Free-body diagram —
n face.

(d) 

2   naσ
   ntaτ 2

   aτ

   aτ

Free-body diagram —
t face.

(e) 

2   taσ

   tnaτ 2

   aτ

   aτ

n
n

Deformation of the element
in pure shear.

(b) 

t
t

45°

x
A

B C

n
t

Stresses on n and t faces.(c) 

   ntτ   tσ    nσ   tn =   ntτ        τ

Stresses on n and t faces.(f) 

ττ

ττ

t
n

t n

FIGURE 2.38 Illustrations for relating E and G.

Hooke’s Law 
for 
Plane Stress
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By considering the shear stresses on the faces of an n, t element and relating

them to the elongation of the diagonal AC (i.e., the elongation in the n direction),

we can derive Eq. 2.24.

Equilibrium: From the free-body diagram in Fig. 2.38d,

and from the free-body diagram in Fig. 2.38e,

Material Behavior: From Hooke’s Law for Plane Stress in Eq. 2.31 we have the

following:

1. Relating the shear stresses shown in Fig. 2.38a to the shear strain shown in

Fig. 2.38b is the equation

(a)

2. Relating the normal stresses �x � �y � 0 in Fig. 2.38a to the extensional

strains in Fig. 2.38b, we get

3. Relating the normal stresses, �n � � and �t � ��, in Fig. 2.38f to the exten-

sional strain along diagonal A*C* in Fig. 2.38b, we have

(b)

Geometry of Deformation: The law of cosines can be applied to the triangle

A*B*C* in Fig. 2.38b to give

or

For small �n and �, the term can be dropped, and sin � can be approximated by �.

Then,

(c)�n �
g

2

�2
n

 1 � 2�n � �2
n � 1 � sin g

 � 2a2(1 � sin g)

 [a12(1 � �n)]2 � a2 � a2 � 2a2 cos ap
2

� gb

A*C*2 � A*B*2 � B*C*2 � 2A*B* B*C*cos(�B*)

�n �
1

E
(sn � nst) �

t

E
(1 � n)

�n

�x � �y � 0, so a* � a

txy � Ggxy, or t � Gg

ttna12 � ta(12/2) � ta(12/2 � 0, ttn � 0

                    sta12 � 2ta(12/2) � 0,     st � �t
  a

Fn � 0:

a Ft � 0:

sna12 � 2ta(12/2) � 0, sn � t

tnta12 � ta(12/2) � ta(12/2) � 0, tnt � 0
 a

Fn � 0:

a Ft � 0:
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Combining Eqs. (a), (b), and (c), we get the desired result, Eq. 2.24:

(2.24)
repeated

G �
t

g
�

E
2(1 � n)
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2.12 GENERAL DEFINITIONS OF STRESS AND STRAIN

As has been illustrated in Section 2.9, the values of normal stress and shear

stress depend on the orientation of the plane on which the stresses act; they may

also depend on the point in the plane where the stresses are to be obtained.

Therefore, we extend our previous definitions of normal stress (Eq. 2.1) and

shear stress (Eq. 2.17) and give definitions for normal stress and shear stress at
an arbitrary point in an arbitrarily oriented plane passing through an arbitrarily

loaded three-dimensional body. The stresses on a plane are then related to the

stress resultants on the plane.

Definitions of Normal Stress and Shear Stress. To define the normal stress

and shear stress at an arbitrary point P in a body, on the plane that has an outward

normal vector n and that passes through point P, we start with the force vector

�R(P) at point P acting on an infinitesimal area �A of the n plane, as shown in

Fig. 2.39. In Fig. 2.40a the force vector �R(P), whose magnitude is denoted by �R(P),

n

 A 3-D body with cutting plane.(a)

ΔR(P)

The force on an infinitesimal
area ΔA at point P in plane n.

ΔA

PP

(b) 

ΔA

ΔF(P)

ΔR(P)

ΔV(P)
P

(a)

ΔA

ΔF(P)

ΔV(P)

ΔVs(P)

ΔVt(P)

P

(b)

s

t

n

n

FIGURE 2.39 The cutting

plane whose normal vector is 

n and which passes through a

given point P in a 3-D body.

FIGURE 2.40 The 

components of force on 

infinitesimal area �A.
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is resolved into normal and tangential components �F(P) and �V(P), respectively.

In Fig. 2.40b the tangential component is further resolved into components along

two orthogonal directions, s and t, in the n plane. Then, the normal stress �n and the

shear stresses �ns and �nt at point P on the plane whose outward normal is n are de-

fined by the expressions

(2.32)

Sign Convention: The subscript n in �n, �ns, and �nt designates the direction of the

outward normal to the face on which these stresses act. The shear stress �ns is the

shear stress acting in the �s direction on the �n face and also the shear stress

acting in the �s direction on the �n face. (If �ns is negative, it is a shear stress that

acts in the �s direction on the �n face, etc.) The same shear stress sign convention

applies to �nt, with, of course, t substituted for s.

Stress Resultants. Equations 2.32 are the basis for very important equations that

relate the stresses on an area to the stress resultants on that area. Consider the

stresses on a cross section of a slender member, as shown in Fig. 2.41. Here the sub-

scripts xyz correspond to nst in Eqs. 2.32. The stresses �x, �xy, and �xz on a small

element of area �A at point (x, y, z) give rise to forces �F � �x �A, �Vy � �xy �A,

and �Vz � �xz �A. These forces, in turn, contribute to the force and moment result-

ants shown in Fig. 2.41b, which are related to the stresses by the following integrals

over the cross section:

 tnt(P) � lim
¢AS0

a¢Vt(P)

¢A
b, P always in ¢A

 tns(P) � lim
¢AS0

a¢Vs(P)

¢A
b, P always in ¢A

 sn(P) � lim
¢AS0

a¢F(P)

¢A
b, P always in ¢A

Stresses 
at a 
Point

y

z

The force components at
point (x, y, z).

F

T

My

Vy

Vz

x
Mz

ΔF =   xΔA          σ

ΔA

y

y

z

z

ΔVy

ΔVz

ΔVy =   xyΔA          τ
ΔVz =   xzΔA          τ

x

(a) The stress resultants on
the cross section at x.

(b) 

FIGURE 2.41 The stresses and stress resultants on a cross section.
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Force Resultants:

(2.33)

Moment Resultants:

(2.34)

In Eqs. 2.33, F is the normal force on the x face, tension positive, while Vy and

Vz are components of shear force that act on the x face in the y direction and the

z direction, respectively. The resultant force components—F, Vy, and Vz—act

through the point of intersection of the x axis with the cross section, as shown in

Fig. 2.41b. In Eqs. 2.34, T is the torque, or twisting moment, while My and Mz are

bending moments about y and z, respectively. The right-hand rule is used to estab-

lish the sign convention for the torque and the two bending moments. The dimen-

sions of torque and bending moment are F � L. Typical units used are lb � ft, kN � m,

and so on.

The relationship of stresses to stress resultants is illustrated by the following

example.

Mz(x) � ��
A

ysx dAaMz:

My(x) � �
A

zsx dAaMy:

T(x) � �
A

ytxzdA � �
A

ztxy dAaMx:

Vz(x) � �
A

txz dAa Fz:

Vy(x) � �
A

txy dAa Fy

F(x) � �
A

sx dAa Fx:
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Force
Resultants

Moment
Resultants

E X A M P L E  2 . 1 3

The stress distribution on the rectangular cross section shown in Fig. 1 is

given by

Determine the net internal force system (i.e., the resultant forces and

moments) on this cross section. Let b � 6 in. and h � 8 in.

Plan the Solution At the cross section there can, in general, be three

components of force—F, Vy, and Vz—and three moments—T, My, and

Mz. Using the given distribution of stresses and using Eqs. 2.33 and 2.34,

we can calculate these stress resultants.

 txy � 0, txz � 300(9 � z2) psi

 sx � (800y � 400z � 1200) psi
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Solution

(Since the origin of y and z is at the centroid of the cross section,

.) Continuing,

From Appendix C.2, for the rectangular cross section of “base” b and

“height” h, and . Therefore,

In summary,

Ans.
F � 57.6 kips, Vy � 0,                         Vz � 86.4 kips

T � 0,             My � �57.6 kip � in., Mz � �205 kip � in.
f

 � �204,800 lb � in.

 � �
800

12
 (bh3) � �a800

12
 lb/in3b (6 in.)(8 in.)3

 � 400�
A

yz dA � 1200�
A

y dA

 Mz � ��
A

ysx dA � �800�
A

y2 dA

 � �57,600 lb � in.

 � �
400

12
 (hb3) � �a400

12
 lb/in3b (8 in.)(6 in.)3

 � 800�
A

yz dA � 400�
A

z2dA � 1200�
A

z dA

 My � �
A

zsx dA

 � 2700yA � 300�
3

�3

z2�
4

�4

y dy dz � 0

 � 2700�
A

y dA � 300�
A

yz2 dA

 T � �
A

ytxz dA � �
A

ztxy dA

 � 86,400 lb

 � (2700 psi)(8 in.)(6 in.) � (25 lb/in4)(8 in.)(6 in.)3

 Vz � 2700bh �
300

12
(hb3)

�Ay2dA � 1
12 bh3�Az2dA � 1

12 hb3

 Vz � �
A

txz dA � 2700�
A

dA � 300�
A

z2dA

 Vy � �
A

txy dA � 0

y � z � 0

 � (1200 psi)(8 in.)(6 in.) � 57,600 lb

 � 800 yA � 400 zA � 1200A

 F ��
A

sx dA � 800�
A

y dA � 400�
A

z dA � 1200�
A

dA

y
h/2

h/2

b/2

b/2

z

The stresses at a point.

F

T

My

Vy

Vz

Mz

   xσ

   xyτ

   xzτ

x

(a) 

The stress resultants.(b) 

y

z

Fig. 1
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Review the Solution The only way to check the above answers is to 

go back over the calculations, using information from Appendix C to

check all of the integrals.We can also spot-check some of the magnitudes.

For example, the 1200-psi term in �x represents constant normal stress

on the cross section, which would produce an axial force F � �xA �
(1200 psi)(8 in.)(6 in.) � 57.6 kips. We can also see that 0 � �xz �
2700 psi everywhere on the cross section. Hence, Vz must be less than

(2700 psi)(8 in.)(6 in.) � 129.6 kips. So the value of Vz � 86.4 kips

seems reasonable.

Stress distributions like the one in this example will arise in Chapter 6

in the study of bending of beams.

E X A M P L E  2 . 1 4

On a particular cross section of a rectangular bar (Fig. 1a) there is a con-

stant tensile stress of magnitude �0 over the bottom half of the bar, and

the stress tapers linearly to zero at the top edge of the cross section, as

shown in Fig. 1b. (a) Determine expressions for the six stress resultants

listed in Eqs. 2.33 and 2.34. (b) Replace the normal force F and moment

Mz by a single resultant force, as depicted in Fig. 1c. Give the location, yR,

of the resultant force.

b/2
y

yR

z

x

F

h

(a) The cross section. (b) The stress distribution.

(c) The resultant force.

y

R

σ0

h/2

h/2

yR

Fig. 1
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Plan the Solution At the cross section there can, in general, be three

components of force—F, Vy, and Vz—and three moments—T, My, and

Mz. The only nonzero stress in this problem is �x. Using the given distri-

bution of stress �x and using Eqs. 2.33 and 2.34, we can calculate these

stress resultants.

Solution (a) Determine expressions for the six stress resultants.

Force Resultants: From Eq. 2.33,

(1)

Since �xy � �xz � 0, Vy � Vz � 0.

Moment Resultants: From Eq. 2.34a, since �xy � �xz � 0, T � 0. From

Eq. 2.34b, since �x is symmetric in z, My � 0. Finally, from Eq. 2.34c,

(2)

In summary, the six stress resultants are

Ans. (a)

(b) Locate the single resultant force. Since the z axis is at the bottom

edge of the cross section, and since F is positive in tension, Fig. 1c in-

dicates that

(3)Mz � �yRF

F �
3

4
s0bh,   Vy � Vz � 0

T � My � 0, Mz � �
7

24
s0bh2

¶

 � �
1

8
 s0bh2 �

1

6
 s0bh2 � �

7

24
 s0bh2

 � �b cs0

h2

8
� 2s0 a3h2

8
�

7h2

24
b d

 � �b c �
h/2

0

s0y dy � �
h

h/2

2 s0 a1 �
y

h
b y dy d

 Mz � ��
A

ysx dA

 �
1

2
 s0bh �

1

4
 s0bh �

3

4
 s0bh

 �
1

2
 s0bh � b c2s0 ah

2
�

3h
8
b d

 � s0b ah
2
b � b�

h

h/2

2s0 a1 �
y

h
b dy

 F � �
A

sx dA
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Let us turn our attention now to general definitions of extensional strain and

shear strain to complement the definitions of normal stress and shear stress in

Eqs. 2.32.

General Definition of Extensional Strain. Recall that extensional strain

is the change in length of a line segment divided by the original length of the line

segment. To define the extensional strain in a direction n at a point P in a body,

we take an infinitesimal line segment of length �s, in direction n, starting at P as

shown in Fig. 2.42a.30 That is, we take the infinitesimal line segment PQ of length

�s as the original line segment. After deformation, the line segment PQ becomes

the infinitesimal arc P*Q* with arclength �s*, as shown in Fig. 2.42b. To deter-

mine the extensional strain right at point P, we need, of course, to start with a

very short length �s; that is, we must pick Q very close to point P. By picking Q
closer and closer to P, we get, in the limit as �s → 0, the extensional strain right

at point P. Then, the extensional strain at point P in direction n, denoted by �n (P),

is defined by

(2.35)
Extensional
Strain�n(P) � lim

QSP along n
a¢s* � ¢s

¢s
b

So,

Ans. (b)

Review the Solution Another way to determine the force resultant F
and determine its location is to see that it is the sum of the two force re-

sultants F1 and F2 shown in Fig. 2. Then,

y1F1 � y2F2 � yRF

yR �
7

18
 h

Fig. 2 Resultants of two stress blocks.

x

F1 = 

y

σ0bh ____
2

F2 = 
σ0bh ____

4

y1 = h__
4

y2 = 2h___
3

h

30In the present discussion the term line segment refers to the collection of material particles that lie along

a straight line connecting specified points, say P and Q, in the undeformed body. Such a line segment is

sometimes referred to as a fiber.

n

Δs

P

Q Δs*

P*

Q*

(a) Undeformed body. (b) Deformed body.

FIGURE 2.42 The infinitesimal line segment used to define extensional strain.
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E X A M P L E  2 . 1 5

The thin, square plate ABCD in Fig. 1a undergoes deformation in

which no point in the plate displaces in the y direction. Every horizon-

tal line in the plate, except line AD, is uniformly shortened as the edge

AB remains straight and rotates clockwise. Determine an expression

for �x(x, y).

(b) Plate after deformation.(a) Plate before deformation.

a

a

a

P*

B* C*

A* D*

B
C

A D

0.20a

P

xx

y y

(b) Plate after deformation.(a) Plate before deformation.

P*

Δx*

Δxx

y

P Q
Q*

B* C*

A* D*

CB

A D
xx

y y

Plan the Solution We can use the definition of extensional strain �n(P),

which, in this case, is �x(x, y). We will have to use the geometry of defor-

mation to determine an expression for �s* in Eq. 2.35.

Solution To determine �x(x, y), let Eq. 2.35 be written as

where �x and �x* are defined in Fig. 2.

�x(x, y) � lim
¢xS0

a¢x* � ¢x
¢x

b

To get an expression for �x(x, y) we need an expression for �x*. We

are told that every horizontal line is uniformly shortened, and we see

that AD remains its original length while B*C* is shorter than BC by

20%. Furthermore, the shortening of horizontal lines is linearly related

Fig. 1

Fig. 2
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to y. Therefore,

So,

or

Ans.

Review the Solution The answer is negative, which indicates a shorten-

ing, and the answer is dimensionless, as it should be for strain. Also,

according to the answer, there is no strain at y � 0 (along AD), and there

is a 20% shortening at y � a. These results agree with the stated geome-

try of deformation.

�x(x, y) � �ay
a
b (0.2)

�x(x, y) � lim
¢xS0 

c�(y/a)(0.2 ¢x)

¢x
d

¢x* � ¢x � ay
a
b (0.2 ¢x)

Definition of Shear Strain. When a body deforms, the change in angle that

occurs between two line segments that were originally perpendicular to each other is

called shear strain. To define the shear strain, let us consider the undeformed body

in Fig. 2.43a and the deformed body in Fig. 2.43b. Let PQ and PR be infinitesimal

line segments in the n direction and t direction, respectively, in the underformed

body. After deformation, line segments PQ and PR become arcs P*Q* and P*R*.
Secant lines P*Q* and P*R* define an angle �* in the deformed body. In the limit,

as we pick Q and R closer and closer to P, the angle �* approaches the angle be-

tween tangents to the arcs at P*, shown as dashed lines in Fig. 2.43b. The shear
strain between line segments extending from P in directions n and t is defined by the
equation

(2.36)

This definition is illustrated in the following example.

Shear
Strain

gnt(P) � lim
QSP along n
RSP along t

 
ap

2
� u*b

(a) Undeformed body. 

   /2π

P

R

t

P*
R*

Q*

Q

(b) Deformed body. 

  *θ
n

FIGURE 2.43 The angles used to define shear strain.

80

 c02StressAndStrainIntroductionToDesign.qxd  9/30/10  3:21 PM  Page 80



E X A M P L E  2 . 1 6

For the square plate and the deformation described in Example 2.15,

determine an expression for �xy(x, y).

Plan the Solution By comparing the “before deformation” and “after

deformation” figures, we can see that there is a definite change in the

right angle between x lines and y lines.We need to determine this change

in angle so that we can evaluate the shear strain from Eq. 2.36.

Solution Equation 2.36 can be written as

where �x, �y, and * are indicated in Fig. 1.

Therefore,

Since the x lines and y lines remain straight, �* doesn’t depend on the

lengths of �x and �y, and we don’t need the limit operation. So,

Ans.

Review the Solution From Fig. lb, we see that �xy should be independ-

ent of y, as our final result indicates. Also, from Fig. lb we see that �xy

should be greatest when x � 0 and should be zero at x � a. These ob-

servations are consistent with our answer. Finally, the largest shear

strain is at x � 0, where .Therefore,gxy(x, y) � tan�1(0.2) � 0.1974 � 0.2

gxy(x, y) �
p

2
� u* � tan�1 c0.2a1 �

x
a
b d

u* �
p

2
� tan�1 c0.2 a1 �

x
a
b d

 xN* � xM* � a1 �
x
a
b(0.2a)

 xN* � x � a1 �
x
a
b(0.2a)

 u* �
p

2
� tan�1axN* � xM*

a
b

u

gxy(P) � gxy(x, y) � lim
¢xS0
¢yS0

ap
2

� u*b

In Chapters 3, 4, and 6 we will make extensive use of the definitions of

extensional strain and shear strain, Eqs. 2.35 and 2.36, respectively, to determine

key strain-displacement equations for theories of axial deformation, torsion, and

bending.

(a) Plate before deformation.

x

y

R
a

a

  /2π
P

Δy

Δx Q

A M

N

x

y

(b) Plate after deformation.

xM* = xM = x

xN*

P* Q*

R*   *θ

A*

B* N*

M*
x

y

Fig. 1
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�xy could be approximated by gxy(x, y) � 0.2 a1 �
x
a
b.
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*2.13 CARTESIAN COMPONENTS OF STRESS; GENERALIZED
HOOKE’S LAW FOR ISOTROPIC MATERIALS

Definitions of normal stress and shear stress were given in Eqs. 2.32 of the previ-

ous section. These equations define the components of stress on a particular

plane, the n plane, at the given point. However, we can pass three mutually

orthogonal planes through any point in a deformable body, so we need to con-

sider the stresses on all three mutually orthogonal planes. Consider the x, y, and

z planes passing through point P in Fig. 2.44. It is customary to sketch the com-

ponents of stress, as defined by Eqs. 2.32, on a cube having x, y, and z faces, as

shown in Fig. 2.45.

The sign convention for the stresses shown on Fig. 2.45 is the sign convention

associated with Eqs. 2.32. The normal stresses are always taken positive in tension.

Therefore, �x, �y, and �z are all shown in tension on the respective x, y, and z faces.

The first subscript on a shear stress refers to the plane on which the shear stress acts,

while the second subscript indicates the direction in which the shear stress acts.

Hence, on the “�x face,” that is, the face whose outward normal is the �x axis, the

shear stress �xy acts in the �y direction, and the stress �xz acts in the �z direction.

Conversely, on the “�x face,” �xy acts in the �y direction, and �xz acts in the �z
direction. (To avoid “cluttering,” the stresses acting on the hidden (�) faces are not

shown in Fig. 2.45.)

Shear Stress Equilibrium Requirements. In the discussion of pure shear in

Section 2.7, you learned that, in order to satisfy moment equilibrium, the shear

stresses on faces that intersect at right angles must be equal (e.g., see Fig. 2.30d).
Let us now examine the relationship of shear stresses on perpendicular faces on

which normal stresses also act. To simplify the free-body diagram, only those

stresses that contribute to moment about the z axis are shown in Fig. 2.46. Stresses

on exposed faces are indicated by a � superscript; those on the three hidden faces

  xyτ

  xzτ

  zyτ

  yzτ
  yxτ

  yσ

   xσ

   zσ

z

x

y

  zxτ

  zy
+ΔxΔyτ

  yx
+ΔxΔzτ

  xy
+ΔyΔzτ

  zx
+ΔxΔyτ

  zyΔxΔyτ

  zyΔxΔyτ

   yΔxΔzσ

   xΔyΔzσ

   y
+ΔxΔzσ

   x
+ΔyΔzσ

z

x

y

Δz

Δx

Δy

x

y

PP

z

FIGURE 2.44 A set of

three mutually orthogonal

planes through an arbitrary

point P.

FIGURE 2.45 A three-dimensional

state of stress referred to as rectangular

Cartesian axes. (Stresses shown for

visible faces only.)

FIGURE 2.46 A three-dimensional free-

body diagram. (Only stresses that contribute 

to Mz are shown.)
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have no subscript.31 Consider first the moment about the z axis due to �x and .
We get

Since �x is small, we can write

where ��x is a small quantity of the same order as �x. Then,

Note that the right-hand side is a product of four �-terms. The stresses �y, �zx, and

�zy contribute similar “four-�” amounts to �Mz. On the other hand, consider the

moment due to and .

Collecting all contributions to moment about the z axis, we get

As �x, �y, and �z approach zero, the higher-order terms become negligible, leaving

only the first term. However, to satisfy moment equilibrium, we must have ,

so it is necessary that

From the above analysis of moment equilibrium, we can conclude that, even if
there are normal stresses acting on an element, the shear stresses must satisfy the
following equations:

(2.37)

Generalized Hooke’s Law for Isotropic Materials. A solid whose material
properties, for example E and , are independent of orientation in the body, is said to
be isotropic. We now consider the stress-strain-temperature relationships for a lin-

early elastic, isotropic body. Let the body be subjected to stresses �x, �y, �z, �xy, �xz,

and �yz, and to a temperature change �T. By the principle of linear superposition32

we can get the combined strain response by adding together the separate responses

n

tyx � txy,   tyz � tzy,   tzx � txz

txy � tyx

©Mz � 0

aMz � (txy � tyx)¢x ¢y ¢z � higher-order terms

 � (txy � tyx)¢x ¢y ¢z � (¢txy � ¢tyx)¢x ¢y ¢z

 (¢Mz)txy
� (t�

xy ¢y ¢z)¢x � (t�
yx ¢x ¢z)¢y

t�
yxt�

xy

(¢Mz)sx
� �

1

2
¢sx ¢y2 ¢z

s�
x � sx � ¢sx

(¢Mz)sx
� (sx ¢y ¢z)a¢y

2
b � (sx

� ¢y ¢z) a¢y

2
b

s�
x 83

Cartesian Components of
Stress; Generalized Hooke’s
Law for Isotropic Materials

31Since the �x face and the �x face are �x distance apart, the stress on the �x face may be slightly

different than the stress on the �x face; this distinction is indicated by the � superscript notation.
32The strains may be added linearly if the deformation is small and the material remains linearly

elastic.
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due to �x, �y, and so on. For example, the strains produced by �x are

Figure 2.47a illustrates the combined effect of the �’s and �T. Figures 2.47b
through 2.47e illustrate the strains produced separately by the three normal stresses,

�x, �y, and �z, and the strain produced by a temperature increase �T. Let

(Fig. 2.47b)

(Fig. 2.47c)

(Fig. 2.47d)

(Fig. 2.47e)

By the superposition principle, the total extensional strains are given by

(2.38)

For an isotropic linearly elastic material, the shear stresses are related to the

shear strains by the following equations:

(2.39)

These shear strains are illustrated in Fig. 2.48.

Equations 2.38 and 2.39 are referred to as the generalized Hooke’s Law for

isotropic materials. Note that, in an isotropic material, shear stresses do not enter

Gen. Hooke’s
Law (cont.)gxy �

1

G
txy, gxz �

1

G
txz, gyz �

1

G
tyz

�z �
1

E
[sz � n(sx � sy)] � a¢T

�y �
1

E
[sy � n(sx � sz)] � a¢T

�x �
1

E
[sx � n(sy � sz)] � a¢T

 �‡z �
sz

E
, �‡x � �‡y �

�vsz

E

 �–y �
sy

E
, �–x � �–z �

�vsy

E

 �¿x �
sx

E
, �¿y � �¿z �

�nsx

E

 �xT � �yT � �zT � a¢T

�x �
sx

E
, �y � �z �

�nsx

E

(a) The total extensional strain.

= + + +

ΔT

(b) Uniform thermal strain.

  yσ

   xσ
   zσ

   xσ

(c) Strains due to   x.                             σ (d) Strains due to   y.                             σ (e) Strains due to   z.                             σ

   zσ

  yσ

ΔT

  xy produces   xy
only.
τ                   γ(a) 

  xz produces   xz
only.
τ                   γ(b) 

  yz produces   yz
only.
τ                   γ(c) 

  xyτ

  xzτ

  yzτ

z
x

y

FIGURE 2.47 Superposition of extensional strains.

FIGURE 2.48 Illustration

of shear strains.

Generalized
Hooke’s
Law
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into the expressions for extensional strains, and, likewise, normal stresses do not

enter into the expressions for shear strains. In addition, the three components of

shear are uncoupled.

Solving Eqs. 2.38 and 2.39 for the stresses in terms of the strains and �T, we get

(2.40)

As noted in Section 2.7 and derived in Section 2.11, there is an equation that

relates G to E and , namely

(2.24) 

repeated

The following example illustrates the relationship of Poisson’s ratio to the

change in volume of a body subjected to triaxial stress. The change in volume per

unit volume is called the volumetric strain, or dilatation, �V.

G �
E

2(1 � n)

n

txy � Ggxy, tyz � Ggyz, tzx � Ggzx

sz �
E

(1 � n)(1 � 2n)
[(1 � n)�z � n(�x � �y) � (1 � n)(a ¢T)]

sy �
E

(1 � n)(1 � 2n)
[(1 � n)�y � n(�z � �x) � (1 � n)(a ¢T)]

sx �
E

(1 � n)(1 � 2n)
[(1 � n)�x � n(�y � �z) � (1 � n)(a ¢T)]

85
Cartesian Components of

Stress; Generalized Hooke’s
Law for Isotropic Materials

Gen.
Hooke’s
Law

Fig. 1

E X A M P L E  2 . 1 7

A rectangular parallelepiped of linearly elastic, isotropic material is

subjected to general triaxial stress �x, �y, �z, as shown in Fig. 1. Determine

the volumetric strain, �V. Assume that for all three coordinate

directions.

� V 1

Plan the Solution We can write the change in volume in terms of the

change in length of each of the three sides of the body, which can, in

  yσ

   xσ
Ly

*

Lz
*

Lx
*

   zσ

z

y

x
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turn, be expressed in terms of the extensional strains �x, �y, and �z. We

can use Hooke’s Law, Eqs. 2.38, to relate these three strains to the three

stresses.

Solution The basic equation for volumetric strain (dilatation) is

where the L* lengths are the after-deformation dimensions of the body,

and the L’s are the corresponding pre-deformation dimensions of the

body. For uniform strain in each coordinate direction,

so

Since all three strains satisfy , the squared and cubed terms can be

dropped in the preceding equation, leaving the approximation

(1)

From Eqs. 2.38,

(2)

Finally, Eqs. (1) and (2) may be combined to give following expression

for the dilatation �V:

Ans.

Review the Solution From the above answer we see that the change in vol-

ume per unit volume is of the order of magnitude of the strain, and is there-

fore small, as we would expect. It is interesting to note that, because of the

(1 � 2 ) factor, a tensile stress causes an increase in volume, which is what

we would expect to happen, but only if 0 � � 0.5. As noted earlier, most

materials have a value of that falls within the range � 0.25 to � 0.35.nnn

n

n

�V �
1 � 2n

E
(sx � sy � sz)

�z �
1

E
[sz � n(sx � sy)]

�y �
1

E
[sy � n(sx � sz)]

�x �
1

E
[sx � n(sy � sz)]

�V � �x � �y � �z

� V 1

 � �x � �y � �z � �x�y � �y�z � �z�x � �x�y�z

 �V � (1 � �x)(1 � �y)(1 � �z) � 1

L* � (1 � �)L

�V �
¢V
V

�
L*xL*yL*z � LxLyLz

LxLyLz
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*2.14 MECHANICAL PROPERTIES OF COMPOSITE MATERIALS

Composite materials were mentioned briefly at the end of Section 2.4. In this sec-

tion we further describe composites and work through the equations that describe

the elastic modulus of the simplest composite cases, iso-stress and iso-strain.

In many engineering applications, the performance of a part in a structure or a

machine can be improved if it is composed of more than one material. Parts that

contain multiple materials working together are often called composite materials.
Common examples of composite materials include steel-reinforced concrete and

fiberglass-reinforced polymers. A composite material is generally considered to

contain a matrix phase (distinct material) and one or more reinforcement phases.

The primary purpose of the matrix phase is to distribute load to the reinforcement

phase(s). By combining multiple materials into a composite, properties not possible

in a single material can be achieved (e.g., greater strength or greater ductility).

Composite materials are often categorized by the shape of the reinforcement

phase. General categories include continuous-fiber-reinforced, short-fiber-

reinforced, particle-reinforced, and laminated composites. Examples are shown

in Fig. 2.49.

When the behavior of composite materials is to be analyzed, two approaches

are possible. One is to treat each phase in the composite separately, in which case

the composite is viewed as a structure composed of more than one material. Such

an analysis can be very difficult when the internal structure of the composite is com-

plex. A second approach is to view the composite as a new material, with its own

properties.This method of analysis treats the entire composite part as made of a sin-

gle composite material with its own effective properties. It is typically valid to do this

when the size of the reinforcement phase, e.g. fiber diameter or particle width, is

much smaller than the size of the part made of the composite material.

We will now calculate the effective Young’s modulus for two simple composite

material cases, the iso-strain case and the iso-stress case, which are illustrated in

Fig. 2.50. These cases are reasonable approximations for situations in which a re-

inforcement phase spans at least one dimension of the part. In order to calculate

the effective Young’s modulus in each case, we assume that the reinforcement and

matrix phases are well bonded and have approximately the same Poisson’s ratio.

The effective properties depend strongly on how much reinforcement phase the

composite contains. We consider a composite material containing a volume frac-

tion Vf of reinforcement phase, such as stiff fibers. The volume fraction is the ratio

of the reinforcement phase volume to the total volume of the composite, and this

may vary from zero (no reinforcement) to one (all reinforcement). The reinforce-

ment phase has a Young’s modulus of Ef (subscript f for fiber), and the matrix

phase has a Young’s modulus of Em. For the iso-strain case, load is applied paral-

lel to the direction of reinforcement, as shown in Fig. 2.50(a). It can be seen in Fig.

2.50(a) that the strain along the loading direction is identical between the rein-

forcement and matrix phases, assuming that these are well bonded to each other.

This is the origin of the iso-strain designation. The effective Young’s modulus for

matrix

fiber

(a) continuous fiber (b) short fiber (c) particle reinforced (d) laminated

FIGURE 2.49 Examples of different composite material types.
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the iso-strain case is

(2.41)

This is the case that has the greatest effective Young’s modulus.

When load is applied perpendicular to the direction of reinforcement, as shown

in Fig. 2.50(b), this configuration is called the iso-stress case. The stress in both phases

is approximately the same, and the effective Young’s modulus in this iso-stress case is

(2.42)

The iso-stress case has the lowest effective Young’s modulus. Composite cases be-

tween the extremes of iso-strain and iso-stress will have intermediate values of ef-

fective Young’s modulus.A discontinuously reinforced composite, e.g. Fig. 2.49(b) or

(c), with randomly oriented reinforcements might be approximated as an average of

these two extremes, as shown in Fig. 2.51, which plots the effective Young’s modu-

lus as a function of the volume fraction of reinforcement phase. Although the effec-

tive modulus of a composite with randomly oriented reinforcement will typically be

slightly less than this average, the average value is a reasonable

approximation from which to begin.

Ec � 1
2(E� � E‘),

Iso-stress 
Modulus

1

E�

�
Vf

Ef
�

(1 � Vf)

Em

Iso-strain 
Modulus

E‘ � Vf Ef � (1 � Vf)Em

88
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F

F

F

laminated:

fibers:

(a) iso-strain

(b) iso-stress

FIGURE 2.50 The two limiting cases of composite material construction.

Vf

Ec Iso-str
ain

Average

Iso-stress

Em

Ef

0 1

FIGURE 2.51 The effective Young’s modulus, Ec, shown as a function of volume fraction

of reinforcement, Vf, for different composite cases.
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NORMAL STRESS; AXIAL 
STRESS

member. (a) Determine the coordinates yR and zR of the

point where the tensile load P must act in order to produce

uniform tensile stress in the cross section of the structural

angle, and (b) determine the magnitude of that tensile stress

if P � 18 kips.

2.15 PROBLEMS

For all problems in Section 2.2, assume unknown axial
forces to be positive in tension. As in Examples 2.1 and
2.2, label tensile-stress answers with (T) and compressive-
stress answers with (C).

Prob. 2.2-1. A 1-in.-diameter solid bar (1), a square solid

bar (2), and a circular tubular member with 0.2-in. wall

thickness (3), each supports an axial tensile load of 5 kips.

(a) Determine the axial stress in bar (1). (b) If the axial

stress in each of the other bars is 6 ksi, what is the dimension,

b, of the square bar, and what is the outer diameter, c, of the

tubular member?

MDS 2.1–2.4
▼

1 in.

(1) (2) (3)

b c
t = 0.2 in.

b

P2.2-1

Prob. 2.2-2. The structural tee shown in Fig. P2.2-2 supports

a compressive load P � 200 kN. (a) Determine the coordi-

nate yR of the point R in the cross section where the load

must act in order to produce uniform compressive axial

stress in the member, and (b) determine the magnitude of

that compressive stress.

10 mm

z

P

P

75mm 75mm
y

yR 120 mm

15 mm

(a)

(b)

R

Prob. 2.2-3. A steel plate is welded onto each end of the

structural angle in Fig. P2.2-3 so that a load can be applied

at point R, where it will produce uniform axial stress in the

P2.2-2

PP

y

z

(b)

R
4 in.

3 in.

0.5 in.

0.5 in.

End plate

P2.2-3

Prob. 2.2-4. Consider the free-hanging rod shown in 

Fig. P2.2-4. The rod has the shape of a conical frustum, with

radius R0 at its top and radius RL at its bottom, and it is made

of material with mass density �. The length of the rod is L.

Determine an expression for the normal stress, �(x), at an

arbitrary cross section x (0 � x � L), where x is measured

downward from the top of the rod.

Prob. 2.2-5. A solid brass rod AB and a solid aluminum rod

BC are connected together by a coupler at B, as shown in

Fig. P2.2-5.The diameters of the two segments are d1 � 60 mm

and d2 � 50 mm, respectively. Determine the axial stresses �1

(in rod AB) and �2 (in rod BC).

P2.2-4 and P2.3-6

89

(a)

L

R0

RL

r
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Prob. 2.2-8. A column in a two-story building is fabricated

from square structural tubing having the cross-sectional di-

mensions shown in Fig. P2.2-8b. Axial loads PA � 200 kN

and PB � 350 kN are applied to the column at levels A and

B, as shown in Fig. P2.2-8a. Determine the axial stress �1 in

segment AB of the column and the axial stress �2 in segment

BC of the column. Neglect the weight of the column itself.

Prob. 2.2-6. The three-part axially loaded member in Fig.

P2.2-6 consists of a tubular segment (1) with outer diameter

(do)1 � 1.00 in. and inner diameter (di)1 � 0.75 in., a solid

circular rod segment (2) with diameter d2 � 1.00 in., and

another solid circular rod segment (3) with diameter d3 �
0.75 in. The line of action of each of the three applied loads

is along the centroidal axis of the member. Determine the

axial stresses �1, �2, and �3 in each of the three respective

segments.

50 kN

150 kNA
d1 d2

B C
(1) (2)

P2.2-5

2 kips

(1) (2)
(3)

2 kips

3 kips
0.75 in

0.75 in.
1.00 in.

P2.2-6

Prob. 2.2-7. At a local marina the dock is supported on

wood piling in the manner shown in Fig. P2.2-7a. The top

part, AB, of one pile is above the normal waterline; the mid-

dle part, BC, is in direct contact with the water; and the part

below C is underground. The original diameter of the pile is

d0 � 12 in., but action of the water and insects has reduced

the diameter of the pile over the part BC. (a) If the axial

force that the deck exerts on this pile is P � 200 kips, what

is the axial stress in AB? Neglect the weight of the pile itself.

(b) An inspector estimates that the diameter of the pile in

segment BC has been eroded by 5%. What axial stress does

the deck load of P � 200 kips produce in this damaged part

of the pile? (c) If the maximum axial stress allowed in the

wood piles is 7.5 ksi (in compression), what is the maximum

deck load that this damaged pile can support?

(a) (b)

d1 = d0

d2

(1)

A

P

B

C

(2)

P2.2-7

(1)

(2)

A

B

C

PB = 350 kN

PA = 200 kN

200 mm

200 mm

150 mm

150 mm
t1 = 12 mm

t2 = 15 mm

(b)(a)

P2.2-8

Prob. 2.2-9. A rigid beam AB of total length 3 m is sup-

ported by vertical rods at its ends, and it supports a down-

ward load at C of P � 60 kN, as shown in Fig. P2.2-9. The

diameters of the steel hanger rods are d1 � 25 mm and d2 �
20 mm. Neglect the weight of beam AB and the rods. (a) If

the load is located at x � 1 m, what are the stresses �1a and

�2a in the respective hanger rods. (b) At what distance x from

A must the load be placed such that �2 � �1, and what is the

corresponding axial stress, �1b � �2b, in the rods?

A BC

P = 60 kN

(1)

2 m

3 m

3 m

x
"Rigid"

(2)

P2.2-9

Prob. 2.2-10. A 12-ft beam AB that weighs Wb � 180 lb sup-

ports an air conditioner that weighs Wa � 1000 lb.The beam,

in turn, is supported by hanger rods (1) and (2), as shown in

Fig. P2.2-10. (a) If the diameter of rod (1) is in., what is the3
8
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stress, �1, in the rod? (b) If the stress in rod (2) is to be the

same as the stress in rod (1), what should the diameter of rod

(2) be (to the nearest in.)?1
32

Prob. 2.2-14. The three-member frame structure in Fig.

P2.2-14 is subjected to a downward vertical load P at pin C.
The pins at B, C, and D apply axial loads to members BD
and CD, whose cross-sectional areas are A1 � 0.5 in2 and

A2 � 1.0 in2, respectively. (a) If the axial stress in member

BD is �1 � 1200 psi, what is the value of force P? (b) What

is the corresponding axial stress, �2, in member CD?

4 ft

6 ft6 ft

(1) (2)

Wa = 1000 lb

Wb = 180 lb

A B

C

b

(1) (2)

A

4.5 ft

E

B D

P

6 ft

Rigid, weightless

t

w

Prob. 2.2-11. A rigid, weightless beam BD supports a load P
and is, in turn, supported by two hanger rods, (1) and (2), as

shown in Fig. P2.2-11. The rods are initially the same length

L � 6 ft and are made of the same material. Their rectangu-

lar cross sections have original dimensions (w1 � 1.5 in., t1 �
0.75 in.) and (w2 � 2.0 in., t2 � 1.0 in.), respectively. (a) At

what location, b, must the load P act if the axial stress in the

two bars is to be the same, i.e., �1 � �2? (b) What is the mag-

nitude of this tensile stress if a load of P � 40 kips is applied

at the location determined in Part (a)?

P2.2-10

P2.2-11

Prob. 2.2-12. Each member of the truss in Fig. P1.4-1 is a

solid circular rod with diameter d � 0.50 in. Determine the

axial stresses �1, �2, and �3 in members (1), (2), and (3),

respectively. (See Prob. 1.4-1.)

Prob. 2.2-13. Each member of the truss in Fig. P2.2-13 is a

solid circular rod with diameter d � 10 mm. Determine the

axial stress �1 in the truss member (1) and the axial stress

�6 in the truss member (6).

(1)

(2)

BA
C

E

D

(3)

(4)

(5)

(6) 1.5 m

2 m2 m

3 kN2 kN

1.5 m

P2.2-13

12 in.12 in.

9 in.

9 in.

32 in.

A

B

C

D

(1)

(2) P

P2.2-14

Prob. 2.2-15. The three-member frame in Fig. P2.2-15 is sub-

jected to a horizontal load P at pin E. The pins at C and D
apply an axial load to cross-brace member CD, which has a

rectangular cross section measuring 30 mm � 50 mm. If 

P � 210 kN, what is the axial stress in member CD?

0.3 m 0.3 m

0.2 m

0.2 m

P E

C D

A B

P2.2-15
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Prob. 2.2-16. The pins at B and D in Fig. P1.4-17 apply an

axial load to diagonal bracing member BD. If BD has a rec-

tangular cross section measuring 0.50 in. � 2.00 in., what is

the axial stress in member BD when the load is w0 � 220

lb/ft?

Prob. 2.2-17. The three-member frame structure in Fig.

P2.2-17 is subjected to a horizontal load P � 500 lb at pin 

C. The pins at B, C, and D apply axial loads to members 

BD and CD. If the stresses in members BD and CD are

�1 � 1200 psi and �2 � �820 psi, what are the respective

cross-sectional areas of the two members?

Prob. 2.3-1. When the bungee jumper in Fig. P2.3-1 stands

on the platform, the unstretched length of the bungee cord

is L � 15.0 ft. (a) When the jumper “hits bottom,” the maxi-

mum extended length of the bungee cord is Lm � 41.4 ft.

Assuming that the bungee cord stretches uniformly along its

length, determine the extensional strain �m in the bungee

cord at this point. (b) After bouncing a few times, the bungee

jumper comes to rest with the final length of the bungee cord

being Lf � 32.4 ft. What is the final strain, �f?

12 in.12 in.

9 in.

9 in.

32 in.

A

B

C

D

(1)

(2)

P = 500 lb

P2.2-17

*Prob. 2.2-18. A cylinder of weight W and diameter d rests

between thin, rigid members AE and BD, each of length L.
Friction between the cylinder and its supports is negligible.

The members are joined at their midpoint C by a frictionless

pin, and they are prevented from collapsing by a restraining

wire DE of length b and cross-sectional area A. Consider W,

L, d, and A to be given, and determine an expression that re-

lates the axial stress in wire DE to its length b.

C

A B

D E

Length (L)

W

b

d

P2.2-18

EXTENSIONAL STRAIN

Where both undeformed and deformed configurations are
shown, the undeformed configuration is shown with
dashed lines and the deformed configuration is shown
with solid lines. Points on the deformed body are indi-
cated by an asterisk(*).

▼

Lm

Lf

52 in.

δB = 0.25 in.
B*

B

A C

(2)(1)

P2.3-1

Prob. 2.3-2. Wire AB of length L1 � 30 in. and wire BC of

length L2 � 36 in. are attached to a ring at B. Upon loading,

point B moves vertically downward by an amount B � 0.25

in. Determine the extensional strains �1 and �2 in wires 

(1) and (2), respectively.

d

P2.3-2

Prob. 2.3-3. A wire is used to hang a lantern over a pool.

Neglect the weight of the wire, and assume that it is taut, but

strain free, before the lantern is hung. When the lantern 

is hung, it causes a 50-mm sag in the wire. Determine the
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extensional strain in the wire with the lantern hanging as

shown.

Prob. 2.3-6. Determine an expression for the extensional

strain �(x) at cross section x (0 � x � L) of the hanging con-

ical frustum in Prob. 2.2-4, and (b) determine an expression

for the total elongation, e, of this hanging conical frustum in

Prob. 2.2-4. The conical-frustum rod is made of material for

which s� E�, with E � const.

Prob. 2.3-7. For small loads, P, the rotation of “rigid” beam AF
in Fig. P2.3-7 is controlled by the stretching of rod AB. For

larger loads, the beam comes into contact with the top of col-

umn DE, and further resistance to rotation is shared by the rod

and the column.Assume (and later show that this is a valid as-

sumption) that the angle � through which beam AF rotates is

small enough that points on the beam essentially move verti-

cally, even though they actually move on circular paths about

the fixed pin at C. (a) A load P is applied at end F that is just

sufficient to close the 1.5-mm gap between the beam and the

top of the column at D. What is the strain, �1, in rod AB for this

value of load P? (b) If load P is increased further until �1 �
0.001 , what is the corresponding strain, �2, in column DE?mm

mm

2 m 4 m
50 mm

Pool

P2.3-3

CProb. 2.3-4. A “rigid” beam BC of length L is supported by

a fixed pin at C and by an extensible rod AB, whose original

length is also L. When � 45�, rod AB is horizontal and

strain free, that is, �( � 45�) � 0. (a) Determine an expres-

sion for �( ), the strain in rod AB, as a function of the angle

shown in Fig. P2.3-4, valid for 45� � � 90�. (b) Write a

computer program and use it to plot the expression for �( )

for the range 45� � � 90�.u

u

uu

u

u

u

L

L

Rigid

θ

C

BA

P2.3-4

Prob. 2.3-5. When a rubber band is uniformly stretched

around the solid circular cylinder in Fig. P2.3-5b, its exten-

sional strain is � � 0.025 . If the diameter of the cylinder

is d 100 mm, what is the unstretched length of the rubber

band (i.e., length L in Fig. P2.3-5a)? (Neglect the thickness

of the rubber band.)

�

mm
mm

L

(a) (b)

d

P2.3-5

2 m2 m 3 m

θ

CA

B

4 m 3 m

E

D

F

Gap = 1.5 mm

P

(1) (2)

A

C E

B

B*
D*

F*

D F

δD

3 ft 2 ft

4 ft

6 ft

(1) (2) (3)

θ

P2.3-7

Prob. 2.3-8. Vertical rods (1), (2), and (3) are all strain

free when they are initially pinned to a straight, rigid,

P2.3-8
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horizontal beam BF. Subsequently, heating of the rods

causes them to elongate and leaves the beam in the posi-

tion denoted by B*D*F*. Point D moves vertically down-

ward by a distance �D � 0.20 in., and the inclination angle

of the beam is � 0.4� in the counterclockwise sense, as in-

dicated on Fig. P2.3-8. Determine the strains �1, �2, and �3

in the three rods.

*Prob. 2.3-9. A “rigid” beam AD is supported by a smooth

pin at D and by vertical rods attached to the beam at points

A, B, and C. The rods are all strain free when the beam is

horizontal ( � 0). Subsequently, rod (2) is heated until its

extensional strain reaches the value �2 � 80.0(10�6) 

(a) Determine the value of the (counterclockwise) 

beam angle � that corresponds to the strain �2 � 80.0(10�6)

(b) Determine the corresponding extensional strains �1

and �3.

L1 � L3 � 30 in., L2 � 40 in., a � 20 in., b � 60 in.

in.
in..

in.
in..

u

u

a a b

θ

A

B

(1)

(3)

(2)

"Rigid"C D

L2L1

L3

u

B*B

L

A

y

x
θ

(1)(2)(2)

D

C

A

b

b

b b

b

b

bb

(a) (b)

B B* C*

D*A*

(1)

b/20

P2.3-9

Prob. 2.3-10. A rod AB, whose unstretched length is L, is

originally oriented at angle � counterclockwise from the �x
axis. (a) If the rod is free to rotate about a fixed pin at A,

what is the extensional strain in the rod when end B moves

a distance u in the �x direction to point B*? Express your

answer in terms of the displacement u, the original length L,

and the original angle �. (b) Simplify the answer you ob-

tained for Part (a), obtaining a small-displacement approxi-

mation that is valid if . (Note: This result will be used

in Section 3.10.)

u V L

P2.3-10

Prob. 2.3-11. Rod AB, whose undeformed length is L, is

originally oriented at angle � counterclockwise from the �x

uA

vB

A*

B

L

A

y

x

θ

B*

axis (the dashed line in Fig. P2.3-11). Both ends of the rod

are free to move in the x–y plane, while the rod remains

straight. (a) Derive an expression for the extensional strain,

�, in the rod when end A moves a distance uA in the �x di-

rection to point A* and end B moves a distance yB in the �y
direction to point B*. Express your answer in terms of uA, yB,

L, and �. (b) Simplify your answer for Part (a), obtaining a

small-displacement approximation that is valid if 

and . (Note: The displacements uA and yB are exag-

gerated in Fig. P2.3-11.)

yB V L
uA V L

P2.3-11

Prob. 2.3-12. A thin sheet of rubber in the form of a square

(Fig. P2.3-12a) is uniformly deformed into the parallelogram

shape shown in Fig. P2.3-12b. All edges remain the same

length, b, as the sheet deforms. (a) Compute the extensional

strain �1 of diagonal AC. (b) Compute the extensional strain

�2 of diagonal BD.

P2.3-12

Prob. 2.3-13. A thin sheet of rubber in the form of a square

(Fig. P2.3-13a) is uniformly deformed into the parallelogram

shape shown in Fig. P2.3-13b. All edges remains the same

length, b, as the sheet deforms. (a) Compute the extensional

strain �1 of diagonal AC. (b) Compute the extensional strain

�2 of diagonal BD.
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THERMAL STRAIN

Prob. 2.3-14. At the reference temperature, three identical

rods of length L form a pin-jointed truss in the shape of an

equilateral triangle, ABC, as shown in Fig. P2.3-14. Determine

the angle � as a function of 	T, the temperature increase of tie

rod AB. Rods AC and BC remain at the reference tempera-

ture. The properties of the rods are: area � A, modulus of

elasticity � E, and coefficient of thermal expansion � �.

the pipe reaches a uniform temperature of 212�F.) (b) How

much would the steam-carrying pipe increase in length if it is

originally 40 ft long, if its ends are not restrained against axial

motion, and if the temperature increases from 70�F to 212�F?

Prob. 2.3-17. The angular orientation, �, of a “rigid” mirror is

controlled by the lengths of rods (1) and (2), as shown in

Fig. P2.3-17. At the reference temperature, the rods are the

same length: L1 � L2 � 2.00 m.The distance between the rods

is a � 1.2 m. (a) If the thermal coefficient of the rods is 
1 �

2 � 14 � 10�6/�C, determine an expression for the angle � (in

radians) as a function of 	T1 and 	T2. (b) If the maximum tem-

perature difference that can be achieved between the temper-

ature changes 	T1 and 	T2 of the rods is 30�C, what is the max-

imum mirror rotation angle that can be achieved? (Assume that

the rods are uniformly heated or cooled along their lengths.)

87° 87°
(1)

(2)

(1)

(2)

B*B

D

CA

D*

A* C*

bb

bb

bb

bb

(a) (b)

P2.3-13

▼

A B

C

θL L

L

(Original length)

y

50 in.

CA

x

"Rigid"
B: (xB, yB)

P2.3-14

Prob. 2.3-15. As shown in Fig. P2.3-15, a “rigid” beam AB of

length LAB � 30 in. is supported by a wire BC that is 40 in.

long at the reference temperature of T0 � 70�F. Determine

an expression that relates the horizontal coordinate yB of

point B to the temperature T of the wire BC in �F if the co-

efficient of thermal expansion of the wire is � � 8 � 10�6/�F.

(Hint: Use the trigonometric law of cosines.)

P2.3-15

Mirror

L

a

(1)

(2)

θ

P2.3-17

MEASUREMENT OF STRAIN

Prob. 2.4-1. A mechanical extensometer uses the lever principle

to magnify the elongation of a test specimen enough to make

the elongation (or contraction) readable. The extensometer

shown in Fig.P2.4-1 is held against the test specimen by a spring

that forces two sharp points against the specimen at A and B.
The pointer AD pivots about a pin at C, so that the distance be-

tween the contact points at A and B is exactly L0 � 6 in. (the

gage length, or gauge length, of this extensometer) when the

pointer points to the origin, O, on the scale. In a particular test,

the extensometer arm points “precisely” at point O when the

load P is zero. Later in the test, the 10-in.-long pointer points a

distance d � 0.12 in. below point O. What is the current exten-

sional strain in the test specimen at this reading?

C
A

B

O

LO

10 in.

dD

1 in.

P

P

Prob. 2.3-16. A steel pipe (� � 8 � 10�6/�F) has a nominal in-

side diameter d � 4.06 in. at 70�F. (a) What is the inside diam-

eter if the pipe carries steam that raises its temperature to

212�F? (Assume that the outside of the pipe is insulated so that P2.4-1

▼
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Prob. 2.4-2. A “pencil” laser extensometer, like the mechan-

ical lever extensometer in Prob. 2.4-1, measures elongation

(from which extensional strain can be computed) by multi-

plying the elongation. In Fig. P2.4-2 the laser extensometer

is being used to measure strain in a reinforced concrete col-

umn. The target is set up across the room from the test spec-

imen so that the distance from the fulcrum, C, of the laser to

the reference point O on the target is doc � 5 m.Also, the tar-

get is set so that the laser beam points directly at point O on

the target when the extensometer points are exactly L0 �
150 mm apart on the specimen, and the cross section at B

does not move vertically. At a particular value of (compres-

sive) load P, the laser points upward by an angle that is indi-

cated on the target to be � � 0.0030 rad. Determine the

extensional strain in the concrete column at this load value.

STRESS-STRAIN CURVES

CProb. 2.4-4. A standard ASTM tension specimen (diame-

ter � d0 � 0.505 in., gage length � L0 � 2.0 in.) was used to

obtain the load-elongation data given in Table P2.4-4. (a)

Plot a curve of engineering stress, �, versus engineering

strain, �, using the given data. (b) Determine the modulus of

elasticity of this material. (c) Use the 0.2%-offset method to

determine the yield strength of this material, �YS.

P

C

P

L0 = 150 mm

25 mm
Laser beam

"Pencil laser"

A

B

Lines on target face 
indicate angles of

rotation about C of 
0.0002 radians when 
distance to target is 
doc = 5.00 m

Target

O
φ

P2.4-2

Problems 2.4-3 through 2.4-6. You are strongly urged to
use a computer program (e.g., MDSolids or a spreadsheet
program) to plot the stress-strain diagrams for these
problems. In some cases it will be advantageous to make
two plots, one covering the initial few points and one
covering the entire dataset.

▼

CProb. 2.4-3. The data in Table P2.4-3 was obtained in a

tensile test of a flat-bar steel specimen having the dimensions

shown in Fig. P2.4-3. (a) Plot a curve of engineering stress,

�, versus engineering strain, �, using the given data.

L0 = 2.5 in.

w0 = 0.50 in.

Thickness = t = 0.25 in.

t

P2.4-3

T A B L E  P 2 . 4 - 4 . Tension-test Data; ASTM 
Tension Specimen

P (kips) 	L (in.) P (kips) 	L (in.)

1.9 0.0020 10.0 0.0145

3.8 0.0040 10.4 0.0180

5.7 0.0060 10.65 0.0240

7.6 0.0080 11.00 0.0300

9.0 0.0100 11.05 0.0360

9.5 0.0120 — —

L0

d0

P2.4-4, P2.4-5, P2.4-6, and P2.4-8

MDS 2.5 & 2.6

96

T A B L E  P 2 . 4 - 3 . Tension-test Data; Flat
Steel Bar

P (kips) 	L (in.) P (kips) 	L (in.)

1.2 0.0008 6.25 0.0060

2.4 0.0016 6.50 0.0075

3.6 0.0024 6.65 0.0100

4.8 0.0032 6.85 0.0125

5.7 0.0040 6.90 0.0150

5.95 0.0050 — —

(b) Determine the modulus of elasticity of this material.

(c) Use the 0.2%-offset method to determine the yield

strength of this material, �YS.
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CProb. 2.4-5. A tension specimen (diameter � d0 � 13 mm,

gage length � L0 � 50 mm) was used to obtain the load-

elongation data given in Table P2.4-5. (a) Plot a curve of

engineering stress, �, versus engineering strain, �, using the

given data. (b) Determine the modulus of elasticity of this

material. (c) Use the 0.2%-offset method to determine the

yield strength of this material, �YS. (d) Determine the tensile

ultimate stress, �TU.

tests the following data are also obtained: EA � 10.0 � 103 ksi,

(�Y)A � 5 ksi, (�U)A � 13 ksi; EB � 10.4 � 103 ksi, (�Y)B �
73 ksi, (�U)B � 83 ksi. From the data given here, make rough

sketches (to scale) of the stress-strain diagrams of materials

A and B.

Prob. 2.4-8. Numerous reference sources (e.g., see footnote

13 on p. 41) provide information on the mechanical proper-

ties of structural materials—aluminum alloys, copper, nylon,

steel, titanium, etc.—including �-� curves, like those in Figs.

2.12 and 2.13. You will find such resources in your technical

library or, perhaps, on the Internet. Obtain, for one particu-

lar material, a “room-temperature” stress-strain diagram

and any other information on the material that you are able

to find. (a) Make a copy of this information to hand in. Be

sure to write down complete bibliographic information

about your source (e.g., see References on p. R-1). (b) From

the room-temperature stress-strain diagram, determine as

many mechanical properties as you can (e.g., E, �Y). (c)

Write a brief paragraph discussing appropriate uses for this

material. For example, a particular aluminum alloy may be

most useful in sheet form; another alloy is more widely used

for extrusions.

T A B L E  P 2 . 4 - 5 . Tension-test Data

P (kN) 	L (mm) P (kN) 	L (mm)

0.0 0.000 27.5 1.68

9.3 0.050 28.4 2.00

14.9 0.200 28.6 2.33

17.7 0.325 28.9 2.68

22.4 0.675 28.4 3.00

25.2 1.00 27.5 3.33

26.6 1.33 26.1 3.68

CProb. 2.4-6. A tension specimen (diameter � d0 � 0.500

in., gage length � L0 � 2.0 in.) was used to obtain the load-

elongation data given in Table P2.4-6. (a) Plot a curve of

engineering stress, �, versus engineering strain, �, using the

given data. (b) Determine the modulus of elasticity of this

material. (c) Use the 0.2%-offset method to determine the

yield strength of this material, �YS. (d) Determine the

tensile ultimate stress, �TU.

T A B L E  P 2 . 4 - 6 . Tension-test Data

P (kips) 	L (in.) P (kips) 	L (in.)

0.0 0.000 12.5 0.060

5.2 0.005 12.7 0.070

9.4 0.009 12.9 0.080

9.7 0.010 13.0 0.090

10.0 0.013 13.1 0.100

10.6 0.020 13.2 0.110

11.3 0.030 13.2 0.120

11.8 0.040 13.0 0.130

12.2 0.050 12.6 0.138

Prob. 2.4-7. Tension specimens (diameter � d0 � 0.500 in.,

gage length � L0 � 2.00 in.) made of structural materials A
and B are tested to failure in tension. (a) At failure the dis-

tances between the gage marks are LAf � 2.90 in. and LBf �
2.22 in.; the corresponding diameters at the failure cross

sections are dAf � 0.263 in. and dBf � 0.471 in., respectively.

Determine the percent elongation in 2 in. and the percent re-
duction in area for these two materials, and classify each

material as either brittle or ductile. (b) From these tensile

MECHANICAL PROPERTIES OF MATERIALS

MDS 2.7

In Problems 2.6-1 through 2.6-10, dimensions that are
shown on the figures, or dimensions that are labeled with
subscript 0 (e.g., d0, L0), are dimensions of the specimen
without any load applied.

Prob. 2.6-1. A tensile test is performed on an aluminum spec-

imen that is 0.505 in. in diameter using a gage length of 2 in., as

shown in Fig. P2.6-1. (a) When the load is increased by an

amount P � 2 kips, the distance between gage marks increases

by an amount 	L � 0.00196 in. Calculate the value of the mod-

ulus of elasticity, E, for this specimen. (b) If the proportional

limit stress for this specimen is �PL � 45 ksi, what is the dis-

tance between gage marks at this value of stress?

P

2 in.

0.505 in.

P

P2.6-1

Prob. 2.6-2. A short brass cylinder (d0 � 15 mm, L0 � 25 mm)

is compressed between two perfectly smooth, rigid plates by

an axial force P � 20 kN, as shown in Fig. P2.6-2. (a) If the

measured shortening of the cylinder due to this force is

0.0283 mm, what is the modulus of elasticity, E, for this brass

specimen? (b) If the increase in diameter due to the load P is

0.0058 mm, what is the value of Poisson’s ratio, ?n

▼
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Prob. 2.6-3. A tensile specimen of a certain alloy has an ini-

tial diameter of 0.500 in. and a gage length of 8.00 in. Under

a load P � 4500 lb, the specimen reaches its proportional

limit and is elongated by 0.0118 in. At this load the diameter

is reduced by 2.52(10�4) in. Determine the following mate-

rial properties: (a) the modulus of elasticity, E, (b) Poisson’s

ratio, , and (c) the proportional limit, �PL.

Prob. 2.6-4. A tensile force of 400 kN is applied to a uniform

segment of an ASTM-A36 structural steel bar.The cross sec-

tion is a 50 mm � 50 mm square, and the length of the seg-

ment being tested is 200 mm. Using A36 steel data from

Table F.2, (a) determine the change in the cross-sectional di-

mension of the bar, and (b) determne the change in volume

of the 200 mm segment being tested.

Prob. 2.6-5. A cylindrical rod with an initial diameter of 8

mm is made of 6061-T6 aluminum alloy.When a tensile force

P is applied to the rod, its diameter decreases by 0.0101 mm.

Using the appropriate aluminum-alloy data from Table F.2,

determine (a) the magnitude of the load P, and (b) the elon-

gation over a 200 mm length of the rod.

Prob. 2.6-6. Under a compressive load of P � 24 kips, the

length of the concrete cylinder in Fig. P2.6-6 is reduced from

12 in. to 11.9970 in., and the diameter is increased from 6 in.

to 6.0003 in. Determine the value of the modulus of elastic-

ity, E, and the value of Poisson’s ratio, . Assume linearly

elastic deformation.

n

n

kN, as shown in Fig. P2.6-7. If the steel has a modulus of elas-

ticity E � 200 GPa and Poisson’s ratio � 0.29, determine:

(a) the change, 	L, in the length of the column, and (b) the

change, 	t, in the wall thickness.

Prob. 2.6-8. The cylindrical rod in Fig. P2.6-8 is made of an-

nealed (soft) copper with modulus of elasticity E � 17 �
103 ksi and Poisson’s ratio � 0.33, and it has an initial diam-

eter d0 � 1.9998 in. For compressive loads less than a “criti-

cal load” Pcr, a ring with inside diameter dr � 2.0000 in. is

free to slide along the cylindrical rod.What is the value of the

critical load Pcr?

n

n

P

P

d0 L0

P2.6-2

d0 = 6 in.
L0 = 12 in.

P

P2.6-6

Prob. 2.6-7. A steel pipe column of initial length L0 � 4 m,

initial outer diameter d0 � 100 mm, and initial wall thickness

t0 � 10 mm is subjected to an axial compressive load P � 200

L0

d0

t0

P

P2.6-7

Strain gages

Specimen

y x

x

w0

y

z

L0

P

A

B
P

t0

P

Ring

P

P2.6-8

Prob. 2.6-9. A rectangular aluminum bar (w0 � 2.0 in., t0 �
0.5 in.) is subjected to a tensile load P by pins at A and B
(Fig. P2.6-9). Strain gages (which are described in Section

8.10) measure the following strains in the longitudinal (x)

and transverse (y) directions: �x � 566�, and �y � �187�. (a)

What is the value of Poisson’s ratio for this specimen? (b) If

the load P that produces these values of �x and �y is P �
6 kips, what is the modulus of elasticity, E, for this specimen?

(c) What is the change in volume, 	V, of a segment of bar

that is initially 2 in. long? (Hint: �z � �y.)

P2.6-9

98
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Prob. 2.6-10. A rigid, weightless beam BD supports a load P
and is, in turn, supported by two hanger rods, (1) and (2), as

shown in Fig. P2.6-10. The rods are initially the same length

L � 2 m and are made of the same material. Their rectangu-

lar cross sections have original dimensions (w1 � 40 mm,

t1 � 20 mm) and (w2 � 50 mm, t2 � 25 mm), respectively.

LBD � 1.5 m. (a) At what location, b, must the load P act if

the rigid bar BD is to remain horizontal when the load is ap-

plied? (b) If the longitudinal strain in the hanger rods is

�1 � �2 � 500� when the load is P � 205 kN, what is the

value of the modulus of elasticity, E? (c) If application of

load P in the manner described in Parts (a) and (b) above

causes the dimension w2 of hanger rod (2) to be reduced

from 50 mm to 49.9918 mm, what is the value of Poisson’s

ratio, , for this material?n

Prob. 2.7-3. An angle bracket, whose thickness is t � 12.7 mm,

is attached to the flange of a column by two 15-mm-diameter

bolts, as shown in Fig. P2.7-3. A floor joist that frames into the

column exerts a uniform downward pressure of p � 2 MPa on

the top face of the angle bracket.The dimensions of the loaded

face are L � 152 mm and b � 76 mm. Determine the average

shear stress, , in the bolts. (Neglect the friction between the

angle bracket and the column.)

tavg

C

b

(1) (2)

A

1.5 m

E

B D

P

2 m

Rigid, weightless

t

w

P2.6-10

Prob. 2.7-1. Two bolts are used to form a joint connecting

rectangular bars in tension, as shown in Fig. P2.7-1. If the

bolts have a diameter of 3/8 in., and the load is P � 20 kips,

determine the average shear stress on the bolt surfaces that

are subjected to direct shear.

P/2

P/2
w/2

P

DProb. 2.7-2. Two bolts are used to form a joint connect-

ing rectangular bars in tension, as shown in Fig. P2.7-2.

Determine the required diameter of the bolts if the

average shear stress for the bolts is not to exceed 140 MPa

for the given loading of P � 80 kN.

P2.7-1 and P2.7-2

L

p

b

Angle bracket
t

P2.7-3

SHEAR STRESS

DProb. 2.7-4. A 100-kip capacity hydraulic punch press is

used to punch circular holes in a 3/8-in.-thick aluminum

plate, as illustrated in Fig. P2.7-4. If the average punching

shear resistance of this plate is 30 ksi, what is the maximum

diameter of hole that can be punched?

MDS 2.8–2.11
▼

0.375 in.Plate

Punch

P = 100 kips (max.)

P2.7-4

Prob. 2.7-5. The hole in a hasp plate is punched out by a hy-

draulic punch press similar to the one in Prob. 2.7-4, with a

punch in the shape of the “rectangular” hole as illustrated in

Fig. P2.7-5. If the hasp plate is -in.-thick steel with an

average punching shear resistance of 38 ksi, what is the

required punch force P?

1
16

  c02StressAndStrainIntroductionToDesign.qxd  9/30/10  3:22 PM  Page 99



Prob. 2.7-6. A pipe flange is attached by four bolts, whose

effective diameter is 0.425 in., to a concrete base. The bolts

are uniformly spaced around an 8-in.-diameter bolt circle, as

shown in Fig. P2.7-6. If a twisting couple T � 5000 lb � in. is

applied to the pipe flange, as shown in Fig. P2.7-6, what is the

average shear stress in each of the four bolts? Neglect fric-

tion between the pipe flange and the concrete base.

a 10-mm-diameter bolt to the bracket shown in View a-a.

Determine the average shear stress in the bolt at C if the ten-

sion in the high-wire is 5 kN. (Assume that the high-wire is

horizontal, and neglect the weight of AC.)

Prob. 2.7-8. An angle bracket ABC is restrained by a high-

strength steel wire CD, and it supports a load P at A, as

shown in Fig. P2.7-8.The diameter of the wire CD is dw � in.,

and the diameter of the pin at B is dp � in. Determine the

tensile stress in wire CD and the average direct shear stress

in the pin at B.

1
8

1
8

1–
4

1–
21   in.

Semicircular ends

P2.7-5

8 in.

Concrete base

Pipe flange

T = 5000 lb·in.

Prob. 2.7-7. The high-wire for a circus act is attached to a

vertical beam AC and is kept taut by a tensioner cable BD,

as illustrated in Fig. P2.7-7.At C, the beam AC is attached by

P2.7-6

8 m

6 mTensioner cable

High-wire

View a-a

T = 5 kN

a
C

C

D

A

B

a

1 m

P2.7-7

4 in.

dp

P = 200 lb.

C

dw

B

View a-a of B

A

5 in.

15°

a

a

D

P2.7-8

Prob. 2.7-9. Two -in. nylon rods are spliced together by glu-

ing a 2-in. section of plastic pipe over the rod ends, as shown

in Fig. P2.7-9. If a tensile force of P � 500 lb is applied to the

spliced nylon rod, what is the average shear stress in the glue

joint between the pipe and the rods?

3
4

1 in.1 in.

PP 

3/4 in.

P2.7-9

Prob. 2.7-10. Loads P (pull) and V (vertical) in Fig. P2.7-10

are exerted on the ball of a trailer hitch by the trailer it is

towing. The ball is bolted to a solid square steel bar which, in

turn, fits into a square tubular steel receptacle that is at-

tached to the tow vehicle.A steel pin transmits load from the

solid bar to the tubular receptacle. (a) Visit one or more

parking lots and see if you can spot such a trailer hitch. (You

might need to visit a trailer rental agency or a boat dealer-

ship.) Briefly report on what you saw, including sketches that

indicate (approximate) dimensions of the hitch parts. (b)

Draw a free-body diagram of the solid steel hitch bar to-

gether with the ball, indicating how you think loads P and V
are transmitted to the tubular receptacle. Indicate specifi-

cally what loading the steel pin transmits.

100
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SHEAR STRAIN

Prob. 2.7-11. A rectangular plate (dashed lines show origi-

nal configuration) is uniformly deformed into the shape of a

parallelogram (shaded figure) as shown in Fig. P2.7-11. (a)

Determine the average shear strain, call it xy(A), between

lines in the directions x and y shown in the figure. (b)

Determine the average shear strain, call it (B), between

lines in the directions of x� and y� shown in the figure. (Hint:

Don’t forget that shear strain is a signed quantity, that is, it

can be either positive or negative.)

gx¿y¿

g

shear stress and average shear strain.) (b) If the shear mod-

ulus of elasticity of the rubber is Gr � 0.6 MPa, what is the

average shear strain, , related to the average shear stress 

computed in Part (a)? (c) Based on the average shear strain

determined in Part (b), what is the relative displacement, ,

between the rectangular bar and the C-shaped bracket when

the load P � 250 N is applied?

d

tg

End view

Ball

Solid steel hitch bar

Steel pin

Square tubular
steel hitch
receptacle

Side view

Top view

P (Towing load from trailer)

P

V V

P2.7-10

▼

10 in.

8 in.

y

A B
x

x′

y′

0.10 in. 0.10 in.

Prob. 2.7-12. Shear stress 	 produces a shear strain xy (be-

tween lines in the x direction and lines in the y direction) of

xy � 1200 � (i.e., � 0.0012  ). (a) Determine the horizon-

tal displacement �A of point A. (b) Determine the shear

strain x�y� between the lines in the x� direction and the y�
direction, as shown on Fig. P2.7-12.

Prob. 2.7-13. Two identical symmetrically placed rubber

pads transmit load from a rectangular bar to a C-shaped

bracket, as shown in Fig. P2.7-13. (a) Determine the average

shear stress, , in the rubber pads on planes parallel to the

top and bottom surfaces of the pads if P � 250 N and the di-

mensions of the rubber pads are: b � 50 mm, w � 80 mm,

and h � 25 mm. (Although the load is transmitted predom-

inately by shearing deformation, the pads are not undergo-

ing pure shear. However, you can still calculate the average

t

g

m
mgg

g

P2.7-11

τ

τ

b

h

(b)  Deformed rubber
      pad.

δ

P

w

h

b

(a)  Configuration of rubber
       load-transfer pads.

P2.7-13 and P2.7-14

DProb. 2.7-14. Two identical, symmetrically placed rubber

pads transmit load from a rectangular bar to a C-shaped

bracket, as shown in Fig. 2.7-14. The dimensions of the rub-

ber pads are: b � 3 in., w � 4 in., and h � 2 in. The shear

modulus of elasticity of the rubber is Gr � 100 psi. If the

maximum relative displacement between the bar and the

bracket is �max � 0.25 in., what is the maximum value of

load P that may be applied? (Use average shear strain and

average shear stress in solving this problem.)

*Prob. 2.7-15. Vibration isolators like the one shown in Fig.

P2.7-15 are used to support sensitive instruments. Each isola-

tor consists of a hollow rubber cylinder of outer diameter D,

inner diameter d, and height h. A steel center post of diame-

ter d is bonded to the inner surface of the rubber cylinder, and

the outer surface of the rubber cylinder is bonded to the inner

surface of a steel-tube base. (a) Derive an expression for the

average shear stress in the rubber as a function of the distance

r from the center of the isolator. (b) Derive an expression re-

lating the load P to the downward displacement of the center

post, using G as the shear modulus of the rubber, and assum-

ing that the steel post and steel tube are rigid (compared with

the rubber). (Hint: Since the shear strain varies with the dis-

tance r from the center, an integral is required.)

150 mm

120 mm

y

x

A

x′

y′

δAτ

τ

P2.7-12
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D

P

d

h

Steel tube

Steel
post

Rubber

Instrument

Vibration
isolator

r

(b)(a)

P2.7-15

DESIGN FOR AXIAL LOADS AND DIRECT SHEAR

DProb. 2.8-1. A bolted lap joint is used to connect a rectan-

gular bar to a hanger bracket, as shown in Fig. P2.8-1. If the

allowable shear stress in the bolt is 15 ksi, and the allowable

tensile load on the rectangular bar is to be Pallow. � 2 kips, what

is the required minimum diameter of the bolt shank in inches?

MDS 2.12–2.15

▼

PP

P2.8-1 and P2.8-2

DProb. 2.8-2. A bolted lap joint is used to connect a rectan-

gular bar to a hanger bracket, as shown in Fig. P2.8-2. If the

allowable shear stress in the bolt is 80 MPa, and the diame-

ter of the bolt shank 15 mm, what is the allowable tensile

load on the rectangular bar, Pallow., in kN?
DProb. 2.8-3. The pin that holds the two halves of a pair of

pliers together at B has a diameter d � 6.35 mm and is made

of steel for which allow. � 75 MPa. What is the allowable

force (PC )allow. (not shown) that can be exerted on the round

rod at C by each jaw, assuming that the corresponding force

PA is applied to the handles at each of the two places marked

A in Fig. P2.8-3?

t

PA

40 mm120 mm

A

PA

A

a a

d

View a – a

B C

B

P2.8-3

P

P

A
dp

dr

(a)

(b)

dp

T

Cable stay

U-bracket

Tee-bracket

Boat deck

P2.8-4

P2.8-5

DProb. 2.8-5. The forestay (cable) on a sailboat is attached

to a tee-bracket on the deck of the boat by a (removable)

stainless steel pin. If the allowable shear stress in the pin is

	allow. � 11 ksi, and the diameter of the pin is dp � 0.25 in.,

what is the allowable tensile force, Tallow., in the stay?

DProb. 2.8-4. The brass eye-bar in Fig. P2.8-4a has a diame-

ter dr � 0.500 in. and is attached to a support bracket by a

brass pin of diameter dp � 0.375 in. If the allowable shear

stress in the pin is 12 ksi and the allowable tensile stress in

the bar is 18 ksi, what is the allowable tensile load Pallow.?
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DProb. 2.8-6. A compressor of weight W is suspended from

a sloping ceiling beam by long rods AB and CD of diameters

d1 and d2, respectively, as shown in Fig. P2.8-6a. A typical

bracket is shown in Fig. P2.8-6b. Using the data given below,

determine the allowable compressor weight, Wallow.. (Neglect

the weight of the platform between A and C, and neglect the

weight of the two rods. Also, assume that rod AB and the

pins at A and B are large enough that they do not need to be

considered.)

a � 0.75 m, b � 0.50 m

Pins at C and D: dp � 7 mm, tallow. � 100 MPa

Rod CD: d2 � 10 mm, sallow. � 85 MPa

a high-strength steel pin. Assume that the pin at B is ade-

quate to sustain the loading applied to it, and that the design-

critical components are the bar BD and the pin at C. The

factor of safety against failure of BD by yielding is � 3.0,

and the factor of safety against ultimate shear failure of the

pin at C is � 3.3. (a) Determine the required thickness,

t, of the rectangular bar BD, whose width is b. (b) Determine

the required diameter, d, of the pin at C.

Bar BD: b � 1 in., sY � 36 ksi, Pin C: tU � 60 ksi

P � 2400 lb, L � 6 ft, h � 4 ft

FSt

FSs

DProb. 2.8-7. An angle bracket ABC is restrained by a high-

strength steel wire CD, and it supports a load P at A, as

shown in Fig. P2.8-7. The strength properties of the wire and

the shear pin at B are �y � 350 MPa (wire), and U � 300

MPa (pin at B). If the wire and pin are to be sized to provide

a factor of safety against yielding of the wire of � 3.3

and a factor of safety against ultimate shear failure of the pin

of � 3.5, what are the required diameters of the wire (to

the nearest mm) and the pin (to the nearest mm)?

FSt

FSs

t

A

B

C

D
(1)

L2

L1

a b

(2)

W

(a) (b) Typ. bracket

P2.8-6

h

d

P

C

D

b

a

a

B

t = thickness

View a-a

A

L/2 L/2

P2.8-8 and P2.8-9

90 mm

dp

P = 1 kN

C

dw

B

View a-a of B

A

100 mm

15°

a

a

D

P2.8-7

L

A B

Rigid

C

δC

D

b/2b/2

W

P2.8-10 and P2.8-11

DProb. 2.8-9. Solve Prob. 2.8-8 using the following data:

DProb. 2.8-10. A load W is to be suspended from a cable at

end C of a rigid beam AC, whose length is b � 3 m. Beam AC,

in turn, is supported by a steel rod of diameter d � 25 mm

and length L � 2.5 m. Rod BD is made of steel with a yield

point �Y � 250 MPa, and modulus of elasticity E � 200 GPa.

If the maximum displacement at C is ( C)max � 10 mm, and

there is to be a factor of safety with respect to yielding of BD
of FS� � 3.3 and with respect to displacement of FS� � 3.0,

what is the allowable weight that can be suspended from the

beam at C?

d

Pin C: tU � 400 MPa

Bar BD: b � 25 mm, sY � 250 MPa,

P � 10 kN, L � 3 m, h � 2 m

DProb. 2.8-8. Boom AC in Fig. P2.8-8 is supported by a rec-

tangular steel bar BD, and it is attached to a bracket at C by
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DProb. 2.8-11. A load of W � 2 kips is suspended from a

cable at end C of a rigid beam AC, whose length is b � 8 ft.

Beam AC, in turn, is supported by a steel rod BD (E � 30 �
103 ksi) of diameter d and length L � 12 ft. The rod BD is to

the sized so that there will be a factor of safety with respect

to yielding of FS� � 4.0 and a factor of safety with respect to

deflection of FS� � 3.0. The yield strength of rod BD is �Y �
50 ksi, and the maximum displacement at C is limited to 

( C)max � 0.25 in. . Determine the

required diameter, d, of rod BD to the nearest in.
DProb. 2.8-12. A tension rod is spliced together by a pin-

and-yoke type connector, as shown in Fig. P2.8-12.The tension

rod is to be designed for an allowable load of Pallow. � 3 kips.

If the allowable tensile stress in the rods is �allow. � 15 ksi,

and the allowable shear stress in the pin is 	allow. = 12 ksi, de-

termine (to the nearest in.) (a) the smallest diameter, dr, of

rod that can be used, and (b) the smallest diameter, dp, of pin

that can be used.

1
16

1
8

ai.e., (dC)allow �
(dC)max

FSd
bd

and by a tie-rod AB. Both the tie rod and the pin are to be

sized with a factor of safety of FS � 3.0, the tie-rod with re-

spect to tensile yielding and the pin with respect to shear

failure. The strength properties of the rod and pin are: �Y �
340 MPa and � 340 MPa; the respective lengths are: L1 �
1.5 m and L2 � L3 � 2.0 m. (a) If the loading platform is to

be able to handle loads W up to W � 8 kN, what is the re-

quired diameter, dr, of the tie-rod (to the nearest millime-

ter)? (b) What is the required diameter, dp, of the shear pin

at C (to the nearest millimeter)?
DProb. 2.8-15. A three-bar, pin-jointed, planar truss

supports a single horizontal load P at joint B. Joint C is free to

move horizontally.The allowable stress in tension is ( )allow. �
140 MPa, and the allowable stress in compression is (�C)allow. �
�85 MPa. If the truss is to support a maximum load 

Pallow. � 50 kN, what are the required cross-sectional areas,

Ai, of the three truss members?

sT

tU

P P

dr dr

dp

P2.8-12

A

B P

C

(1)

(2) (3)

1200 mm

450 mm

600 mm

P2.8-15

COMPUTER-BASED DESIGN FOR AXIAL LOADS

L1

L2 L3

A

B

C

a a

dr

W

dp

View a-a of C

P2.8-13 and P2.8-14

DProb. 2.8-14. The L-shaped loading-platform frame in Fig.

P2.8-14 is supported by a high-strength steel shear pin at C

DProb. 2.8-13. The L-shaped loading frame in Fig. P2.8-13 is

supported by a high-strength shear pin (dp � 0.5 in, 	U � 50 ksi)

and by a tie-rod AB (dr � 0.625 in., �Y � 50 ksi). Both the

tie-rod and the pin are to be sized with a factor of safety of

FS � 3.0, the tie-rod with respect to tensile yielding, and the

shear pin with respect to ultimate shear failure. Determine the

allowable platform load, Wallow.. Let L1 � 3 ft, L2 � L3 � 4 ft.

CProb. 2.8-16. The pin-jointed planar truss shown in Fig.

P2.8-16a is to be made of two steel two-force members and

support a single vertical load P � 10 kN at joint B. For the

steel truss members, the allowable stress in tension is (�T )allow �
150 MPa, the allowable stress in compression is (�C)allow �
�100 MPa, and the weight density is 77.0 kN/m3. You are to

consider truss designs for which joint B can be located at any

point along the vertical line that is 1 m to the right of AC,

with yB varying from yB � 0 to yB � 2m. (a) Show that, if

each member has the minimum cross-sectional area that

meets the strength criteria stated above, the weight W of the

truss can be expressed as a function of yB, the position of

joint B, by the function that is plotted in Fig. P2.8-16b. (b)

What value of yB gives the minimum-weight truss, and what

is the weight of that truss?

For Problems 2.8-16 through 2.8-18 you are to develop a
computer program to generate the required graph(s) that
will enable you to choose the “optimum design.” You
may use a spreadsheet program or other mathematical
application program (e.g., TK Solver or Mathcad), or
you may write a program in a computer language (e.g.,
BASIC or FORTRAN).

▼
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C*Prob. 2.8-17. The pin-jointed planar truss shown in Fig.

P2.8-17 is to be made of three steel two-force members and

is to support vertical loads PB � 2 kips at joint B and PC �
3 kips at joint C. The lengths of members AB and BC are L1 �
30 in. and L2 � 24 in., respectively. Joint C is free to move

vertically. For the steel truss members, the allowable stress in

tension is (�T)allow � 20 ksi, the allowable stress in compression

is (�C)allow � �12 ksi, and the weight density is 0.284 lb/in3.

You are to consider truss designs for which the vertical mem-

ber AC has lengths varying from L3 � 18 in. to L3 � 50 in. (a)

Show that, if each member has the minimum cross-sectional

area that meets the strength criteria stated above, the weight

W of the truss can be expressed as a function of the length

L3 of member AC by a function that is similar to the one

plotted in Fig. P2.8-16b. (Hint: Use the law of cosines to ob-

tain expressions for the angle at joint A and the angle at joint

C.) (b) What value of L3 gives the minimum-weight truss,

and what is the weight of that truss?
C*Prob. 2.8-18. The pin-jointed planar truss shown in Fig.

P2.8-18 is to be made of two aluminum two-force members

and support a single horizontal load P � 50 kN at joint B.
For the aluminum truss members, the allowable stress in ten-

sion is (�T)allow � 200 MPa, the allowable stress in compres-

sion is (�C)allow � �130 MPa, and the weight density is 28.0

kN/m3.You are to consider truss designs for which support C
can be located at any point along the x axis, with xC varying

from xC � 1 m to xC � 2.4 m. (a) Show that, if each member

has the minimum cross-sectional area that meets the

strength criteria stated above, the weight W of the truss can

be expressed as a function of xC, the position of support C,

by a function that is similar to the one plotted in Fig. 2.8-16b.

(b) What value of xC gives the minimum-weight truss, and

what is the weight of that truss?

2 m

A

C

B

(1)

yB

1 m

(2)

P

25

20

15

10

5

0
0.00 0.40 0.80 1.20 1.60 2.000.20 0.60 1.00 1.40 1.80

W
 (

N
)

yB (m)

Wmin = 12.58 N @ yB = 0.80 m

(a) A two-bar planar truss.

(b) Minimum-weight design for the two-bar planar truss.

y

x

P2.8-16

A

B

C

PB = 2 kips

PC = 3 kips

L1 = 30 in.

L2 = 24 in.

L3

P2.8-17

xC

x

y

1 m

1 m

A
C

B P = 50 kN

P2.8-18

STRESSES ON INCLINED PLANES▼

In Problems 2.9-1 through 2.9-13, use free-body diagrams
and equilibrium equations to solve for the required stresses.

Prob. 2.9-1. The plane NN� makes an angle � � 30� with

respect to the cross section of the prismatic bar shown in

Fig. P2.9-1. The dimensions of the rectangular cross section

P2.9-1

N′

P

P
N

θ

  c02StressAndStrainIntroductionToDesign.qxd  9/30/10  3:23 PM  Page 105



of the bar are 1 in. � 2 in. Under the action of an axial

tensile load P, the normal stress on the NN� plane is �n �
8 ksi. (a) Determine the value of the axial load P; (b) de-

termine the shear stress 	nt on the NN� plane; and (c) deter-

mine the maximum shear stress in the bar. Use free-body

diagrams and equilibrium equations to solve for the re-

quired stresses.

Prob. 2.9-2. The prismatic bar in Fig. P2.9-2 is subjected to

an axial compressive load P � �70 kips. The cross-sectional

area of the bar is 2.0 in2. Determine the normal stress and

the shear stress on the n face and on the t face of an element

oriented at angle � � 40�. Use free-body diagrams and equi-

librium equations to solve for the required stresses.

DProb. 2.9-6. A brass bar with a square cross section of di-

mension b is subjected to a compressive load P � 10 kips, as

shown in Fig. P2.9-6. If the allowable compressive stress for

the brass is �allow. � �12 ksi, and the allowable shear stress is

	allow. � 7 ksi, what is the minimum value of the dimension b,

to the nearest in.?1
16

P2.9-2 and P2.9-3

θ PP

t n P2.9-6

P

P b

b

P2.9-4

P

P

P2.9-5

P

N′

P

N

θ

Prob. 2.9-3. A prismatic bar in tension has a cross section

that measures 20 mm � 50 mm and supports a tensile load 

P � 200 kN, as illustrated in Fig. P2.9-3. Determine the normal

and shear stresses on the n and t faces of an element oriented

at angle � � 30�. Use free-body diagrams and equilibrium

equations to solve for the required stresses.
DProb. 2.9-4. Determine the allowable tensile load P for the

prismatic bar shown in Fig. P2.9-4 if the allowable tensile

stress is �allow � 135 MPa and the allowable shear stress is 

	allow � 100 MPa. The cross-sectional dimensions of the bar

are 12.7 mm � 50.8 mm.

Prob. 2.9-5. A bar with rectangular cross section is subjected

to an axial tensile load P, as shown in Fig. P2.9-5. (a) Determine

the angle, call it �na, of the plane NN� on which 	nt � 2�n, that

is, the plane on which the magnitude of the shear stress is

twice the magnitude of the normal stress. (b) Determine the

angle, call it �nb, of the plane on which �n � 2	nt. (Hint: You

can get approximate answers from Fig. 2.34.)

Prob. 2.9-7. A 6-in.-diameter concrete test cylinder is sub-

jected to a compressive load P � 110 kips, as shown in Fig.

P2.9-7. The cylinder fails along a plane that makes an angle

of 62� to the horizontal. (a) Determine the (compressive)

axial stress in the cylinder when it reaches the failure load.

(b) Determine the normal stress, �, and shear stress, 	, on the

failure plane at failure.

P2.9-7

P = 110 kips

62°

Prob. 2.9-8. A wood cube that has dimension b on each

edge is tested in compression, as illustrated in Fig. P2.9-8.

The direction of the grain of the wood is shown in the figure.

Determine the normal stress �n and shear stress 	nt on planes

that are parallel to the grain of the wood.

P � 5 kN, b � 150 mm, a � 55°

P2.9-8

P

α
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D*Prob. 2.9-9. Either a finger-joint splice, Fig. P2.9-9a, or a

diagonal lap-joint splice, Fig. P2.9-9b, may be used to glue

two wood strips together to form a longer tension member.

Determine the ratio of allowable loads, (Pf)allow./(Pd)allow. for

the following two glue-strength cases: (a) the glue is twice as

strong in tension as it is in shear, that is 	allow. � 0.5�allow., and

(b) the glue is twice as strong in shear as it is in tension, that

is 	allow. � 2�allow.. (Hint: For each of the above cases, determine

Pallow. in terms of �allow., using the given glue strength ratios.)

Prob. 2.12-2 The normal stress on the rectangular cross sec-

tion ABCD in Fig. P2.12-2 varies linearly with respect to the

y coordinate.That is, �x has the form �x � a � by, varying lin-

early from �xb at the bottom edge of the cross section to �xt

at the top edge of the cross section. (a) Show that My � 0 for

this symmetrical normal-stress distribution. (b) Determine

an expression for the axial force Fx in terms of the stresses

�xb and �xt and the dimensions of the cross section, width b
and height h. (c) Determine an expression for the correspon-

ding value of the bending moment Mz.P2.9-9

(b)

Pf Pf8°

(a)

Pd Pd

30°

Prob. 2.9-10. At room temperature (70�F) and with no axial

load (P � 0) the extensional strain of the prismatic bar (Fig.

P2.9-10) in the axial direction is zero, that is, �x � 0.

Subsequently, the bar is heated to 120�F and a tensile load

P is applied. The material properties for the bar are: E �
10 � 103 ksi and 
 � 13 � 10�6/�F, and the cross-sectional

area of the bar is 1.8 in2. For the latter load-temperature condi-

tion, the extensional strain is found to be .

(a) Determine the value of the axial tensile load P. (b) De-

termine the normal stress and the shear stress on the oblique

plane NN�. (Note: The total strain is the sum of strain asso-

ciated with normal stress �x (Eq. 2.14) and the strain due to

change of temperature 	T (Eq. 2.8).)

�x � 900 � 10�6 in.
in.

P2.9-10

P

N′

P
x

N

25°
Gage measures
extensional
strain �x

STRESS RESULTANTS

Prob. 2.12-1. The normal stress, �x, over the top half of the

cross section of the rectangular bar in Fig. P2.12-1 is �0, while

the normal stress acting on the bottom half of the cross sec-

tion is 2�0. (a) Determine the value of the resultant axial

force, Fx. (b) Locate the point R in the cross section through

which the resultant axial force, Fx, acts.

▼

P2.12-1

Fx

y

R

b

b

b/2 b/2

b

(b)(a)

z

σO

2σO

x

yR

yR

y b

P2.12-2

AA

xFx

D

B
B

C

y

z

C

b
2

h
2

h
2

b
2

(b)(a)

y

z

Mz

My

σxb 

σxt

Prob. 2.12-3. The normal stress on the rectangular cross

section ABCD in Fig. P2.12-3 varies linearly with respect to

P2.12-3

AA

x
Fx

D

B
B

C

dA

y

z

C

2 in.

4 in.

4 in.

2 in.

(b)(a)

y

z

Mz

My

σxA = 12 ksi

σxC = 12 ksi

σxB = 8 ksi
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position (y, z) in the cross section. That is, �x has the form 

�x � a � by � cz. The values of �x at corners A, B, and C are:

�xA � 12 ksi, �xB � 8 ksi, and �xC � 12 ksi. (a) Determine the

value of �xD, the normal stress at corner D. (b) Determine

the axial force, Fx. (c) Determine the bending moment My.

Prob. 2.12-4. The stress distribution on the cross section

shown in Fig. P2.12-4a is given by

Determine expressions for the resultant forces Fx and Vy and

the bending moment Mz in terms of stress-related quantities

a, b, and c and the dimensions d and h of the cross section.

(See Example 2.13.)

sx � a � by ; txy � c c ah
2
b2

� y2 d ; txz � 0

Prob. 2.12-6. On the cross section of a circular rod, the shear

stress at a point acts in the circumferential direction at that

point, as illustrated in Fig. P2.12-6. The shear stress magni-

tude varies linearly with distance from the center of the cross 

section, that is, . Using the ring-shaped area in Fig.

P2.12-6b, determine the formula that relates 	max and the 

resultant torque, T.

t �
tmaxr

r

P2.12-4

y
h/2

h/2

d/2

d/2

z

F

T

My

Vy

Vz

Mz

   xσ

   xyτ

   xzτ

x

(a) The stresses on cross section x. 

(b) The stress resultants at x.

y

z

DProb. 2.12-5. On a particular cross section of the rectangu-

lar bar shown in Fig. 2.12-5 there is shear stress whose distri-

bution has the form

where y is measured in mm from the centroid of the cross

section (Fig. P2.12-5b). If the shear stress 	xy may not exceed

	allow. � 50 MPa, what is the maximum shear force Vy that

may be applied to the bar at this cross section?

txy � tmax c1 � a y

50
b2 d

P2.12-5

x

Vy

y

z

50 mm

50 mm

20 mm20 mm

(b)(a)

y

C

z

τmax = τxy (y = 0)

P2.12-6

T

τ(ρ)

dρ

r

ρ

dA = 2πρdρ

(a) (b)

Prob. 2.12-7. Determine the relationship between 	max and

T if, instead of acting on a solid circular bar, as in Fig. P2.12-6,

the shear stress distribution acts on a tubular

cylinder with outer radius ro and inner radius ri. (The cross-

sectional dimensions are shown in Fig. P2.12-7. See Prob.

2.12-6 for an illustration of the shear stress distribution on a

circular cross section and for the definitions of T and �.)

t �
tmaxr

ro

P2.12-7

rori
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*Prob. 2.12-8. If the magnitude of the shear stress on a solid,

circular rod of radius r varies with radial position � as shown

in Fig. P2.12-8, determine the formula that relates the result-

ant torque T to the maximum shear stress 	Y. (See Prob. 2.12-6

for an illustration of the shear stress distribution on the cross

section and for the definitions of T and �, and use the area

shown in Fig. 2.12-6b.)

so that it is elongated by an amount �. Determine an expres-

sion for the (uniform) extensional strain 
n of the diagonal

AC. Express your answer in terms of �, L, and the angle �.
Assume that and see Appendix A.2 for relevant

approximations.

Prob. 2.12-11. A rectangular plate ABCD with base b and

height h is uniformly stretched an amount �x in the x direction

and �y in the y direction to become the enlarged rectangle

AB*C*D* shown in Fig. P2.12-11. Determine an expression

for the (uniform) extensional strain �n of the diagonal AC.
Express your answer in terms of �x, y, L, and �, where 

and tan � � h/b. Base your calculations on the

small-displacement assumptions, that is, assume that 

and . (See Appendix A.2 for relevant approximations.)dy V L
dx V L

L � 2b2 � h2

d V L

P2.12-8

ρ

τ

τY

rr/2

1.2 τY

STRAIN-DEFORMATION EQUATIONS

Prob. 2.12-9. (a) Using Figs. P2.12-9 and the definition of

extensional strain given in Eq. 2.35, show that the change

in length, 	L, of a thin wire whose original length is L is

given by , where �x(x) is the extensional

strain of the wire at x. (b) Determine the elongation of a

2-m-long wire if it has a coefficient of thermal expansion

� � 20 � 10�6/�C, and if the change in temperature along

the wire is given by 	T � 10x2 (�C).

¢L � �L
0

�x(x) dx

▼

P2.12-9

dx
x

L

(a) Before deformation.

(b) After deformation.

dx(1 + �x)

L
ΔL

Prob. 2.12-10. The thin, rectangular plate ABCD shown in

Fig. P2.12-10a undergoes uniform stretching in the x direction,

P2.12-10

(a) Undeformed plate. (b) Deformed plate.

B C

n δ

A

B*

A*

C*

D*D
b

L

θ

P2.12-11

δx

B*

A

C*

n

B

L

θ

C

D*

D
x

y

b

δy

h

Prob. 2.12-12. A thin, square plate ABCD undergoes defor-

mation in which no point in the plate moves in the y direc-

tion. Every horizontal line (except the bottom edge) is

uniformly stretched as edge CD remains straight and rotates

clockwise about D. Using the definition of extensional strain in 

Eq. 2.35, determine an expression for the extensional strain

in the x direction, �x(x, y).

P2.12-12 and P2.12-13

(b) Deformed plate.(a) Undeformed plate.

A D

B C

P Q

R

P*

B*

A*

C*

D*

a

a

a
0.1a

y

x x

y

*Prob. 2.12-13. Using the definition of shear strain, Eq. 2.36,

and using the “undeformed plate” and “deformed plate”

sketches in Fig. P2.12-13, determine an expression for the shear

strain �xy as a function of position in the plate, that is, �xy(x, y).
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Prob. 2.12-14. A thin, square plate ABCD undergoes defor-

mation such that a typical point P with coordinates (x, y)

moves horizontally an amount

The undeformed and deformed plates are shown in Figs.

P2.12-14a and P2.12-14b, respectively. Using the definition

extensional strain in Eq. 2.35, determine an expression for

�x(x, y), the extensional strain in the x direction.

u(x, y) � PP* �
1

100
 (a � x) ay

a
b2

HOOKE’S LAW FOR ISOTROPIC MATERIALS;
DILATATION

Prob. 2.13-1. When thin sheets of material, like the top

“skin” of the airplane wing in Fig. P2.13-1, are subjected to

stress, they are said to be in a state of plane stress, with �z �

xz � 	yz � 0. Starting with Eqs. 2.38, with 	T � 0, show that

for the case of plane stress Hooke’s Law can be written as

sx �
E

1 � n2
 (�x � v�y),  sy �

E

1 � n2
 (�y � v�x)

t

P2.12-14 and P2.12-15

(b) After deformation.(a) Before deformation.

A D

P

QR

A*

B* C*

D*

P

u
x

P*

x

a

a

y

y

B C

Δx

*Prob. 2.12-15. Using the definition of shear strain, Eq. 2.36,

and using the “before deformation” and “after deformation”

sketches in Fig. P2.12-15, determine an expression for the

shear strain �xy as a function of position in the plate, that is,

determine �xy(x, y).

*Prob. 2.12-16. A typical point P at coordinates (x, y) in a

flat plate moves through small displacements u(x, y) and v(x, y)

in the x direction and the y direction, respectively. Using the

definition of extensional strain, Eq. 2.35, and using the “be-

fore deformation” and “after deformation” sketches in Fig.

P2.12-16, show that the formula for the extensional strain in

the x direction, �x(x, y), is the partial differential equation

�x �
0u
0x

P2.12-16

(a) Before deformation. (b) After deformation.

P
P*

Q*

Q
P Q

u(x, y)

v(x, y)

u(x + Δx, y)
v(x + Δx, y)

▼

P2.13-1

x

y

z

Prob. 2.13-2. Figure P2.13-2 shows a small portion of a thin

aluminum-alloy plate in plane stress (�z � � 	yz � 0).

At a particular point in the plate �x � 600�, �y � �200�, and

�xy � 200�. For the aluminum alloy, E � 10 � 103 ksi and �
0.33. Determine the stresses �x, �y, and 	xy at this point in the

plate. (Note: Start with Eqs. 2.38, not with Eqs. 2.40.)

n

txz

P2.13-2

x
y

z

Prob. 2.13-3. Determine the state of strain that corresponds

to the following three-dimensional state of stress at a certain

point in a steel machine component:

Use E � 210 GPa and � 0.30 for the steel.

Prob. 2.13-4. The flat-bar plastic test specimen shown in

Fig. P2.13-4 has a reduced-area “test section” that measures

n

tyz � 10 MPatxz � 15 MPa,txy � 20 MPa,

sz � 30 MPasy � 20 MPa,sx � 60 MPa,

110
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0.5 in. � 1.0 in. Within the test section a strain gage oriented

in the axial direction measures , while a strain gage

mounted in the transverse direction measures ,

when the load on the specimen is P � 300 lb. (a) Determine

the values of the modulus of elasticity, E, and Poisson’s ratio,

. (b) Determine the value of the dilatation, V, within the

test section.

�n

�y � �0.0008 in.
in.

�x � 0.002 in.
in.

Prob. 2.13-7. A block of linearly elastic material (E, ) is

compressed between two rigid, perfectly smooth surfaces by

an applied stress �x � ��0, as depicted in Fig. P2.13-7.The only

other nonzero stress is the stress �y induced by the restraining

surfaces at y � 0 and y � b. (a) Determine the value of the re-

straining stress �y. (b) Determine 	a, the change in the x di-

mension of the block. (c) Determine the change 	t in the

thickness t in the z direction.

n

P2.13-4

x

y

PP

y

(1)1 in.

0.5′′
(1) �x gage
(2) �y gage

(2)

Electrical
leads

Prob. 2.13-5. A titanium-alloy bar has the following original

dimensions: a � 10 in., b � 4 in., and c � 2 in. The bar is sub-

jected to stresses �x � 14 ksi and �y � �6 ksi, as indicated 

in Fig. P2.13-5.The remaining stresses—�z, 	xy, , and —

are all zero. Let E � 16 � 103 ksi and � 0.33 for the 

titanium alloy. (a) Determine the changes in the lengths: 	a,

	b, and 	c, where a* � a � 	a, etc. (b) Determine the 

dilatation, V.�

n

tyztxz

P2.13-5

z
x

y

c*

b*

a*
14 ksi

6 ksi

Prob. 2.13-6. An aluminum-alloy plate is subjected to a bi-

axial state of stress, as illustrated in Fig. P2.13-6 (�z � 	xz �
	yz � 	xy � 0). For the aluminum alloy, E � 72 GPa and 

� 0.33. Determine the stresses �x and �y if �x � 200�, and

�y � 140�. (Note: Start with Eqs. 2.38, not with Eqs. 2.40.)

n

P2.13-6

x σx

σy
y

z

P2.13-7

x

σ0σ0

⏐Δa⏐

y

b

a

Prob. 2.13-8. A thin, rectangular plate is subjected to a uni-

form biaxial state of stress (�x, �y). All other components of

stress are zero.The initial dimensions of the plate are Lx � 4 in.

and Ly � 2 in., but after the loading is applied, the dimen-

sions are , and If it is

known that �x � 10 ksi and E � 10 � 103 ksi, (a) what is the

value of Poisson’s ratio? (b) What is the value of �y?

L*y � 2.00344 in.L*x � 4.00176 in.

P2.13-8

x

σx = 10 ksi

σy = ?

y

Ly
*

Lx
*
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*Prob. 2.13-10. A block of linearly elastic material (E, ) is

placed under hydrostatic pressure: �x � �y � �z � �p;

	xy � 	xz � 	yz � 0, as shown in Fig. P2.13-10. (a) Determine

an expression for the extensional strain �x (� �y � �z). (b)

Determine an expression for the dilatation, �V. (c) The bulk

n

modulus, kb, of a material is defined as the ratio of the hy-

drostatic pressure, p, to the magnitude of the volume change

per unit volume, ��V�, that is,

Determine an expression for the bulk modulus of this

block of linearly elastic material. Express your answer in

terms of E and .

Prob. 2.14-1. You are to evaluate a new concept for an envi-

ronmentally friendly building product, a laminated composite

floor panel.This composite panel will use a new material con-

sisting of a recycled polymer filled with recycled wood parti-

cles. This recycled material has an elastic modulus of 6 GPa

and is produced in sheets 2 mm thick. These are laminated

with thin, 0.5-mm-thick sheets of aluminum, EA1 � 70 GPa.

The two different materials are firmly bonded by a strong ad-

hesive to create the laminated composite panel.The final lam-

inated composite panel contains 10 sheets of aluminum and

11 sheets of the recycled material in alternating layers.

Use the techniques discussed in Section 2.14 to calculate

approximate values of elastic modulus in the plane of the lam-

inated panel and through the thickness of the laminated panel.

Before you begin your calculations, be sure to draw a simple

schematic of the laminated composite structure, and use this to

help you determine the volume fractions of each material.

Prob. 2.14-2. Consider a polymer matrix having Em � 2.8 GPa,

which is reinforced with Vf � 0.2 volume fraction of ran-

domly oriented, short glass fibers having Ef � 72 GPa.

(a) Calculate an approximate elastic modulus, Ec, for this

composite material. (b) Would you expect the actual elastic

modulus to be higher, or lower, than your approximation?

n

kb �
p

��V�

Prob. 2.13-9. At a point in a thin steel plate in plane stress

(�z � 	xz � 	yz � 0), �x � 800�, �y � �400�, and �xy � 200�.

For the steel plate, E � 200 GPa and � 0.30. (a) Determine

the extensional strain �z at this point. (b) Determine the

stresses �x, �y and 	xy at this point. (c) Determine the dilata-

tion, �V, at this point.

n

P2.13-9

x
y

z

P2.13-10

x

p

(Stresses on hidden faces not shown.)

p

p

y

z
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Section
Suggested

Review

Problems

Section 2.1 points out the need for defini-

tions of stress and strain in order to explain

how force is distributed throughout a de-

formable body under load and how the

body deforms point by point.

C H A P T E R  2  R E V I E W — S T R E S S  A N D  S T R A I N;
I N T R O D U C T I O N  T O
D E S I G N

You should familiarize yourself with this material.2.1

113

Section 2.2 defines stress as “Force divided

by Area.” Normal stress is normal i.e., per-

pendicular to the plane on which it acts,

and it is denoted by the Greek symbol

sigma (�). Figure 2.2 and Eqs. 2.1 and 2.2

define:

• Normal stress at a point (y, z) on cross 

section x.

• Average normal stress on cross section x.

Normal Stress

(2.1)

(2.2)savg �
F
A

s(x, y, z) � lim
¢AS0

a ¢F
¢A
b

2.2

Normal force on a cross section (Fig. 2.2).

Axial Stress

(2.5)si �
Fi

Ai

Normal force through centroid (Fig. 2.4b).

The sign convention for normal stress is:

• Positive normal stress is called tensile
stress.

• Negative normal stress is called compres-
sive stress.

The normal stress on cross sections of an

axially loaded member is called axial stress.
The resultant normal force on the cross

section must act through the centroid.

2.2-3

2.2-9

2.2-15

Extensional Strain

(2.7)� �
¢L
L

2.3
Section 2.3 defines extensional strain, the

strain that goes with normal stress.

Extensional strain (Fig. 2.5).

A

B
C

D
E

F

L

(a) The undeformed bar.

A*

B*
C*

D*
E*

F*

L
L*

ΔL

(b) The deformed bar.

2.3-7

2.3-11

z

y

z z

zR

y

x

x

x

R

(a) Distributed normal
      stress on a cross section.

(b) Resultant of distributed
      normal stress in (a).

ΔF
ΔA

F(x)

y yR

x

Fi

F(x) = Fi

σ
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Section
Suggested

Review

Problems

2.4

A typical tension-test specimen (Fig. 2.10).

Section 2.4 discusses stress–strain diagrams
and the mechanical properties of materials
that are obtained from testing tension spec-

imens and compression specimens.

114

where � is the coefficient of thermal expansion and

	T is the change in temperature from the reference

temperature.

� � a¢TSection 2.3 also defines thermal strain,
the strain that is produced by a change 

in temperature. 2.3-15

Stress-Strain Diagrams

Stress-strain diagrams for structural steel in 

tension (Fig. 2.11).

A stress-strain diagram is a graph of the re-

sults of a tension test (or compression test):

stress (� � P/A versus strain (� � (	L)/L.

From the stress-strain diagram you should

be able to determine directly (or calculate)

the following mechanical properties:

• the proportional limit of the material,

• the modulus of elasticity of the material,

• the yield point of the material, and

• the ultimate strength of the material.

2.4-3

60

50

40

30

20

10

0.10
0.001

0.20
0.002

0.30
0.003

0.40
0.004

σU = 63

σF = 47

(σYP)u = 38

(σYP)l = 36

σPL = 35

� (in./in.)

σ (ksi)

Yielding Strain
hardening

Necking

Elastic
behavior

Elastic
region

True fracture stress

True stress–
true strain

Δ�

Δσ

σ

σFt

σU

σF
(σYP)u

(σYP)l

σPL

A

B

C D E

Gt

G

F

�

Plastic behavior

(a)

(b)

L*

(b) Deformed specimen.

P P

L0

(a) Undeformed specimen.
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Section
Suggested

Review

Problems

Define each of these design-related properties; dis-

cuss how each is determined from stress-strain dia-

grams; and discuss how each design property 

differs from the others.

The principal design properties of materials

are the following:

• Strength

• Stiffness, and

• Ductility.

Define the following terms and indicate how each

is determined:

• Elastic behavior of a material,

• Plastic behavior of a material,

• Linearly elastic behavior of a material, and

• Permanent set.

2.5

Section 2.5 discusses the differences be-

tween elastic behavior and plastic behavior

of materials.

Hooke’s Law

(2.14)

where E is the modulus of elasticity, also called

Young’s modulus.

Poisson’s Ratio

(2.15)

where is called Poisson’s ratio.n

�y � �z � �n�x

sx � E�x

2.6

Linearly elastic behavior (Fig. 2.25).

Section 2.6 discusses linearly elastic behav-
ior. The discussion is restricted to the case

of uniaxial stress applied to homogeneous,
isotropic materials.

Define these two terms.

2.6-1

2.6-7

z
y

Original specimen

x σx 

σx 
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Suggested

Review

Problems

116

Shear Stress

(2.17)

Average Shear Stress

(2.19)

where As is the area on which the shear force V
acts.

tavg �
V
As

t � lim
¢AS0 

a¢V
¢A
b

2.7

Until now, Chapter 2 has discussed only

normal stress, the stress that results in a

force perpendicular to the surface on which

the normal stress acts. Section 2.7 intro-

duces the second form of stress, shear
stress, whose resultant is parallel to the sur-

face on which the shear stress acts.

Shear stress and its resultant shear force

(Fig. 2.27).

(a) The distribution of shear
      force on a sectioning plane.

ΔAΔV

(b) The resultant shear force
      on the sectioning plane.

V

2.7-1

2.7-7

2.7

Shear Strain

(2.21)

where � and �* are defined in the figure below.

g �
p

2
� u*

Definition of shear strain (Fig. 2.31b).

In Section 2.7 an equilibrium argument

shows that the shear stress on perpendicu-

lar faces is required to be equal. Section 2.7

also gives the definition of shear strain.

You should be able to prove that the shear

stresses on perpendicular faces must be

equal to each other, as shown in Fig. 2.31b.

2.7-11

Hooke’s Law for Shear

(2.23)

where G is the shear modulus of elasticity, which is

discussed further in Section 2.11.

t � GgSection 2.7 concludes with the material
properties in shear.

2.7-13

γ

δs

A*

Ls

(b) Pure shear
deformation.

τ

τ

τ

τ
θ*
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Section
Suggested

Review

Problems

Transformation of Stresses

(2.30)
sn � (sx/2)(1 � cos 2u)

tnt � �(sx/2) sin 2u
f

State Saint-Venant’s Principle, and discuss why it

is an important principle in structural analysis

(i.e., the analysis of components of machines and

structures).

(2.24)G �
E

2(1 � n)

There is no Chapter Review Problem for these

optional sections.

2.9

2.10

2.11

2.12

2.13

2.14

Inclined plane of axial-deformation member.

(Fig. 2.33a)

Section 2.10 introduces you to Saint-
Venant’s Principle.

Section 2.11 shows how Young’s Modulus,
E, and the Shear Modulus of Elasticity, G,

are related.

Sections 2.12 through 2.14 discuss more

advanced topics in stress and strain, and

more advanced topics in the mechanical

behavior of materials. These optional 

sections discuss: General Definitions of
Stress and Strain Section 2.12, Cartesian
Components of Stress: Generalized
Hooke’s law for Isotropic Materials
Section 2.13, Mechanical Properties of
Composite Materials Section 2.14.

Derive 

Eqs. 2.30.

2.9-1

2.9-7

Derive 

Eq. 2.24.

Section 2.9 introduces you to the fact that

normal stress and shear stress depend on

the orientation of the plane on which the

stresses act. This topic is greatly expanded

in Chapter 8.

2.8

Factor of Safety

(2.26)

Allowable Stress

(2.28)sallow. �
sY

FS
, or tallow. �

tY

FS

FS �
Failure Load

Allowable Load

Section 2.8 is an Introduction to Design.
There are two ways in which design infor-

mation is used in engineering practice:

• To evaluate an existing structure, or to

evaluate a proposed design.

• To design a new structure.

Although Allowable-Stress Design is

emphasized in this textbook, Load and
Resistance Design is mentioned briefly.

For allowable-stress design, the allowable

stress in axial deformation is based on the

tensile, or compressive, yield strength of

the material; in direct shear, the allowable

stress is based on the shear yield strength.

Review Example 2.11, which illustrates the

process of optimal design of a minimum-

weight structure.

2.8-1

2.8-7

2.8-13

n

P

(a)

P
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AXIAL DEFORMATION3

In Chapter 2 the topic of uniform axial deformation was used to introduce the concepts

of normal stress and extensional strain and to describe the experiments required to de-

termine the stress-strain behavior of materials. In this chapter we will pursue the topic

of axial deformation in greater detail.We begin with a definition of axial deformation.

A structural member having a straight longitudinal axis is said to undergo axial
deformation if, when loads are applied to the member or it is subjected to temperature
change: (1) the axis of the member remains straight, and (2) cross sections of the mem-
ber remain plane, remain perpendicular to the axis, and do not rotate about the axis as
the member deforms.

There are many examples of axial-deformation members: columns in buildings,

hoist cables, and truss members in space structures, to name just a few. The picture

in Fig. 3.1 illustrates several stages in the construction of columns (piers) for a high-

way interchange. On the left is an example of the steel reinforcement for a column,

and on the right is a completed column with reinforcement protruding from the top

of the column. The columns of bridges like the one in the background in Fig. 3.1 act

primarily as axial-deformation members.

3.1 INTRODUCTION

Let us now develop the theory of axial deformation by applying the three types of

equations that are fundamental to all of deformable-body mechanics: equilibrium,
geometry of deformation, and material behavior. We begin by considering the geom-

etry of deformation.

Geometry of Deformation; Strain-Displacement Analysis. The theory

of axial deformation applies to a straight, slender member with cross section that is

either constant or that changes slowly along the length of the member. Figure 3.2

shows such a member before and after it has undergone axial deformation caused

by axial loading or temperature change.

3.2 BASIC THEORY OF AXIAL DEFORMATION
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Axial deformation, as defined in Section 3.1, is characterized by two fundamen-

tal kinematic assumptions:

1. The axis of the member remains straight.
2. Cross sections, which are plane and are perpendicular to the axis before defor-

mation, remain plane and remain perpendicular to the axis after deformation.

And, the cross sections do not rotate about the axis.

These assumptions are illustrated in Fig. 3.2, where A and B designate cross sections

at x and (x � �x) prior to deformation, and where A* and B* designate these same

cross sections after deformation.

The distance that a cross section moves in the axial direction is called its axial
displacement. The displacement of cross section A is labeled u(x), while the neigh-

boring section B displaces an amount u(x � �x). The displacement u(x) is taken to

be positive in the �x direction. We can derive a strain-displacement expression that

relates the axial strain � to this axial displacement u by considering the fundamen-

tal definition of extensional strain:

� �
Final length � Initial length

Initial length

119
Basic Theory of Axial

Deformation

FIGURE 3.1 Some rein-

forced concrete columns for

highway interchange bridges.

(Courtesy Roy Craig)

FIGURE 3.2 The geometry of axial deformation.

(a) Before Deformation

x
u(x + Δx)

Δx

L

x

u(x)

(b) After Deformation

Δx*

A* B*

A B

x
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The axial strain of any fiber1 of infinitesimal length �x that is parallel to the x axis

and extends from section A to section B of the undeformed member may be deter-

mined from the fundamental definition of extensional strain at a point. By letting the

initial length of a typical fiber be �x, and then letting �x approach zero, we can write

the following expression for the axial strain (Eq. 2.35):

Therefore, the axial strain at section x is the derivative (with respect to x) of the

axial displacement, or

(3.1)

This equation relating axial strain to axial displacement is called the strain-
displacement equation for axial deformation. The two fundamental kinematic as-

sumptions stated above imply that the axial strain � may be a function of x, but that

it is not a function of position in the cross section, that is, of y or z.To emphasize this

point, a plot of the strain distribution at an arbitrary cross section at x is shown in

Fig. 3.3 superimposed on a sketch of a portion of the member. To reiterate, axial
deformation is characterized by extensional strain that is not a function of position
in the cross section.

As indicated in Fig. 3.4, the total elongation of the member is the difference

between the displacements of its two ends, that is,

(3.2)

By summing up the changes in length of increments dx over the entire length of the

member, we get the following equation for the elongation of an axial-deformation

member of initial length L:

(3.3)
Elongation
Formula

e � �
L

0

�(x)dx

e � u(L) � u(0)

Strain-
Displacement
Equation

�(x) �
du(x)

dx

�x(x) � lim
¢xS0 

a  

¢x* � ¢x
¢x

b � lim
¢xS0

 c u(x � ¢x) � u(x)

¢x
d �

du
dx

120
Axial Deformation

1The word fiber is used to signify a line of material particles.

Before Deformation

x

L

u(x) u(L)
u(0)

After Deformation
B* C*

A*

A
B C

(L + e)

e = u(L) – u(0)

y

x
z

�(x)

x

FIGURE 3.3 Extensional

strain distribution for a

member undergoing axial 

deformation.

FIGURE 3.4 Definition of the total elongation e.
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How the strain � varies with x depends on the loads that are applied to the

member, whether is has a constant cross section or the cross section varies with x,

and the behavior of the material (or materials) from which the member is con-

structed. Next, we will consider this material behavior.

Material Behavior. Having the strain distribution given by Eq. 3.1 and illus-

trated in Fig. 3.3. we can now employ the uniaxial stress-strain behavior of materi-

als to determine the stress distribution in a member undergoing axial deformation.

Let us first take the simplest case—linearly elastic behavior—and let us assume that

the temperature remains constant (i.e., �T � 0) and that Then, from

Eq. 2.38a (Section 2.13) we get the uniaxial stress-strain equation

(3.4)

Nonlinear material behavior is treated in Section 3.11.

Equation 3.4 gives the distribution of the axial stress � on the cross section at x.

As indicated in Eq. 3.4, � may only vary with x, but not with position in the cross sec-

tion. Most axial-deformation members are homogeneous, so that Young’s modulus,

E, is constant throughout the member. Axial deformation of nonhomogeneous

members is treated in Section 3.3.

Stress Resultant. Deformable-body mechanics problems are simplified by mak-

ing assumptions that reduce a basically three-dimensional problem to a one-dimen-

sional problem, like the axial-deformation kinematic assumptions discussed earlier

in this section. Given the distribution of axial stress � (Eq. 3.4), we can replace the

distributed stress by a single resultant axial force and relate that force to the axial

stress on the cross section.

Figure 3.5a shows the three stress resultants that are related to the axial stress

�, and defines the sign convention for these stress resultants.The resultants in Fig. 3.5a
are shown for the �x face; equal and opposite resultants act on the �x face at the

cross section.The axial force, F, on the cross section will always be taken to be positive

in tension. The bending moments My and Mz are taken positive according to the

right-hand rule. By summing up the contributions to these resultants of the forces

dF on infinitesimal areas, dA, we get2

(3.5)

Equations 3.5 define the three stress resultants associated with the axial stress

�. However, when the distribution of stress on the cross section is known, we can

combine these to form a single resultant force on the cross section. Consider the

most common case, a homogeneous linearly elastic member. Then, Young’s modu-

lus is constant throughout the entire member, so Eq. 3.4 takes the form

(3.6)
Stress
Distribution
(E � Const)

s(x) � E�(x)

Mz(x) � ��
A

 
ys dA

Stress
Resultants

My(x) � �
A

 
zs dA

 F(x) � �
A

 
s dA

Hooke’s
Law

s � sx � E�(x)

sy � sz � 0.
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Deformation

FIGURE 3.5 (a) Stress re-

sultants on the cross section at

x. (b) Axial stress at a point in

the cross section at x.

2Note that the three stress resultants, F(x), My(x) and Mz(x), are defined as scalar quantities.

y

z x

y

z x

x

My(x)

Mz(x) F(x)

dF = σ dA

z

dA y

(a)

(b)
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When E � const, the stress distribution, like the strain distribution,
is constant over the cross section.

This uniform axial stress distribution is illustrated in Fig. 3.6.

Whenever the normal stress is constant over a cross section, the resultant of that

stress distribution is given by the following equations:

(3.7)

since and .We can simplify the axial-deformation prob-

lem by choosing the x axis so that it passes through the centroid of the cross section.
Then, and 

A member having E � const will undergo axial deformation if the
applied load is an axial force that acts through the centroid of the
cross section.

This resultant axial force is illustrated in Fig. 3.7.

Equilibrium. We have determined the resultant force on the cross section when

a member undergoes axial deformation. Equilibrium is satisfied by drawing a free-

body diagram and relating this internal axial force, F(x), to the external forces

applied to the member. Usually, a free body of finite length is used, as illustrated in

Fig. 3.8a, where F(x) is equal to the sum of the end force P and the weight of the

member below section x.

Figure 3.8b shows a member with axisymmetric axial loading p(x) per unit

length. For such distributed-loading cases it is often convenient to use a free body
of infinitesimal length �x, as illustrated in Fig. 3.8c. Then, for equilibrium of the free

body in Fig. 3.8c,

lim
¢x�0

c F(x � ¢x) � F(x) � p(x)¢x

¢x
d � 0S�  a F(x) � 0:

My � Mz � 0.y � z � 0,

�A z dA � zA�A y dA � yA

Mz(x) � �s(x)�
A

y dA � �s(x)[ yA(x)]

My(x) � s(x)�
A

z dA � s(x)[zA(x)]

F(x) � s(x)�
A

dA � s(x)A(x)
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FIGURE 3.6 The stress

distribution for a homoge-

neous member undergoing

axial deformation.

FIGURE 3.7 The resultant

force on the cross section for

axial deformation of a bar

with E � const. passes

through the centroid, C.

FIGURE 3.8 Members with distributed axial loading.
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or,

(3.8)

which can be integrated to give the axial force F(x). Example 3.3 in Section 3.3

illustrates the use of Eq. 3.8.

Summary of Axial Deformation of a Homogeneous, Linearly Elastic
Member. To apply the theory of axial deformation to a member with constant
modulus of elasticity, we need to relate the stress and the elongation of a member

to the external loads acting on it. From the first of Eqs. 3.7 we get the formula for

the axial stress:

(3.9)

Then, from Eqs. 3.1, 3.6, and 3.9, the axial strain is given by

(3.10)

Finally, from Eqs. 3.3 and 3.10, the total elongation is

(3.11)

Equation 3.11 expresses the force-deformation behavior of a homogeneous mem-

ber undergoing axial deformation.

If the displacement at an arbitrary section x is needed, we can employ a dummy

variable of integration in Eq. 3.10 and write

(3.12)

The theory of axial deformation, which has been summarized in Eqs. 3.8 through

3.12 above, will be illustrated by a number of examples. We begin in this section by

discussing the force-deformation behavior of the uniform axial-deformation element,

or prismatic bar element. This is followed by a brief discussion of another member

whose structural function is largely axial-deformation in nature—the linear spring.

Uniform Axial-Deformation Element. Many structures incorporate one or

more uniform axial-deformation elements, that is, members that: (1) have constant

cross-sectional area A, (2) have constant modulus of elasticity E, and (3) have axial

forces applied only at the ends. The two hanger rods in Fig. 3.9a and the three num-

bered links in Fig. 3.9b are such uniform axial deformation members. The spring

attached to the slider block in Fig. 3.9b also behaves as an axial-deformation member.
Because it forms such an important component of so many structures, we now

derive the force-deformation equation for a single uniform linearly elastic element.

In Section 3.3 we will consider the more general case of nonuniform axial deforma-

tion, but in Sections 3.4 through 3.10 systematic procedures for treating both stati-
cally determinate structures and statically indeterminate structures that have uniform

axial-deformation members will be thoroughly examined.

u(x) � u(0) � �
x

0

F(j) dj

A(j)E

Axial Force-
Deformation
Equation

e � �
L

0

F(x) dx

A(x)E

� �
du
dx

�
F(x)

EA(x)

Axial
Stress
Formula

s � sx(x) �
F(x)

A(x)

Equilibrium
Equation

dF(x)

dx
� �p(x)
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To simplify the solution of problems involving uniform axial-deformation

members, we will first apply the fundamental equations of equilibrium, material

behavior, and geometry of deformation to determine the basic force-deformation
behavior of a typical uniform axial-deformation element, like the element shown

in Fig. 3.10a.

Using the free-body diagram in Fig. 3.10b, we get

The derivation of Eq. 3.11 included both material behavior (linearly elastic) and

geometry of deformation; hence, for the elongation e we can simply write

or

(3.13)

It will often be convenient to write Eq. 3.13 in the simpler form

(3.14)e � fF, where  f �
L

AE

e �
FL
AE

e � �
L

0

F(x) dx

A(x)E
�

F
AE �

L

0

dx

F(x) � F � constS� a Fx � 0:
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FIGURE 3.9 Two systems that employ uniform axial-deformation members.

(1)

(1) (2)

(3)
(2)

(a) (b)

Bill 's  Cycle  Repair Bill 's  Cycle  Repair 

FIGURE 3.10 A typical uniform axial-deformation element.

FF A, E

(a) A uniform axial-deformation member.

x

L

F
F(x)

(b) Free-body diagram.

c03AxialDeformation.qxd  8/31/10  7:22 PM  Page 124



or in the alternative form

(3.15)

Any of these last three equations characterizes the force-deformation behavior of
the uniform linearly elastic axial-deformation element.

The parameter f in called the flexibility coefficient for the axial-deformation

member, or element, and k is called the stiffness coefficient. From Eqs. 3.14 and 3.15,

respectively, it can be seen that:

• The flexibility coefficient, f, is the elongation produced when a unit force is
applied to the member. Its dimensions are L/F.

• The stiffness coefficient, k, is the force required to produce a unit elongation
of the member. Its dimensions are F/L.

These physical interpretations of flexibility and stiffness can greatly assist us in

interpreting how a structure responds to loads.

Linear Spring. One linear axial-deformation element is the prismatic bar shown in

Fig. 3.10, whose behavior is given by Eqs. 3.13 through 3.15.A second common element

that exhibits linear force-deformation behavior is the linear spring, shown in Fig. 3.11.

To elongate a linear spring by an amount e requires an axial force (tension

positive)

(3.16)

Alternatively, when an axial force F is applied to a linear spring, it elongates by an

amount

where (3.17)

The parameter k is called the spring constant; it is the parameter that is usually

stated to describe the force-deformation behavior of a spring. Some springs are de-

signed to operate only in tension or only in compression. However, we will assume

that Eqs. 3.16 and 3.17 hold for either tension or compression of the springs that are

shown in this text. Figure 3.11c is a plot of F versus e for this linear behavior of a

spring. The spring constant, k, is the slope of the line.

f �
1

k
e � fF,

F � ke

F � ke, where k �
AE
L
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Deformation

FIGURE 3.11 A linear

spring.

L0

e = elongation
L0 = free length(a) A linear spring in its

undeformed configuration.

(b) The linear spring elongated
by axial force F.

(c) The force-deformation plot
for a linear spring.

e

F

F

k

1

c03AxialDeformation.qxd  8/31/10  7:22 PM  Page 125



The theory of axial deformation, which has been summarized in Eqs. 3.8

through 3.12 above, will now be illustrated by a number of examples in the following

sections:

• Section 3.3-nonuniform axial deformation

• Section 3.4-statically determinate structures

• Section 3.5-statically indeterminate structures with external loads

• Section 3.6-statically indeterminate structures with temperature change

• Section 3.7-statically indeterminate structures with geometric “misfits”

126
Axial Deformation

In Section 3.4 we will concentrate on uniform axial deformation with application to

statically determinate structures, and in Sections 3.5–3.9 we will consider uniform

axial deformation of members in statically indeterminate structures. First, however,

let us illustrate the fundamental axial-deformation equations that were derived in

Section 3.2 by considering the following three examples of nonuniform axial defor-
mation: Example 3.1 treats axial deformation of a member made of two linearly

elastic materials; Example 3.2 discusses the deformation of a column with varying

cross section; and, finally, Example 3.3 discusses equilibrium of an axial-deformation

member with distributed external loading.

Concluding Section 3.3 is a brief introduction to the topic of wire rope. Although

wire rope is uniform along its length, it is nonuniform in cross section, so it falls

within the scope of this section on nonuniform axial deformation.

Axial Deformation of a Nonhomogeneous Member. When an axial-

deformation member is homogeneous, the modulus E is constant, and the axial

stress � is constant over the cross section and is given by Eq. 3.6, repeated here.

(3.6)

repeated

However, for the most general form of E, Eq. 3.4 may be stated in the form

(3.18)

where it is noted that the axial strain is constant over the cross section but the axial

stress is not.

Example 3.1 illustrates the special case of a single member made up of two side-

by-side homogeneous, linearly elastic members such that E � E(y). This type of

problem can also be readily solved by treating the member as a statically indetermi-

nate assemblage and using the method of solution discussed in Section 3.5.

s(x, y, z) � E(x, y, z)�(x)

s(x) � E�(x)

3.3 EXAMPLES OF NONUNIFORM AXIAL DEFORMATION

E X A M P L E  3 . 1

A bimetallic bar is made of two linearly elastic materials, material 1 and

material 2, that are bonded together at their interface, as shown in Fig. 1.

Assume that E2 � E1. Determine the distribution of normal stress that
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Fig. 2 The stress distribution in a

bimetallic bar.

must be applied at each end if the bar is to undergo axial deformation,

and determine the location of the point in the cross section where the

resultant force P must act. Express your answers in terms of P, E1, E2,

and the dimensions of the bar.

Plan the Solution The bar is said to undergo axial deformation, so we

know from Eq. 3.1 that the strain, �(x), is constant on every cross section.

And since the bar is prismatic (constant cross section) and is loaded only

at its ends, we can assume that �(x) � � � const for the entire bar. Since

there are two values of E, Eq. 3.18 will lead to different values of stress

in the two materials. We can use the stress-resultant integrals of Eqs. 3.5

to relate these two stresses to the resultant force.

Solution

Strain Distribution: For the reasons noted above,

(1)

Stress Distribution: From Eq. (1) and Eq. 3.4, the stresses in the two parts

of the bar will be

(2)

as illustrated in Fig. 2.

Resultant Force: The resultant force and moments on the cross section

are given by Eqs. 3.5.

(3)

However, we know that the resultant of a constant normal stress dis-

tribution is a force acting through the centroid of the area on which

the constant stress acts. Therefore, we can replace the stress distribu-

tion of Fig. 2 and Fig. 3a by two axial forces, P1 and P2, acting at the

centroids of their respective areas of the cross section, as shown in

Fig. 3b.

From Eqs. (2) and the F(x) equation in Eqs. (3),

(4)

Taking the summation of forces in the x direction, we get

(5)P1 � P2 � PS� a Fx:

P2 � E2�A2 � E2� a  

2bh
3
bP1 � E1�A1 � E1� abh

3
b,

 Mz(x) � ��A
ys dA

 My(x) � �
A

zs dA

 F(x) � �
A

s dA

s1 � E1�, s2 � E2�

�(x) � � � const

y

P

z
x

L

P

b/2
b/2

2h/3

h/3
1 E1

2 E2

σ1

σ2

E2 > E1

1

2

Fig. 1 A bimetallic bar.
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Thus, the resultant force acting on the ends of the bar (and at every

cross section, for that matter) is related to the extensional strain � by

the equation

(6)

Solving Eq. (6) for � and inserting the result into the Eqs. (2), we get the

stresses

Ans. (7)

In Fig. 3b the forces P1 and P2 are shown acting at the centroids of

the areas on which they act. The location of the single resultant force P
in Fig. 3c can be determined by taking moments about a z axis passing

through point A.

(8)

Thus, the resultant force acting on each end of the bar (and at every cross

section) is a force P located at

Ans. (9)

Review the Solution A good check on the results above is to let E1 �
E2 � E. Then, we get

which is consistent with Eq. 2.4.

s1 � s2 �
P
bh

, yP �
h
2

zP � 0yP � h a 5E1 � 4E2

6E1 � 12E2

b,

P1 a5h
6
b � P2 ah

3
b � PyPaaMb

A
:

s1 �
3PE1

bh(E1 � 2E2)
, s2 �

3PE2

bh(E1 � 2E2)

P �
�bh

3
 aE1 � 2E2b

Axial Deformation of a Column with Varying Cross Section. Example

3.2 illustrates nonuniform axial deformation that results when the cross section of a

member is not constant. The total elongation of a homogeneous, linearly elastic

axial deformation member is given by Eq. 3.11, repeated here.

(3.11)
repeated

e � �
L

0

F(x)dx

A(x)E

yp

(a)

σ1

σ2

h/6

P1

P2
h/3

h/3

(c)

P

A

(b)

A

Fig. 3
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E X A M P L E  3 . 2

The tapered column in Fig. 1 is subjected to a downward force P acting

through the centroid of the top cross section at B. The column has a

circular cross section, with a diameter that varies linearly from dA at the

bottom to dB at the top. Determine an expression for the amount that the

column shortens under the action of load P.

Plan the Solution The change in length of the column (in this case, the

shortening of the column) can be computed by using Eq. 3.11.

Solution From Eq. 3.11, the shortening of the column, say �, is

(1)

We need to use equilibrium to determine F(x), and geometry to deter-

mine A(x).

Equilibrium: From the finite free-body diagram in Fig. 2,

(2)

Geometry: The cross-sectional area is

By referring to Fig. 3 and employing similar triangles, we can determine

d(x) in terms of dA and dB.

Thus,

(3)

Force-Deformation: Combining Eqs. (1) through (3), we get

Finally, by evaluating this integral we obtain the answer

Ans. (4)d �
4PL
pEdAdB

d �
4P
pE �

L

0

dx

�dA � (x/L)(dA � dB)�2

A(x) � (p/4)�dA � (x/L)(dA � dB)�2
d(x) � dA � (x/L)(dA � dB)

dA � d(x)

x
�

dA � dB

L

A(x) � (p/4)d2(x)

F(x) � �P � const� ca F(x):

d � ��
L

0

F(x) dx

A(x)E

Fig. 2 Free-body diagram.

L

x

A

B

P

L

P

xF(x)

L

x

d(x)

dB

dA

Fig. 1

Fig. 3 Geometry.
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Review the Solution The right side of Eq. (4) has the dimension of

length, as it should. Also note that an increase in P or L causes an in-

crease in �, while a larger E or larger A (i.e., “fatter” column) decreases

�.These are reasonable effects. Finally, if dA � dB � d, � � PL/AE, which

is the expression we got in Example 2.7 (Section 2.6) for a uniform, lin-

early elastic member under axial loading.

Axial Deformation of a Member with Distributed Loading. Example 3.3

illustrates nonuniform axial deformation that results when an axial load is distrib-

uted along the member. This can be the result of the distributed weight of the

member, or it can be the result of friction on the outer surface of the member, as

is the case in Example 3.3. The distributed axial force enters into the equilibrium
equation, which can be written for a free body of finite length or for a free body

of infinitesimal length, as in Fig. 3.8c, for which the equilibrium equation is Eq. 3.8,

repeated here.

(3.8)

repeated

dF(x)

dx
� �p(x)

E X A M P L E  3 . 3

Upon completion of a construction job, the contractor recovers some

vertical piles by pulling them out of the ground, as illustrated in Fig. 1a.

At one point in the pile-pulling operation, a length L of the pile is still in

the ground, and friction between the pile and the ground exerts a distrib-

uted axial force on the pile of p(x) per unit length, with the distribution

of p(x) assumed to be as shown in Fig. 1b. (a) Determine an expression

for p0 in terms of the axial force P. Assume that there is no force on the

lower end of the pile, that is, that F(L) � 0. (b) Determine an expression

for the internal axial force, F(x), at an arbitrary depth x, expressing your

answer in terms of P, L, and x.

p0 p(x)

p(x)

L

P

x

3p0

p(x)

(a) (b)

Fig. 1
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Plan the Solution Figure 1b can be used to formulate an expression

that relates p(x) to x, and Eq. 3.8 can be used to relate p(x) to the axial

force F(x). We will neglect the weight of the pile.

Solution (a) Relate p0 to P. From Fig. 1a and the given information,

(1)

In Fig. 1b, p(x) is a linear function that varies from p0 at x � 0 to 3p0 at

x � L. Therefore,

(2)

Equation 3.8,

Equilibrium (3)

was based on the equilibrium of a free body of infinitesimal length

(Fig. 3.8c). It can be integrated to give

(4)

Substituting Eqs. (1) into Eq. (4), we get

(5)

which gives

Ans.(a) (6)

(b) Determine an expression for F(x).

Applying Eq. (3) now from to we get

(7)

Substituting Eq. (6) into Eq. (7) and carrying out the integration, we get

Ans.(b) (8)

Review the Solution From Eq. 3.8 (Eq. (3) above) we know that, since

p(x) is linear in x, F(x) will be quadratic in x. A good check on the result

in Eq. (8) is to evaluate F(x) at x � 0 and x � L to make sure that we get

the values given in Eq. (1). We do.

Instead of just using Eq. 3.8 for treating equilibrium in this problem, we

could have used free bodies of finite length, similar to the one in Fig. 3.8a.

F(x) � P c1 �
1

2
a x

L
b �

1

2
a x

L
b2 d

F(x) � P � �
x

0

[ p0 � 2p0(j/L)]dj

j � x,j � 0

p0 �
1

2
 
P
L

0 � P � p0[x � (1/L)x2]L
0

F(L) � F(0) � �
L

0

[p0 � 2p0(x/L)]dx

dF

dx
� �p(x)

p(x) � p0 � 2p0(x/L)

F(0) � PF(L) � 0,
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In this section we have applied the equations of the basic theory of axial defor-
mation, from Section 3.2, to analyze three examples of nonuniform axial deforma-
tion. We conclude this section with an introduction to the topic of wire rope.
Because of the complicated nature of wire rope, we cannot directly apply the
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equations of the basic theory of axial deformation in order to determine the stress

distribution on the cross section or to determine an appropriate force-deformation

equation. Instead, we will use characteristics of wire rope that are based on experi-

mental data and are provided by the wire-rope manufacturer.

Wire Rope. Wire rope is a device that is useful for supporting tensile loads.3 Static ap-

plications of wire rope include suspension bridges, like the Brooklyn Bridge in Fig. 1.3

and the cable-stayed suspension bridge shown on the front cover. Other important uses

of wire rope include guy lines for towers and mooring lines for off-shore platforms.

Although wire rope cannot bear compressive loads, its flexibility in bending gives it an

important advantage for dynamic applications.This makes wire rope particularly useful

for moving loads that are separated by great distance from a source of mechanical

power. Example applications include cranes, hoists, elevators and drag lines for mining.

Wire rope is constructed of wire strands that are twisted about a core. Each strand

is composed of several individual wires twisted together.The core of a wire rope can be

composed of fibers, either natural or synthetic, a wire strand or an independent wire

rope. Figure 3.12a shows the cross-section of a 6 � 7 wire rope, a common variety. Its

fiber core conforms to the shape set by its strands,which complete a full helix in one rope
lay, shown in Fig.3.12b.The 6 � 7 designation indicates a construction of six strands,each

containing seven wires.Wire rope applications that require repeated bending necessitate

rope construction with a larger wire count,which can be achieved with a 6 � 19 construc-

tion.A large number of wire rope types are available to serve the wide range of applica-

tions for which wire rope is used.As a general rule, ropes with high wire counts are used

in dynamic applications requiring repeated bending, and ropes with low wire count are

used when repeated bending is not an issue. In static applications, even a single wire

strand may be used to support a load (see the definition of strand, shown in Fig. 3.12a).

The two most important structural characteristics of a wire rope are its force-
elongation behavior and its strength. The wires and strands of a wire rope interact and

move relative to each other when a tensile load is applied, tightening the helix into

which they are twisted, thus acting as a machine with moving parts. This action pro-

duces elongation under loading that can be separated into two categories, permanent
(constructional) stretch and elastic stretch. Permanent stretch remains after the load is

removed and is the result of wires and strands seating during service. In typical appli-

cations, permanent stretch reaches approximately 0.5% of the total wire rope length.

In all applications except those with very small loads, wires and strands are fully

seated within days to weeks of initial service, after which the permanent stretch is

approximately constant. Pre-stretching a wire rope can greatly reduce the amount of

132
Axial Deformation

3Although the names cable and wire rope are often used interchangeably, we use the term wire rope here

because it is specific to load-bearing applications, whereas cable is a more general term, which can refer

to non-structural applications, e.g., cable TV.

0

one rope lay

1 2 3 4 5 6

(a) (b)

core

rope diameterone strand

FIGURE 3.12 Wire rope geometry: (a) The cross section of a 6 � 7 fiber-core wire rope,

with properly measured rope diameter shown. (b) The helix formed by strands in a 6 � 7 wire

rope completes one revolution within the rope lay length. (Eric M. Taleff)
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permanent stretch observed during service and is typically used for stationary appli-

cations, such as in suspension bridges. Elastic stretch increases as load increases and is

removed as the load is removed. We are concerned here with calculating the elonga-

tion from elastic stretch only, i.e. elastic elongation, and we assume proper installation

and break-in have already established a nearly constant permanent stretch.

Elastic elongation of a wire rope may be conveniently approximated as linearly

elastic behavior. Elastic elongation is calculated using Eq. 3.14, so long as either the flex-

ibility coefficient or stiffness coefficient is known. Figure 3.12a makes clear that the area

of a wire rope calculated using its diameter, �d2/4, is much greater than the area of

material actually supporting the load applied to it. Thus, Eqs. 3.14 and 3.15 cannot be

applied directly. Instead, the flexibility coefficient of a wire rope can be calculated as

(3.19)

where Am is the metallic area, also called the effective area, and Er is the rope mod-
ulus. The stiffness coefficient of a wire rope, from Eq. 3.15, is then

(3.20)

The metallic area may be calculated as follows

(3.21)

where CF is the compactness factor, provided by the wire rope manufacturer, and d
is the rope diameter, as illustrated in Fig. 3.12(a). Values of CF typically range from

0.380 to 0.405, but can reach 0.580 for guy strand.A conservative value of 0.380, typ-

ical of 6 � 7 wire rope, is recommended for working example problems. Some man-

ufacturers simply provide tables of metallic areas for their wire rope products, which

eliminates the need for calculation of Am.

The rope modulus, Er, depends on the wire type and the rope construction. Values

of the rope modulus generally vary from 26% to 50% of the elastic modulus of an indi-

vidual wire, a typical value being 40%. Using this typical value, which is valid for a stan-

dard 6 � 7 wire rope having a fiber core and steel wires (steel has an elastic modulus of

E � 200 GPa), produces a rope modulus of Er � 80 GPa.This simple conversion factor

of 40% is sufficient for working example problems, but a rope modulus supplied by the

wire rope manufacturer should always be used in engineering calculations.

The allowable load for a wire rope is of great importance, but is not easily calcu-

lated. Engineers rely upon tables of recommended maximum load values, which are

compiled from experimental data. In applications involving very long wire ropes, such

as mooring of offshore platforms, the weight of the wire rope itself can produce a large

fraction of its allowable load.Thus, the weight of wire rope must be considered in such

applications. Examples of recommended maximum load values and typical weights per

unit length are shown, for several wire rope diameters, in Table 3.1.

Am � CF � d2

kr �
AmEr

L

fr �
L

AmEr

133
Examples of Nonuniform

Axial Deformation

From: Wire Rope Handbook, Wire Rope Corporation of America, 1985, p. 13. (Now WireCo

WorldGroup).

T A B L E  3 . 1 Weight per Length and Recommended Allowable Loads (in 
tons of 2000 lb) Are Shown for 6 � 19 Seale IWRC (independent wire rope 
core) Construction Wire Ropes Using IPS (improved plough steel) Wires.

Diameter (in.) Weight, lb/ft. Allowable load, tons

1/4 0.18 2.94

1/2 0.46 11.5

1 1.85 44.9

2 7.39 172
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FIGURE 3.13 Examples of different end attachments used for wire ropes. (Eric M. Taleff)

E X A M P L E  3 . 4

In the evening a contractor uses the wire rope on a large crane to lift a

1000-lb air compressor 10 ft above the ground, which will help prevent

mischief occurring overnight. The wire rope has a diameter of d � 1/4 in.

and is composed of IPS wires in a 6 � 19 Seale IWRC construction;

see Table 3.1.The wire rope modulus is Er � 12,000 ksi, and its compact-

ness factor is CF � 0.40. The rope runs 10 ft between the crane winch at

A and a pulley (sheave) at B, and it then runs L � 40 ft down to the

attachment C at the compressor on the ground. The hook at the end of

the wire rope, position C, has an attachment efficiency of 90%. (a)

Calculate the elongation of the wire rope between the winch at A and

the compressor at C, just as the compressor is lifted from the ground.

This is the length of wire rope which must be wound onto the winch

drum before the compressor will move. (b) Calculate the factor of safety

for the wire rope in this operation, assuming that failure occurs at the

recommended maximum load of Table 3.1.

To transfer load from the wire rope to some other part, many applications of

wire rope require end attachments, such as those shown in Fig. 3.13(a, b). The

efficiency of an end attachment determines how much the allowable load must be

reduced because of the attachment, which may be weaker than the wire rope. For

example, an end attachment that is 80% efficient will reduce the allowable load by

20%. Typical efficiencies of properly constructed end attachments range from

75% to 100%.

(a) Swaged (b) Socketed
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(a) It is necessary to first calculate the metallic area of the wire rope.

From Eq. 3.21, the metallic area of the rope is

The flexibility coefficient, from Eq. 3.19, is

Note that the entire length of the wire rope between the winch and the

compressor (10 ft � 40 ft) elongates under the loading. You can verify

this using free-body diagrams. The elongation of the wire rope is then

Ans. (a)

(b) Calculation of the expected failure load, PF, must account for the

efficiency of the hook end attachment at C. Using the maximum load

suggested for this wire rope in Table 3.1 of 5.88 kips, the allowable load

after adjusting for the attachment efficiency is

The greatest load on the wire rope occurs at B and is the 1000 lbs. (1 kip)

of the compressor plus the weight of the wire rope. The total weight of

wire rope hanging from the sheave at B to the attachment at C is,

W � (0.18 lb/ft)(40 ft) � 7.2 lb

This is, of course, a negligibly small load compared to that of the com-

pressor. Thus, we may reasonably neglect the weight of the wire rope for

this relatively short length. The factor of safety is then

Ans. (b)FS �
5.29 kips

1 kip
� 5.29

PF � 0.90 � 5.88  kips � 5.29 kips

e � frP � a0.167
in.

kip
b (1 kip) � 0.167 in.

fr �
L

AmEr
�

(10 ft � 40 ft)

(0.025 in2)(12,000 ksi)
� 0.167

in.

kip

Am � CF � d2 � 0.40 � (0.25 in.)2 � 0.025 in.2

B

L

A

C

10 ft
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Next, in Section 3.4, we consider examples of uniform axial deformation, solv-

ing several example problems that involve statically determinate structures. Finally,

in Sections 3.5–3.8, we continue our consideration of structural systems whose mem-

bers undergo uniform axial deformation, this time with application to statically
indeterminate structures.

136
Axial Deformation

In this section, we will illustrate the analysis of statically determinate structures that

have uniform axial-deformation elements.We will determine both the stresses in the

elements and the deformation of the structural system. These example problems

emphasize the importance of properly considering the fundamental equations: equi-
librium, element force-deformation behavior, and geometry of deformation. Note

carefully how each of these three fundamental types of equations enters into the so-

lution of each problem. Also note how the flexibility coefficient f, which is defined

in Eq. 3.14, is employed in these solutions.

3.4 STATICALLY DETERMINATE STRUCTURES

E X A M P L E  3 . 5

Consider again the two-element axial-deformation structure of Example

2.3 (Section 2.2), shown here in Fig. 1. In Example 2.2 the axial stresses

�1 and �2 in elements (1) and (2), respectively, were determined. Since

the two-element structure is statically determinate, these stresses are

independent of the materials from which the elements are made. Now 

let us determine the displacement uC of end C if element AB is steel 

(E1 � 200 GPa) and element BC is aluminum (E2 � 70 GPa).

Plan the Solution The nomenclature for a typical element is shown in

Fig. 2. The axial forces were previously obtained in Example 2.3, and

Eq. 3.14 can be used to express the elongation of each element in terms

of its axial force. Finally, the displacement uC of end C is simply the sum

of the elongations of the two elements.

Solution

Equilibrium: From the free-body diagrams and equilibrium equations

of Example 2.3 we have

Equilibrium (1)

where Fi is the axial force in element i.

F1 � �20 kN,  F2 � 10 kN

Fig. 2 A typical element.

10 kN

30 kN

E1 = 200 GPa
E2 = 70 GPa

d1 = 20 mm

L2 = 200 mm

d2 = 15 mm

uC

(1) (2)

B
A

C

L1 = 300 mm

PA

Fig. 1

FiFi
(i)

Li

Ai, Ei
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Element Force-Deformation Behavior: For the two uniform elements,

the force-deformation equation, Eq. 3.14, gives

, where (2)

Inserting numerical values into Eq. (2) gives the two element flexibility

coefficients

Note that element (2) is over three times as flexible as element (1), prima-

rily because of its smaller cross-sectional area and smaller modulus of

elasticity. Inserting these flexibility coefficients, together with the element

axial forces from Eq. (1), into Eq. (2) gives the two element elongations

(2	)

Thus, element (1) is shortened due to its compressive force while element

(2) elongates due to its tensile force.

Geometry of Deformation; Compatibility Equation: Since the two ele-

ments are attached end-to-end, the displacement of the right end of

element (1) is compatible with (i.e., equal to) the displacement of the left

end of element (2). Therefore, the displacement of end C is given by

(3)

This equation is called a compatibility equation, since it enforces the

condition that the respective end displacements of the two elements

joined together at B be compatible.

The final solution is

Ans.

Review the Solution Note how each of the quantities Li, Ai and Ei

enters into the element flexibility coefficients fi, and how these flexibilities

and the element forces Fi together determine the elongations of these

uniform elements.

 uC � 6.62(10�2) mm

 uC � e1 � e2 � �0.0955 mm � 0.1617 mm

Geometry of
Deformation

uC � e1 � e2

 e2 � f2F2 � 0.1617 mm

 e1 � f1F1 � �0.0955 mm

 f2 �
L2

A2E2

�
(200 mm)

(176.7 mm2)(70 kN/mm2)
� 1.62(10�2) mm/kN

 f1 �
L1

A1E1

�
(300 mm)

(314.2  mm2)(200 kN/mm2)
� 4.77(10�3) mm/kN

Element
Force-
Deformation

i � 1, 2fi �
Li

AiEi
,ei � fiFi

137

For end-to-end assemblages of elements, such as the one in Example 3.5, the

total elongation is given by the sum of the element elongations, that is,

(3.22)etotal �a
FiLi

AiEi
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Segmented Axial—is a program for solving statically determinate prob-

lems like Example 3.5.
MDS3.1

E X A M P L E  3 . 6

The rigid, weightless beam AC in Fig. 1 is supported at end A by a vertical

column, and at end C it is supported by a vertical rod CD that is attached

at D to a leveling jack, that is, a jack that can support the required load in

rod CD but can also move the vertical position of D upward or downward.

Point B, the point of application of load P, can be anywhere along the beam

AC, that is, anywhere in the range 0 � a � 1. The purpose of the leveling

jack is to keep beam AC perfectly level, regardless of the location of B.

(a) Determine the axial stresses �1 in the column and �2 in the rod

when the load P is on the beam. (b) Determine the downward displace-

ment uA of end A when the load is on the beam. (c) Finally, determine

the displacement uD required at the leveling jack for the beam AC to be

level under the given loading, that is, to make uC � uA. The relevant di-

mensions and material properties are:

Plan the Solution A free-body diagram of beam AC may be used in

solving for the axial forces in the column and support rod. Equation 3.14

can be used to express the elongation of each element in terms of its

axial force. Finally, the elongations of the two elements can be expressed

in terms of the displacements uA � uC and uD.

Solution (a) Axial stresses �1 and �2.

Equilibrium: The free-body diagram of beam AC in Fig. 2 will enable us

to write two equilibrium equations that relate the axial force F1 in the

column and F2 in the support rod to the external load P.

or

Equilibrium (1a,b)

Therefore, the axial stresses are

Ans. (a)

 s2 �
F2

A2

�
0.8 kips

0.8 in2
� 1.0 ksi � 1.0 ksi T

 s1 �
F1

A1

�
�1.2 kips

2 in2
� �0.6 ksi � 0.6 ksi C

 F2 � Pa � 2 kips (0.4) � 0.8 kips

 � �1.2 kips

 F1 � �P(1 � a) � �2 kips (0.6)

F2L � PaL � 0aaMb
A

� 0:

F1L � PL(1 � a) � 0aaMb
C

� 0:

 A1 � 2 in2, A2 � 0.8 in2, E1 � E2 � 30 � 103 ksi

 P � 2 kips, L1 � 10 ft, L2 � 5 ft, L � 10 ft, a � 0.4
Fig. 1

Fig. 2 Free-body diagram.

Leveling jack

aL

L

(1)

(2)

B
A

C

P

D

L1

L2

uD

uC
uA

aL L(1 – a)

BA C

P
F2

F1
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(b) The downward displacement uA. To determine the displacement uA,

we need to determine the change in the length of the column due to the

compressive force acting on it. At the same time, we can determine the

elongation of the rod due to the force F2 acting on it.

Element Force-Deformation Behavior: For the two uniform elements,

the force-deformation equation, Eq. 3.14. gives

where (2)

Inserting numerical values into Eq. (2) gives the two element flexibility

coefficients

Note that these two elements are almost equally flexible, even though

one is twice as long as the other. Inserting these flexibility coefficients,

together with the element axial forces from Eqs. (1a,b), into Eq. (2) gives

the two elements elongations

(2	a,b)

Thus, the column is shortened due to its compressive force while the rod

elongates due to its tensile force.

Geometry of Deformation: The elongation ei of each element is the dif-

ference between the displacements of its two ends:

(3a,b)

Therefore, from Eqs. (2	a) and (3a), the vertical displacement at A is

Ans. (b) (4)

(c) The displacement uD at the top of the support rod. The beam BC is

level whenever

uC � uA (5)

Therefore, from Eqs. (2	b), (3b), (4), and (5),

so

Ans. (c)uD � 0.40(10�3) in.  T

uD � uC � e2 � 2.40(10�3) in. � 2.00(10�3) in.

uA � 2.40(10�3) in.  T

 e2 � uC � uD

Geometry of
Deformation

 e1 � �uA

 e2 � f2F2 � 2.00(10�3) in.

 e1 � f1F1 � �2.40(10�3) in.

 f2 �
L2

A2E2

�
(60 in.)

(0.8 in2)(30 � 103 ksi)
� 2.50(10�3) in./kip

 f1 �
L1

A1E1

�
(120 in.)

(2 in2)(30 � 103 ksi)
� 2.00(10�3) in./kip

Element
Force-
Deformation

i � 1, 2fi �
Li

AiEi
,ei � fiFb
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Beam and Two Rods—is a program for solving statically determinate

problems similar to Example 3.6.

MDS3.2

Thus, to keep the beam AC level for the given position of the load, it

is necessary for the leveling jack to support a load of 0.8 kips while 

allowing rod-attachment point D to move downward the small amount

0.40(10�3) in.

Review the Solution For statically determinate problems, like this one,

the element forces can be determined from equilibrium alone, independ-

ent of the member sizes or the materials from which the members are

made. However, wherever displacements are required, the additional

equations come from the element force-deformation equations and the

geometry-of-deformation equations.

E X A M P L E  3 . 7

A wire of length L, cross-sectional area A, and modulus of elasticity E
supports a rigid beam of negligible weight, as shown in Fig. 1.When there

is no load acting on the beam, the beam is horizontal. (a) Determine an

expression for the axial stress in the wire AD when load P is applied at

the midpoint of beam BD. (b) Determine an expression for the vertical

displacement, �D, of end D, simplifying your solution by assuming that �D

is small (i.e.,

Plan the Solution Since this is a statically determinate structure. Part

(a) is very straightforward. We simply use equilibrium to determine an

expression for the force in the wire and divide that force by the cross-

sectional area of the wire to get the axial stress in the wire. In Part (b),

getting the correct geometrical relationship between the elongation of

the wire and the tip displacement �D will be the challenge! A deformation
diagram will help us visualize the geometry of deformation.

Solution (a) Axial stress in wire AD.

Equilibrium: Using the free-body diagram in Fig. 2, we can write an

equilibrium equation that relates the tensile force F in the wire to the ex-

ternal load P.

or

Equilibrium (1)

Therefore, the axial stress in the wire is

Ans. (a)s �
F
A

�
5

6
 
P
A

F �
5

6
P

�P a2L
5
b � a3

5
Fb a4L

5
b � 0aaMb

B
� 0:

dD V L).

Fig. 1

P

A

DCB

Rigid

δD

L, AE3L__
5

2L__
5

2L__
5
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Fig. 2 Free-body diagram.

P

4
3

5 D

F

C
x

y

Bx

By
2L__
5

2L__
5
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(b) Tip displacement of the beam. To determine the tip displacement of

the beam, we need to determine the elongation of the support wire

(force-deformation behavior) and then determine how far this elonga-

tion lets the beam rotate (geometry of deformation).

Element Force-Deformation Behavior: From the element force-defor-

mation equation. Eq. 3.13, we have

(2)

Geometry of Deformation; Compatibility Equation: Figure 3 is a de-
formation diagram that enables us to relate the elongation e of the

loaded support wire to the vertical displacement of D. The beam BD
is rigid, so end D would actually follow a circular arc about end B
when load P is applied to the beam, as indicated by the dashed circu-

lar arc in Fig. 3a. However, in Fig. 3b we have employed the simplify-

ing assumption that point D moves vertically downward to D*, which

differs little from moving along the circular arc so long as �D is small

(i.e., 4

Figure 3b is an expanded view of the vicinity of D showing the de-

formation triangle DD	D*, with side DD	 drawn perpendicular to the

wire in its final position AD*. Side DD* is the (approximated) vertical

displacement of D, while D	D* is the elongation of the wire, e � L* �
L. Angle � in Figs. 3a,b is a vertex of the 3-4-5 triangle ADB. The two

angles labeled �* in Fig. 3b are equal to each other and clearly, if �D is

very small, �* � �. Therefore, we can identify triangle D	DD* as a 3-4-5

triangle, so

(3)
Geometry of
Deformation

e �
3

5
dD

dD V L).

Element
Force-
Deformation

e �
FL
AE

Fig. 3 Deformation diagram.

4Example 2.5 in Sect. 2.3 shows how the Pythagorean Theorem can be used to calculate the exact elon-

gation of the wire in terms of the rotation of the rigid beam.

A

D
B

δD

L

L*

4L––
5

3L––
5

D

D*

D′

e

D* α* α

α*

α

(a)

(b)
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Pinned Beam and Strut—is a program for solving statically determinate

problems like Example 3.7.

All internal forces in the statically determinate structures in the previous three

examples were determined through use of the equations of statics (i.e., equilibrium

equations) alone. However, since the deformation of each structure was also to be

determined, it was necessary to use force-deformation behavior and geometric com-

patibility. Whenever the geometry of deformation is not simple, a deformation

diagram is very helpful, as is illustrated in Example 3.7.

In Sections 3.5 through 3.9 systematic procedures for treating statically indeter-
minate systems that have uniform axial-deformation members will be examined.

Table 3.2 shows how various “inputs” (e.g., external forces) are related to the

fundamental equations—equilibrium, force-temperature-deformation behavior, and

geometry of deformation. The three cases that are listed in Table 3.2—external

forces, temperature changes, and geometric misfits—are discussed in Sections 3.5, 3.6,

and 3.7, respectively.

MDS3.3

This equation may be called a compatibility equation, since it enforces

the condition that the end of the wire and the end of the beam undergo

the same displacement from D to D*.

Solution of the Equations: Since this is a statically determinate problem,

we were able to determine the element force in Eq. (1) from equilibrium

alone. This force can be substituted into the element force-deformation

equation, Eq. (2), giving

(4)

Finally, this result can be substituted into the compatibility equation,

Eq. (3), to give the tip displacement �D.

Ans. (b)

Review the Solution The right-hand side of the answer has the correct

dimension of length. A larger force should produce a larger tip displace-

ment, which it does. Likewise, a larger area or a larger value of E should

reduce the tip displacement, as is the case.Therefore, the answer we have

obtained seems reasonable.

dD �
25

18
 aPL

AE
b

e �
5

6
 aPL

AE
b

T A B L E  3 . 2 A Summary of Basic Problem Types

Relevant Equation Set “Input” Sect.

(1) Equilibrium External forces 3.5

(2) Element force-temperature-deformation Temperature changes 3.6

(3) Deformation geometry Geometric misfits 3.7

142

c03AxialDeformation.qxd  8/31/10  7:22 PM  Page 142



3.5 STATICALLY INDETERMINATE STRUCTURES

Figure 3.14 shows two structures, each consisting of two collinear elements. Acting

on the structure in Fig. 3.14a are two known forces, PB and PC, and one reaction,

PA. The reaction at the left end and the axial force in each of the two elements of

the structure in Fig. 3.14a can be determined from statics alone, that is, by draw-

ing free-body diagrams and solving equilibrium equations.The values of these forces

are independent of the materials involved and other member properties (e.g., cross-

sectional area or length). Structures of this type are called statically determinate
structures.

On the other hand, both ends of the structure in Fig. 3.14b are attached to rigid

walls, so there are two unknown reactions PA and PC, but only one known load, PB.

Since there is only one useful equilibrium equation, summation of forces in the axial

direction, it is not possible to determine both reactions from equilibrium alone. To

determine the reactions and element forces for this case it is necessary to consider

the deformation of the elements, and this involves member sizes and materials.5

Such structures are classified as statically indeterminate. Analysis of statically inde-

terminate structures thus involves all of the three fundamental types of equations:

equilibrium, element force-deformation behavior, and geometry of deformation. In

this section we will illustrate the steps involved in the analysis of statically indeter-

minate structures.

Analysis of a Typical Statically Indeterminate Structure. Consider the

simple two-element structure in Fig. 3.15a. Let us first determine the internal axial

forces, F1 and F2, in the elements; then we will determine the displacement, uB, of the

node (joint) between the two elements.

Equilibrium: Since the forces F1 and F2 are constant along their respective elements,

we can use the free-body diagrams shown in Fig. 3.15b. The free-body diagram of

node B will enable us to write an equilibrium equation that relates the external load
PB at joint B to the internal forces F1 and F2 in the elements adjoining B.

Equilibrium (1)F1 � F2 � PBS� a F � 0:

5If displacements are required, member sizes and materials must be considered for statically determinate

structures as well as for statically indeterminate structures, as demonstrated in Examples 3.5–3.7.

FIGURE 3.14 Two two-element structures.

(2)(1)

A B C

PA PC
PB

(a)  A statically determinate structure.

(2)(1)

A B C

PA PC
PB

(b)  A statically indeterminate structure.
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The reactions at ends A and C are related to the element forces by equilibrium

equations for node A and node C, respectively,

(1	)

and they can easily be determined once we have solved for the element forces F1

and F2.

This structure is called statically indeterminate, because it is not possible to de-

termine two unknown element forces from the single equilibrium equation, Eq. (1).

The fact that bar AC is attached to rigid walls at both A and C prevents the length

of the member from changing, and this constraint provides the needed additional

equation, eAC � 0. Such constraints on the deformation of a structure are called

compatibility conditions, and they involve the geometry of deformation.

But the compatibility equation is expressed directly in terms of geometric quan-

tities, not in terms of forces, like the equilibrium equation, Eq. (1). To address this,

we first recall the force-deformation equations of the two elements, which relate

forces to deformation quantities. Then we will be able to continue our discussion of

the compatibility equation.

Element Force-Deformation Behavior: From the element force-deformation equa-

tion, Eq. 3.14, we have

(2a,b)

where the flexibility coefficients are and We are now prepared

to consider the geometry of deformation, involving the element elongations e1 and e2.

Geometry of Deformation; Compatibility Equation: Both ends of bar AC are fixed

to rigid walls, so the two reactions not only support the bar AC, but they also force

the total elongation of the bar to be zero. This constraint condition arises from the

geometry of deformation and provides the following compatibility equation:

Compatibility (3)eAC � e1 � e2 � 0

f2 �
2L
AE

�f1 �
L

AE

Element
Force-
Deformation
Behavior

e2 � f2F2e1 � f1F1,

PC � F2PA � �F1,

144
Axial Deformation (2)(1)

A B C

PA PC
PB

uB

L2L1

A1 = A2 = A,  E1 = E2 = E,  L1 = L,  L2 = 2L

(a)  A two-element structure with fixed ends.  

(b)  Free-body diagrams of nodes A, B, and C.

F2F2F1

F1
(2)

C

PC
(1)

A

PA

B

PB

FIGURE 3.15 A statically indeterminate structure.
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Solution of the Equations: In Eqs. (1) through (3) there are four equations and four

unknowns. Therefore, it is a matter of solving these four equations simultaneously

to determine the four unknowns. We are first interested in determining the element
forces. Therefore, we can eliminate the ei’s by substituting Eqs. (2a,b) into Eq. (3),

which gives the following compatibility equation written in terms of element forces:

or

(4)

Finally, the equilibrium equation (1) and the compatibility equation (4) can be

solved simultaneously to give the following:

Ans. (5a,b)

These element forces, then, are the primary solution for this statically indeterminate

structure.

Note that, because element (2) is twice as long as element (1), it is twice as

flexible (i.e., f2 � 2f1). Said another way, element (1) is twice as stiff as element (2)

(i.e., k1 � 2k2). Therefore, a larger part of the load PB is transferred by element (1)

to the left wall than is transferred to the right wall by element (2). Had the two

elements been of equal length, half of load PB would have been transmitted to each

wall. This illustrates the fact that, for statically indeterminate structures, the reac-
tions and the internal element forces depend on the element sizes and material
properties—Ai, Li, and Ei—and cannot be determined by statics alone.

Displacement of Node B: In the problem statement we were asked not only to de-

termine the element forces but also to determine the displacement of node B. From

Fig. 3.15a we can see that uB can be obtained from either of the following two

geometry-of-deformation equations:

(6a,b)

Therefore, combining Eqs. (2a), (5a), and (6a) [or Eqs. (2b), (5b), and (6b)] we get

Ans.

End-to-End Bars—is an MDS program for analyzing statically indeter-

minate structures like the one in Fig. 3.15a.

Solution Procedure; Basic Force Method. The key steps that are required

for analyzing statically indeterminate structures are: (1) to write down the equilib-
rium equations that will be needed for determining the unknown forces; and (2) to

write down all of the force-deformation equations that relate the forces in the equi-

librium equations to the displacement quantities in the compatibility equations. The

third key step is (3) to write down the compatibility equations that characterize any

geometric constraints on the deformation of the structure.

MDS3.4

uB �
2PBL
3AE

Geometry of
DeformationuB � �e2uB � e1,

F2 � �
PB

3
F1 �

2PB

3
,

Compatibility 
in Terms of
Element Forces

F1 a L
AE
b � F2 a 2L

AE
b � 0

f1F1 � f2F2 � 0
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With the aid of the following Procedure, you should review the steps that were

used to analyze the statically indeterminate structure shown in Fig. 3.15a. The flow

chart that follows is just to provide a more graphic reminder of the role played by

each of the three fundamental types of equations in the analysis of statically inde-

terminate structures, and to outline a straightforward solution procedure for you to

use in solving (homework and exam) problems.

146
Axial Deformation

SOLUTION PROCEDURE: BASIC FORCE METHOD

� SET UP THE FUNDAMENTAL EQUATIONS:

(1) Let NE, be the number of independent equilibrium equa-

tions. Using free-body diagrams, write down NE inde-
pendent equilibrium equations.

(2) Write an element force-deformation equation for each

axial-deformation element. Equation 3.14 is the most

convenient form to use.

where (3.14)

repeated

(3) Use geometry of deformation to write down the compat-
ibility equation(s) in terms of the element elongations, ei.

� SOLVE FOR THE UNKNOWN FORCES:

(4) Substitute the element force-deformation equations of

Step 2 into the geometric-compatibility equations of

Step 3. This gives the geometric-compatibility equations
in terms of the unknown element forces.

fi �
Li

AiEi
ei � fiFi,

(5) The final step in determining the unknown forces is to

solve simultaneously the equilibrium equations (Step 1)

and the compatibility equations written in terms of ele-

ment forces (Step 4).

� SOLVE FOR THE DISPLACEMENTS:

(6) To obtain system displacements, if they are required,

substitute the element forces into the force-deformation

equations of Step 2. Finally, use geometry of deforma-

tion to relate element elongations to system displace-

ments.

(7) Review the solution to make sure that all answers seem

to be correct.

The method that is presented here is quite adequate for carrying out the analy-

sis of the relatively simple statically indeterminate structures in this chapter. For ref-

erence purposes, this method has been given the label Basic Force Method, because

the key (i.e., first) answers that are obtained are forces. Methods labeled the

Displacement Method and the Force Method, more formalized methods that are suit-

able for computer-based analysis of very complex structures, are introduced in

Equilibrium
Equations

Force-
Deformation
Equations
ei = fiFi

Compatibility
Equation(s)
in Terms of
Elongations ei

FORCES
Compatibility
in Terms of
Unknown Forces

BASIC FORCE METHOD

Solve
simultaneously

(3)

(2)

(1)
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Sections 3.8 and 3.9, respectively, and are treated in greater detail in textbooks on

structural analysis and in textbooks on finite element analysis. Of course, the

Displacement Method and the Force Method are also suited for solving simpler

problems, such as the Example problems in the remainder of this chapter.

Each extra constraint that is added to a structure, beyond the support that is

required for stable equilibrium, gives rise to an additional redundant force, so there
will always be as many constraint equations as there are unknown redundant forces.
This fact is illustrated in Examples 3.8 and 3.9.

147
Statically Indeterminate

Structures

E X A M P L E  3 . 8

A load P is hung from the end of a rigid beam AD, which is supported

by a pin at end A and by two uniform hanger rods (see Fig. 1). How much

load, to the nearest 100 pounds, can be applied without exceeding an allow-

able tensile stress of �allow � 30 ksi in either of the rods? Assume small-

angle rotation of AD.

Plan the Solution This problem is not quite as straightforward as the

previous one that served to introduce statically indeterminate structures.

Now the load is unknown, but the allowable axial stresses are known.

Since the axial stress in an element is just the (internal) axial force in the

element divided by its area, it is clear that we must eventually get equa-

tions that relate F1 and F2, the axial forces in the two rods, to the load P.

Solution Let us begin by writing down the three fundamental types of

equations.

Equilibrium: We must ask ourselves the question: What free-body dia-

gram(s) would lead to an equilibrium equation (or equations) that relate

the external load P to the internal element forces F1 and F2? Clearly, a

free-body diagram of the rigid beam AD should be used.

Since we are not specifically asked to determine the reactions Ax and

Ay, we do not need to sum forces. A moment equation for the free-body

diagram in Fig. 2 will directly relate F1 and F2 to P, so we write

Equilibrium (1)aF1 � bF2 � cP � 0aaMb
A

� 0:

Fig. 1

P

C

(1)

“Rigid”

(2)

DB

E

F

A

L2

L1

a
b

c

a � 50 in., b � 100 in., c � 150 in., L1 � 80 in., L2 � 50 in.

E � 10 � 103 ksi, A1 � 1.0 in2, A2 � 0.5 in2

P

C DBA

Ax

F1 F2

Ay

a

y

x

b
c

Fig. 2 Free-body diagram.
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Since there are two unknown forces and only one equilibrium equation,

the structure is statically indeterminate. Since the beam AD could be

supported by just one hanger rod, one of the rods is redundant.

Element Force-Deformation Behavior: It will be convenient to use the

form given in Eq. 3.14.

(2)

where the values of the flexibility coefficients for the hanger rods, labeled

(1) and (2) in Fig. 1, are

Geometry of Deformation: Because AD is assumed to be rigid, we can

sketch a deformation diagram that relates the elongations of the hanger

rods to the rotation of the beam AD about A (Fig. 3). Since the rotation

angle is assumed to be small, we can assume that points B and C move

vertically downward (instead of along arcs of circles with centers at A),

and we can therefore use the properties of similar triangles to get the

compatibility equation

(3)

Therefore, the rigid beam constrains the two hanger-rod elongations to

satisfy this compatibility equation.

Solution of the Equations: To solve for the internal forces, we can

eliminate the element elongations, e1 and e2, by substituting the force-

deformation equations into the compatibility equation to get the follow-

ing compatibility equation in terms of the unknown element forces.

(4)

In Eqs. (1) and (4) we have two equations in terms of the two unknown

internal forces. These can be solved simultaneously to give expressions

that relate the forces F1 and F2 to the external load P.

(5a,b)

F2 � a bcf1

a2f2 � b2f1

bP

F1 � a acf2

a2f2 � b2f1

bP

Compatibility
in Terms of
Forces

f2F2 � ab
a
b f1F1

Deformation
Geometrye2 � ab

a
b e1

u

 f2 � a L
AE
b

2

�
50 in.

(0.5 in2)(10 � 103 ksi)
� 10.00(10�3) in./kip

 f1 � a L
AE
b

1

�
80 in.

(1.0 in2)(10 � 103 ksi)
� 8.00(10�3) in./kip

e1 � f1F1, e2 � f2F2

Element Force-
Deformation
Behavior

A D

D*

e1 e2 θ

a
b

Fig. 3 Deformation diagram.
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Allowable Load: Let us now substitute numerical values from Fig. 1 and

numerical values for the flexibility coefficients f1 and f2 into Eqs. (5).

From Eqs. (5),

(6a,b)

Now we can relate the external load P to the allowable stress. With F1

and F2 given by Eqs. (6), we get the following expressions for the stresses

in the rods:

(7a,b)

Since rod (2) is more highly stressed than rod (1), we set �2 equal to the

allowable stress and get

Ans.

Review the Solution One way to verify the results is to check compatibility.

Is Yes

a100 in.

50 in.
b [8.00(10�3) in./kip]  a15

21
b P(kips)

[10.00(10�3) in./kip]  a24

21
b P (kips) �

f2F2 � ab
a
b f1F1?

Pallow �
21

24
(0.5 in2)sallow � 13.1 kips

 s2 �
F2

A2

�
(24/21)(P kips)

(0.5 in2)
7 s1

 s1 �
F1

A1

�
(15/21)(P kips)

(1.0 in2)

F1 � a15

21
bP,  F2 � a24

21
bP

Rigid Member and Two Bars—is an MDS program for analyzing stati-

cally indeterminate structures like the one in Example 3.8.

In Example 3.8. there is only one equilibrium equation, but there are two

unknown internal forces, F1 and F2, Therefore, there is one redundant force. How

ever, to solve for both forces it was not necessary to identify either one of them

specifically as the redundant force. Example 3.9 illustrates how to analyze statically

indeterminate structural systems with more than one redundant force, that is, where

the number of unknown forces in the equilibrium equation(s) exceeds the number

of equilibrium equations by two or more.

MDS3.6

E X A M P L E  3 . 9

The structural assemblage in Fig. 1 is made up of three uniform ele-

ments, or members. Element (1) is a solid rod. Element (2) is a pipe

that surrounds element (3), which is a solid rod that is identical to ele-

ment (1) and collinear with it. The three elements are all attached at B

149
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Fig. 1 The original structure.

to a rigid plate of negligible thickness. With no external force at B, the

three-element assemblage exactly fits between the rigid walls at A and

C; its ends are then attached to the two walls. Determine expressions

for the axial forces in the three elements when an external force PB is

applied at B.

Plan the Solution We can think of this structure as being composed of

three uniform elements and one connecting node (joint), and we can

write an equilibrium equation for node B. Using Eq. 3.14, we can write a

force-deformation equation for each of the three elements.We can relate

the element elongations to each other through the displacement at B.

Finally, we can use the Basic Force Method to combine these three sets

of fundamental equations to get expressions for the forces in the individ-

ual elements.

If the external force PB acts to the right (i.e., if it is positive), we

should find that the left-hand element is in tension and the two right-

hand elements are in compression.

Solution

Equilibrium: From the free-body diagram of node B in Fig. 2,

Equilibrium (1)

Equation (1) relates the three unknown internal element forces to the

known external load. Since there are three unknown forces, but only one

equilibrium equation, this system is statically indeterminate and there are

two redundant forces.

Element Force-Deformation Behavior: We have three uniform, axial-

deformation elements, and for each one we can write an element force-

deformation equation like Eq. 3.14. We have called the element forces

F1, F2, and F3 (tension positive), so we have

where 

where (3a–c)

where 

In Eqs. (2) the e’s are the element elongations. A positive Fi (tension)

produces a positive ei (element gets longer), since the fi’s are, by defini-

tion, positive.

f3 � (L3/A3E3)e3 � f3F3,

f2 � (L2/A2E2)e2 � f2F2,

f1 � (L1/A1E1)e1 � f1F1,

�F1 � F2 � F3 � PB � 0S�a Fx � 0:

Element 
Force-
Deformation 
Behavior

B

PB and F1 are collinear with F3.
F2 is distributed around the
circumference of the pipe.

F3 F2
F1

PB

Fig. 2 Free-body diagram of the plate

at B.
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(3)

(2) (2) outer pipe

(3) inner rod

(1)

A B C

PB

uB
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Geometry of Deformation: Referring to Fig. 1, we can easily relate the

elongation of each of the three elements to the displacement uB by using

the definition of elongation of an element, that is, e � u(L) � u(0). So,

Here we have used the fact that the displacements at joints A and C are

zero. Note that, since e is positive when an element gets longer, a displace-

ment of joint B to the right by an amount uB implies a shortening of

elements (2) and (3) by that amount; hence the minus sign for e2 and e3.We

can eliminate uB and write the above as two compatibility equations:

(3a,b)

The fact that there are two compatibility equations is consistent with the fact

that there are two redundant forces in the equilibrium equation. There will

always be as many compatibility equations as there are redundant forces!

Solution of the Equations: If we count equations and unknowns, we find

that we have six equations and six unknowns. Rather than just combine

Eqs. (1) through (3) in some arbitrary order, we will follow the Basic

Force Method.

Substitute Eqs. (2) (element force-deformation) into Eqs. (3) (defor-

mation compatibility) to obtain the compatibility equations written in

terms of forces.

(4a,b)

We now have three equations, Eqs. (1) and (4a,b), in three unknowns, the

three element forces. We solve these equations simultaneously to get the

following expressions for the three unknown element forces:

Ans. (5a–c)

Review the Solution As one check of our work, we can substitute Eqs.

(5) back into Eqs. (4a,b) to see if deformation compatibility is satisfied.

and Yes.

The fact that the compatibility equations, Eqs. (4a,b), are satisfied by our an-

swers means that we have probably not made errors in our solution. Also,

from Eqs. (5) we see that, when PB is positive, element (1) is in tension and

elements (2) and (3) are in compression. This is what we expected to find.

f3F3 � f2F2?Are f2F2 � �f1F1

 F3 � a �f1 f2

f1 f2 � f2 f3 � f1 f3

bPB

 F2 � a �f1 f3

f1 f2 � f2 f3 � f1 f3

bPB

 F1 � a f2 f3

f1 f2 � f2 f3 � f1 f3

bPB

 f3F3 � f2F2

 f2F2 � �f1F1

 e3 � e2

 e2 � �e1

e1 � �e2 � �e3 � uB

Geometry of
Deformation

Compatibility 
in Terms of
Element Forces
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Coaxial Bars An MDS program for analyzing statically indeterminate

sleeve/rod systems like segment BC in Example 3.9.

MDS3.5152
Axial Deformation

In Section 2.3 the formula given for thermal strain is

(3.23)

where � is the coefficient of thermal expansion and �T is the temperature increase

above the reference temperature (e.g., room temperature). Generally a positive �T
causes a tendency for the bar to expand, so � is positive. In a few cases there are

materials for which � is zero or negative (i.e., materials that remain undeformed or

actually contract when the temperature increases), but these are rare indeed.

In this section we examine thermal effects on slender members undergoing axial

deformation. Consider the two axial-deformation members shown in Fig. 3.16.

Member AB is supported along its length by a smooth surface and restrained only at

end A so that, when heated or cooled, it is free to expand or contract. No axial force

(or stress) is induced in this member, since it can freely expand or contract.6 Member

CD is assumed to be force-free when it is attached at both ends to a rigid base. If it is

subsequently heated, it will tend to expand in accordance with Eq. 3.23. However,

since it is prevented from expanding by the rigid walls, a compressive force will be in-

duced in this member. Conversely, if it is cooled, it will tend to contract and pull away

from the rigid walls, and in the process, tension will be induced in this member. Even

if the base to which member CD is attached is not completely rigid, the presence of

some restraining structure will cause compressive stress to be induced in CD as a re-

sult of heating the bar, and tension will be induced by cooling the bar.

If we consider only slender members, where it is reasonable to assume that the

only significant normal stress is the axial stress � � �x (i.e., we assume that �y and �z

are negligible), than Eq. 2.38a (Section 2.13) gives the following total strain equation:

(3.24)� � �s � �T �
s

E
� a¢T

Thermal
Strain

�T � a¢T

3.6 THERMAL EFFECTS ON AXIAL DEFORMATION

6Although there would also he thermal strains in the lateral directions as well as in the axial direction,

these will be ignored here. Since the members are assumed to be free to expand or contract laterally,

these lateral thermal strains will not affect the axial stress in the member.

A

C D

B

Expansion
(ΔT > 0)

Smooth
surface

“Rigid”
base

ΔT = 0

FIGURE 3.16 Restraint of thermal deformation.
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Equation 3.24 is the stress-strain-temperature equation for axial deformation of a

slender, linearly elastic member.

From Eq. 3.24 it is clear that the total axial strain is the sum of a strain due to

the axial stress � and a thermal strain due to the temperature change �T.To get some

feel for the magnitude of each of these terms, suppose that a fixed-end bar, like bar

CD in Fig. 3.16, is made of structural steel (E � 29 �103 ksi, � � 6.5 � 10�6/�F, and

�YP � 36 ksi) and is uniformly heated by 100�F. If the walls to which the bar is at-

tached are rigid, then and, from Eq. 3.24, the following axial stress would be

induced in the bar:

Thus, a temperature change of only 100�F causes an induced compressive stress that

is about half the yield stress. From these numbers we can conclude that, in parts of a
structure that are not free to expand or contract, significant stresses can be induced by
reasonable changes in temperature. For example, thermally induced stress is a very

important consideration in the design of a spacecraft that is to spend part of each orbit

directly exposed to the heat of the sun and part in pitch dark, where it is extremely

cold. It is also a significant consideration in the design of bridges and many other

structures and machines.

To solve axial-deformation problems that involve temperature change, we need

to use the stress-strain-temperature equation, Eq. 3.24, but we also need to account

for equilibrium and for the geometry of deformation. If we restrict our attention to

axial-deformation situations where E, �, and �T may depend on x but are independ-

ent of position in the cross section, the axial stress is uniform over any cross section

and is given by the familiar axial stress formula:

(3.9)

repeated

Combining Eqs. 3.9 and 3.24, we get the following expression for the total axial

strain:

(3.25)

The total elongation is related to the total axial strain by

(3.3)

repeated

Finally, the total elongation of the member is

(3.26)

The following examples illustrate the application of Eqs. 3.9 and 3.26 Problems

of this type are sometimes referred to as thermal stress problems.

e � �
L

0

F(x) dx

A(x)E(x)
� �

L

0

a(x)¢T(x) dx

e � �
L

0

�(x)dx

�(x) �
F(x)

A(x)E(x)
� a(x)¢T(x)

Axial 
Stress
Formula

s � s(x) �
F(x)

A(x)

 � �18.85 ksi � 18.85 ksi(C)

 � �(29 � 103 ksi)(6.5 � 10�6/°F)(100°F)

 (s)T�100°F � �Ea¢T

� � 0,

�

153
Thermal Effects on 
Axial Deformation

Force-
Temperature-
Deformation

c03AxialDeformation.qxd  8/31/10  7:23 PM  Page 153



E X A M P L E  3 . 1 0

The slender, uniform rod in Fig. 1 is attached to rigid supports at A and

B, and it is stress-free when �T � 0. It is surrounded by a heating ele-

ment that is capable of producing the linearly varying temperature

change �T(x) shown in Fig. 2. Determine the stress distribution �(x) that

is induced by this nonuniform heating.

Plan the Solution The only external forces applied to the rod AB are

the reactions at A and B, as shown in Fig. 1. We can use a free-body dia-

gram to relate F(x) to PA (or PB). Since the supports at A and B are rigid,

the total elongation of AB is zero. Since �T � 0 all along the bar, we can

expect a compressive stress to result.

Fig. 1 A heated, uniform bar.

Heating coil

PA

A

PB

B

L
x

A = const
E = const
α = const

Solution

Equilibrium: To determine how F(x) varies with x, we draw the free-

body diagram shown in Fig, 3, with a cut at an arbitrary section x,

Equilibrium (1)

Force-Temperature-Deformation Behavior: From Eq. 3.26

From Fig. 2, the temperature distribution is given by

Then, since F(x) � const,

or

(2)e �
FL
AE

� aL a¢TA � ¢TB

2
b

e �
FL
AE

� a�
L

0

c¢TA � (¢TB � ¢TA)a x
L
b ddx

¢T(x) � ¢TA � (¢TB � ¢TA)aX
L
b

e � �
L

0

a F
AE

� a¢T(x)b dx

F(x) � �PA � constS�a Fx � 0:

Fig. 2 The temperature change.

Fig. 3 Free-body diagram.

Force-
Temperature-
Deformation 
Behavior

ΔT(x)

ΔTB

ΔTA

x
L

x

PA F(x)
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Geometry of Deformation: Since the ends of the rod cannot move,

(3)

Solution: Combine Eqs. (2) and (3) to get

(4)

Then, since 

Ans. (5)

Review the Solution The right-hand side of Eq. (5) has the dimensions

of stress (F/L2), as it should. The stress is negative, which is what we

would expect to happen when the bar is heated.

It may surprise you that the stress is independent of x, even though

�T varies with x. This is the direct consequence of the fact that the equi-

librium equation, Eq. (1), states that F(x) is a constant, not a function of

x, as �T is!

s � �Ea a¢TA � ¢TB

2
b

s �
F
A

,

F � �AEa a¢TA � ¢TB

2
b

Geometry of
Deformatione � 0

Uniform Axial-Deformation Element. Let us now consider the uniformly

heated (or cooled), uniform axial-deformation element in Fig. 3.17. To determine

the force-temperature-deformation equation for this uniform member subjected to

an axial force and a uniform temperature change, we can essentially repeat the steps

of Section 3.2.

Equilibrium: Draw a free-body diagram with the member cut at an arbitrary sec-

tion x.

:

From Eq. 3.9,

s �
F(x)

A(x)
�

F
A

� const

F(x) � F � constS�a Fx

x
L

F

AE = const, α = const, ΔT = const

FF(x)

(a) A uniform element with axial force F and with ΔT = const.

(b) Free-body diagram.

FIGURE 3.17 A heated (cooled) axial-deformation element.
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Force-Temperature-Deformation Equations: From Eq. 3.26, then,

Thus, the total elongation, e, consists of the elongation due to the axial force F, plus

the elongation due to the uniform temperature change �T.

(3.27)

In terms of the stiffness coefficient, we can write Eq. 3.27 as

(3.28)

It is important to note that, in Eqs. 3.27 and 3.28, e is the total elongation. Therefore,

when you are dealing with the geometry of deformation, this is the total change in

length of the member, which is therefore directly related to the displacements of the

two ends of the element.

The only fundamental equations that are affected by temperature change are the

force-deformation equations, Eqs. 3.14 and 3.15, which are replaced by the force-
temperature-deformation equations, Eqs. 3.27 and 3.28, respectively. No changes are
required in the equilibrium equations or deformation-geometry equations!

Thermal-Stress Example Problems. Recall that a temperature change in-

duces stresses in statically indeterminate structures, but not in statically determinate

structures. We will now solve several example problems that involve temperature

changes in statically indeterminate structures.

k �
AE
L

F � k(e � aL¢T),

f �
L

AE
e � fF � aL¢T,

e � �
L

0

� dx �
FL
AE

� aL¢T

156
Axial Deformation

E X A M P L E  3 . 11

Two elements are stress-free when they are welded together at B and

welded to rigid walls at A and C (Fig. 1). Subsequently, element (1) is heated

by an amount �T, while element (2) is held at the reference temperature.

Determine an expression for the axial force induced in each element, and

determine an expression for the displacement uB of the joint at B.

Plan the Solution This problem can be solved by using the same Basic-

Force-Method steps that were employed in Section 3.5. To incorporate

the thermal strain, we just need to use Eq. 3.27 instead of Eq. 3.14. Since

element (1) is heated, it will push on element (2), and both elements will

therefore have an induced compressive stress.

Solution

Equilibrium: Although there are no external loads, that is, no external

forces other than the reactions at A and C, we still need an equilibrium

(1) (2)

B
C

A

uB

A2A1, α1

L1 L2

E = const

Fig. 1
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equation of the joint at B in order to relate the element forces to each

other (Fig. 2). Note that tension is assumed positive.

Equilibrium (1)

Since there are two unknown forces but only one equilibrium equa-

tion, this is a statically indeterminate system of bars. Therefore, we must

turn to the geometry of deformation for an appropriate compatibility

equation.To prepare for this, however, we first establish the correct form

for relating the element forces to the total elongations of the elements,

including thermal effects.

Element Force-Temperature-Deformation Behavior: These are the equa-

tions through which the temperature effect directly enters the solution,

and they also relate the forces in the equilibrium equation to the elonga-

tions in the deformation-geometry equation. Equation 3.27 is the appro-

priate equation to use. We write this equation for each element, noting

that �T1 � �T and �T2 � 0.

(2a,b)

where 

Geometry of Deformation: The elongations e1 and e2 in Eqs. (2) are the

total elongations of the respective elements, due to both stress and tem-

perature. Therefore, the compatibility equation is simply

(3)

Solution for Element Forces: Following the procedure of the Basic Force

Method, we can eliminate the e’s by substituting Eqs. (2) into Eq. (3),

giving the following compatibility equation in terms of forces:

(4)

Inserting expressions for the fi’s into Eq. (4), and solving Eqs. (1) and (4)

simultaneously, we get

Ans. (5)

Solution for the Displacement of B: To obtain an expression for the dis-

placement uB we can see from Fig. 1 that element (1) is elongated by an

amount uB while element (2) is shortened by an amount uB, which leads

to Eq. (3). Since Eq. (2b) is shorter than Eq. (2a), we will use

(6)

so

Ans. (7)uB � �f2F2 � a A1L2

A1L2 � A2L1

b(a1L1¢T)

e2 � �uB

F1 � F2 �
�A1A2Ea1L1¢T

A1L2 � A2L1

f1F1 � f2F2 � �a1L1¢T

eAC � e1 � e2 � 0

fi � (L/AE)i.

 e2 � f2F2

 e1 � f1F1 � a1L1¢T

�F1 � F2 � 0S�a Fx � 0:

Geometry of
Deformation

Compatibility 
in Terms of 
Element Forces

Geometry of
Deformation

B
F1 F2

(1) (2)

Fig. 2 Free-body diagram.

Element Force-
Temperature-
Deformation
Behavior
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End-to-End Bars w/Temperature is a program for analyzing tempera-

ture-induced forces in statically indeterminate structures, like the one in Example 3.11,

by the Basic Force Method.

MDS3.7

E X A M P L E  3 . 1 2

In Fig. 1 a cylindrical aluminum core (2) is surrounded by a titanium sleeve

(1), and both are attached at each end to a rigid end-plate.Assume that the

core and the outer sleeve are both stress-free at the reference tempera-

ture. Set up the fundamental equations and solve for the following: (a) the

stress induced in each member if the entire composite bar is heated by

100�F, and (b) the resulting elongation of the composite bar.

View a–a
40 in.

Titanium sleeve (Elem. 1)

Aluminum core (Elem.2)

a

a

Fig. 1 Member with two coaxial elements.

 A2 � 1.0 in2, a2 � 13 � 10�6/°F, E2 � 10 � 103 ksi

 A1 � 1.0 in2, a1 � 5 � 10�6/°F,  E1 � 16 � 103 ksi

Plan the Solution This two-element problem is simple enough so that

we can reason that, because �alum � �titan, the aluminum will tend to ex-

pand more than the titanium and will therefore be in compression if both

are heated the same amount. However, in a more complicated situation

we would essentially have to solve the entire problem just to determine

which elements are in compression and which are in tension. Fortunately,

we do not have to do this! We just assume tension in each element and

let the final solution tell us which element is in tension and which is in

compression.

Solution (a) Solve for the stress in each component.

Equilibrium: The basic question to ask in setting up the equilibrium

equation is: What free-body diagram can I use that will relate the internal

Review the Solution As we would expect, heating element (1) causes a

compression to be induced in both elements and, since there is no exter-

nal force on the joint connecting the two elements, the same compressive

force is induced in both elements. The right-hand side of Eq. (5) has

the proper dimensions of force, and the right-hand side of Eq. (7) has the

proper dimensions of displacement.Also, it can be seen that the displace-

ment uB is less than the free expansion of element (1) would be if ele-

ment (2) were not there.

c03AxialDeformation.qxd  8/31/10  7:23 PM  Page 158



element forces to each other and to the external loads? (In this example,

there are no external loads.) The answer is, of course, one of the end-plates

to which both the core and the sleeve are attached, as shown in Fig. 2.

Equilibrium (1)

Element Force-Temperature-Deformation Behavior: We use the force-

temperature-deformation (F-T-D) format of Eq. 3.27, which involves

flexibility coefficients, fi:

(2a,b)

where

Geometry of Deformation: Let � be the displacement of the right-hand

end-plate, as shown in the deformation diagram, Fig. 3, and recall that e1

and e2 are the total elongations of the respective elements. Then, the

appropriate compatibility equation is

(3)

Solution for Element Forces: In Eqs. (1) through (3) we have four equa-

tions in four unknowns. Since we want to solve for the member stresses,

we can eliminate the e’s by substituting Eqs. (2) into Eq. (3), getting

(4)

This compatibility equation written in terms of forces can now be solved

simultaneously with the equilibrium equation, Eq. (1), to give

so, the forces in the titanium sleeve and aluminum core, respectively, are

(5)F1 � 4.92 kips, F2 � �4.92 kips

 �
0.052 in. � 0.020 in.

2.50(10�3) in./kip � 4.00(10�3) in./kip

 F1 � �F2 �
a2L¢T � a1L¢T

f1 � f2

f1F1 � a1L1¢T1 � f2F2 � a2L2¢T2

Geometry of
Deformation

e1 � e2

 a2L2¢T2 � (13 � 10�6/°F)(40 in.)(100°F) � 0.052 in.

 a1L1¢T1 � (5 � 10�6/°F)(40 in.)(100°F) � 0.020 in.

 f2 � a L
AE
b

2

�
(40 in.)

(1.0 in2)(10 � 103 ksi)
� 4.00(10�3) in./kip

 f1 � a L
AE
b

1

�
(40 in.)

(1.0 in2)(16 � 103 ksi)
� 2.50(10�3) in./kip

 e2 � f2F2 � a2L2¢T2

 e1 � f1F1 � a1L1¢T1

�F1 � F2 � 0S�a Fx � 0:

Element Force-
Temperature-
Deformation
Behavior

F2F1

Fig. 2 Free-body diagram.

Compatibility 
in Terms of 
Element Forces
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40 in.

δ

Fig. 3 Deformation diagram.
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The above examples clearly illustrate that the solution of thermal-deformation
problems involving axial deformation of uniform elements only requires a modifi-
cation of the element force-displacement equations, but absolutely no change to
either the equilibrium equations or the deformation-geometry equations.

Coaxial Bars w/Temperature is a program for analyzing temperature-

induced forces in statically indeterminate structures, like the one in Example 3.12,

by the Basic Force Method.

Rigid Member and Two Bars w/Temperature is a program for analyzing

statically indeterminate structures like the one in Example 3.8, with temperature

change added.

Next, let us consider a problem that involves both an externally applied load

and a temperature change of a member. Note that the external force enters through

the equilibrium equation, while the temperature change enters through the force-

temperature-deformation equation.

MDS3.9

MDS3.8

The stresses are given by

Therefore,

Ans. (6)

(b) Solve for the elongation of the member. From the deformation dia-

gram in Fig. 3, we see that

and we can use either Eq. (2a) or Eq. (2b) to solve for an elongation.

Then,

or

Ans. (b)

Review the Solution The signs of member stresses �1 and �2 agree with

our “Plan the Solution” discussion, and the value of the elongation, �, is

between the free-expansion values for aluminum and titanium, which is

what we would expect. That is, the final elongation is a compromise be-

tween the amount that the aluminum “wants” to expand and the smaller

amount that the titanium “wants” to expand.

d � 0.0323 in.

� 0.0323 in.

� �2.50(10�3) in/kip�(4.92 kips) � 0.020 in

d � f1F1 � a1L¢T

d � e1 � e2

s1 � �s2 � 4.92 ksi

s2 �
F2

A2

s1 �
F1

A1

,
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E X A M P L E  3 . 1 3

The rigid beam BD in Fig. 1 is supported by a wire AC of length L, cross-

sectional area A, modulus of elasticity E, and coefficient of thermal ex-

pansion �; and by a rod DE of length L/2, cross-sectional area 2A, and

modulus E. Neglect the weight of the beam. When there is no load

acting on the beam, the beam is horizontal and the wire and rod are stress-

free. Assume that the tip displacement is very small, that is,

Determine expressions for the axial forces in wire AC and rod DE
when a load of intensity w per unit length of beam is uniformly distrib-

uted over CD, and wire AC is simultaneously cooled by an amount �T
(i.e., �T1 � ��T, �T2 � 0).

Plan the Solution This is a statically indeterminate structure that is

somewhat similar to the determinate structure in Example 3.3, but we

will need to add rod DE and take into account the temperature change

of wire AC. The Basic Force Method will provide a systematic way of

combining the three sets of equations—equilibrium, element force-

temperature-deformation behavior, and compatibility.

Cooling wire AC should cause tension in both the wire and the rod;

applying a downward load over CD should cause tension in the wire, but

it should cause compression of the rod. In the expressions for the force

in the wire and the force in the rod, the temperature change should lead

to terms having the form AE��T.

Solution

Equilibrium: The free-body diagram in Fig. 2 will enable us to write an

equilibrium equation that relates F1 (the force in wire AC) and F2 (the

force in rod DE) to the external load. We do not need equations for the

reaction components at B.

or

Equilibrium (1)

Element Force-Temperature-Deformation Behavior. From Eq. 3.27, the

total elongation of the wire and rod, respectively, are

(2a,b)

where it has been noted that �T2 � 0, and where

f2 � a L
AE
b

2

�
(L/2)

(2AE)
�

1

4
a L

AE
bf1 � a L

AE
b

1

�
L

AE
,

 e2 � f2F2

 e1 � f1F1 � a1L1¢T1

223F1 � 8F2 � 3wL

a23

2
F1b aL

2
b � awL

2
b a3L

4
b � F2L � 0aaMb

B
� 0:

dD V L.

Force-
Temperature-
Deformation
Behavior

(1)

30°

(2)

A

D

w

B

C

2A, E

A, E, L, α

E

L–
2

L–
2

L–
2

D

w

B

Bx

By

F1

F2

3

1

2y

L–
2

L–
4

L–
4

wL–––
2

Fig. 1

Fig. 2 Free-body diagram.
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Fig. 3 Deformation diagram.

Geometry of Deformation; Compatibility Equation: Figure 3 is a defor-
mation diagram that enables us to determine an equation that relates the

total elongation, e1, of wire AC to the vertical displacement of point D,

and, hence, to the shortening of rod DE. From the deformation diagram

in Fig. 3, we can write the following deformation equations:

from which we can eliminate �D to obtain the compatibility equation

Compatibility (3)

Since it enforces the condition that the end of the wire AC and the top

of the rod DE remain attached to a rigid beam that rotates about end A,

Eq. (3) is called a compatibility equation.

Solution by the Basic Force Method: Following the procedure of the

Basic Force Method, we can eliminate the e’s by substituting Eqs. (2) into

Eq. (3), giving the following compatibility equation in terms of forces:

(4)

Noting that �T1 � ��T, and substituting in the values of the flexibility

coefficients f1 and f2, we can now solve Eqs. (1) and (4) simultaneously to

get the forces

Ans. (5)

Review the Solution The expressions in Eqs. (5) for the unknown

forces F1 and F2 have the proper forms that were anticipated in the “Plan

the Solution” section. Therefore, the answers we have obtained seem

reasonable.

 F2 �
1623

67
(AEa¢T) �

24

67
(wL)

 F1 �
64

67
(AEa¢T) �

323

134
(wL)

f1F1 � a1L1¢T1 � �a23

4
b f2F2

e1 � �
23

4
e2

 e2 � �dD

 e1 �
23

2
adD

2
b �

23

4
dD Geometry of

Deformation

Compatibility 
in Terms of 
Element Forces

Although this problem is made fairly difficult by the angle of the wire and the

presence of both external distributed load and temperature change, its solution

above by the Basic Force Method is very straightforward. The external force enters

through the equilibrium equation; the temperature change enters through the force-

temperature-deformation equations.

C*

C

C*

C

D*

D

δD

B

e1

A

δD––
2

δD––
2
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3.7 GEOMETRIC “MISFITS”

Section 3.5 treated problems involving structures that have uniform axial-deformation

elements and are subjected to external loads. The external loads enter the solution

through the equilibrium equations, which relate the element axial forces to each other

and to the external loads. In Section 3.6 you learned that when axial-deformation mem-

bers are heated or cooled, that information enters the problem solution through a

modification of the element force-deformation equations. In this section we treat prob-

lems in which modification of the deformation-geometry equation(s) is required.

The word “misfit” is just a nickname for geometric incompatibility.7 The misfit

may be unintended, as in Fig. 3.18a, where rod (2) on the right has been fabricated

an amount too short. This misfit, or incompatibility, must be accounted for in

relating the actual elongation of this member to the other geometric quantities

(namely, the rotation of the beam and the elongations of the other two rods). Figure

3.18b represents a bolt surrounded by a sleeve (or pipe). In this case, the “misfit” is

intentional. If the nut on the bolt is just snugged up against the washer, there will be

no axial force in the bolt or the sleeve. However, if the nut is tightened further

against the washer, the portion of the bolt between the nut and bolt head is, in

effect, made “too short.” This misfit must be accounted for in the deformation-

geometry equation(s). It is emphasized that no change is made directly either to the
equilibrium equations or to the element force-deformation equations to account for
misfits, which are solely a matter of geometric compatibility.

It is not uncommon for parts of a structure to have small geometry errors that

require that the components be forced to fit together, as would be required for the

structure in Fig. 3.18a. The stresses that are induced when such force-fitting occurs

can combine with the load-related stresses to cause failure of the structure to occur.

Such stresses are called initial stresses, since they can be present before any external

load is applied. Therefore, it is very important to consider the effect of misfits on
statically indeterminate structures.

Analysis of a Typical Statically Indeterminate Structure with a Misfit.
Let us consider the two-element structure in Fig. 3.19, and let us assume that ele-

ment (1) of the structure was fabricated too short, so that the bar has to bed1

d

7The topic of geometric misfits, or geometric incompatibility, is sometimes referred to by the name 

prestrain effects or by the name initial stresses.

FIGURE 3.18 Two structures that exhibit geometric misfits.

(3)

(1) (2)

δ–

Nut
Washer

Bolt

Sleeve

(a) (b)
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stretched initially in order for the two ends to be welded to the rigid walls. Assume

that the misfit is small, that is, Let us first determine the axial stresses, �1,

and 2, in the elements without any applied external load PB at node B. Then let us

determine the displacement, uB, of the node (joint) between the two elements.

Equilibrium: The three free-body diagrams in Fig. 3.20 are for the bar in Fig. 3.19b,

that is, after the ends of the bar have been welded to the two walls. The free-body

diagram of node B in Fig. 3.20 will enable us to write an equilibrium equation that

relates the internal forces F1 and F2 in the elements adjoining B. (There is no exter-

nal load PB at joint B.)

Equilibrium (1)

This two-component system is statically indeterminate, since we are not able to de-

termine the two element forces from the single equilibrium equation.

The reactions at ends A and C are related to the element forces by

(1	)

Element Force-Deformation Behavior: From the element force-deformation equa-

tion. Eq. 3.14, we have

(2a,b)

where and .
8

f2 �
2L

2AE
�

L
AE

f1 �
L

AE

Element 
Force-
Deformation
Behavior

e2 � f2F2e1 � f1F1,

PC � F2PA � �F1,

�F1 � F2 � 0S� a F � 0:

s

d1 V L1.

164
Axial Deformation

FIGURE 3.19 A statically

indeterminate structure.

(2)(1)
A B C

uB

L2L1

δ
_

1

(a)  Before elements are welded to the walls.

(2)(1)

A B* C
PA PC

(b)  After elements are welded to the walls.

A1 = A,  A2 = 2A,  E1 = E2 = E,  L1 = L,  L2 = 2L

PC
A B C

PA F1 F1 F2 F2

FIGURE 3.20 Free-body diagrams of nodes A, B, and C.

8Actually, Since it has been assumed that the effect of on

the flexibility coefficient f1 can be ignored in comparison with the effect that enters through the compat-

ibility equation.

d1,d1 V L1,f1 � (L1 � d1)/A1E1 � L1/A1E1.
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Geometry of Deformation; Compatibility Equation: Since the two elements are

attached end-to-end at node B, and since the two-element bar has to be stretched

by an amount in order to attach its ends to the rigid walls at A and C, the com-
patibility equation for this problem is

(3)

Solution of the Equations: In Eqs. (1) through (3) there are four equations and

four unknowns. Therefore, it is a matter of solving these four equations simultane-

ously to determine the four unknowns. We are first interested in determining the

element forces. Therefore, we can eliminate the ei’s by substituting Eqs. (2) into

Eq. (3), which gives the following compatibility equation written in terms of ele-
ment forces:

or

(4)

The equilibrium equation (1) and the compatibility equation (4) can be solved

simultaneously to give the following element forces:

(5a,b)

Finally, dividing the element forces by their respective cross-sectional areas gives

the following expressions for the initial stresses:

Ans. (6)

In the problem statement we are asked not only to determine the element

initial stresses, but also to determine the displacement of node B. From Fig. 3.19a
we see that uB can most easily be obtained from the deformation-geometry
equation

(7)

Therefore, combining Eqs. (2b), (4b), and (6) we get

Ans. (8)

The factor of one-half in Eq. (8) should not surprise us, since the two element flex-

ibilities are equal to each other, that is, f1 � f2.

In summary, the above solution illustrates the fact that geometric misfits enter
into the compatibility equation(s), that is, their direct effect is on the geometry of

uB � �
d1

2

uB � �e2

s2 �
Ed1

4L
s1 �

Ed1

2L
,

F1 � F2 �
AEd1

2L

Compatibility
in Terms of
Element Forces

F1 a L
AE
b � F2 a L

AE
b � d1

f1F1 � f2F2 � d1

Geometry of
Deformatione1 � e2 � d1

d1

165
Geometric “Misfits”
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deformation. Equilibrium equations and force-temperature-deformation equations

are not directly affected.

End-to-End Bars w/Gap and End-to-End Bars w/Misfit—are

programs for analyzing statically indeterminate structures with gaps, like the one in

Fig. 3.20a, by the Basic Force Method.

An example will now be given to illustrate how “bolt problems” are solved as

axial-deformation problems involving geometric “misfits.”

MDS3.10 & 3.11

166
Axial Deformation

E X A M P L E  3 . 1 4

A 14-mm-diameter steel bolt, and a steel pipe with 19-mm ID and 

25-mm OD are arranged as shown in Fig. 1. For both the steel bolt and

steel pipe, E � 200 GPa. The pitch of the (single) thread is 2 mm. What

stresses will be produced in the steel bolt and sleeve if the nut is tight-

ened by turn? (For a single thread the pitch is the distance the nut

advances along the thread in one complete revolution of the nut.) Neglect

the thickness of the washers.

1
8

Nut

WasherBolt
(1)

Bolt
head

Sleeve
(2)

L = 250 mm

25 mm 19 mm 14 mm

Fig. 1

Plan the Solution As we discussed earlier in this section, the misfit due

to tightening of the nut will enter the solution through the deformation-

geometry equations. Tightening the nut should put the bolt in tension

and the sleeve in compression. We will use the Basic Force Method to

solve this problem.

Solution

Equilibrium: We should ask the question: What free-body diagram can

we draw that will enable us to relate the internal element forces to each

other and to the external forces? (In this problem there are no external

forces.) One answer is that a cut made just inside the washer at either

end will expose the internal forces so that they can be included in the

equilibrium equation. A free-body diagram of the left end is shown in

Fig. 2. As always, for each of the elements we take tension to be positive.

Then, we sum forces in the axial direction.

Equilibrium (1)F1 � F2 � 0S� a Fx � 0:Fig. 2 Free-body diagram.

F1 F2

F1 is the force in
the bolt, and F2 is
the force distributed
around the circumfer-
ence of the sleeve.
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Element Force-
Deformation
Behavior

Fig. 3 Deformation diagram.

Original length

Final length

δ

Element Force-Deformation Behavior: Since the Basic Force Method

will be used, Eq. 3.14 is the most convenient form.

(2)

where, as always, e is the total elongation of an element and is positive

when the element gets longer.

Deformation Geometry: We need to assess the deformation that re-

sults when the nut is tightened. To do this, let us suppose that the head

of the bolt does not move, while the right-hand washer and nut move

to the left an amount when the nut is tightened. Therefore, we need

to relate the elongations e1 and e2 in Eqs. (2) to the displacement .

Figure 3 is a deformation diagram showing the shortening of the sleeve

by an amount .

The sleeve is shortened by the amount that the right-hand washer

moves to the left, so

If the sleeve were to be removed and the nut advanced turn, the work-

ing length of the bolt would be 

Thus, there is a “misfit” and we

would have to stretch the bolt by 0.25 mm to restore it to the 250-mm

length, from which the displacement is measured. Therefore, the ele-

ment elongations are related to the displacement by

(3)

Solution of the Equations by the Basic Force Method: We can eliminate

the displacement from Eqs. (3) to get the compatibility equation

Substituting the element force-deformation equations into this equa-

tion gives the following compatibility equation in terms of element

forces:

(4)

Compatibility
in Terms of
Element Forces

f1F1 � f2F2 � 0.25 mm

e1 � e2 � 0.25 mm

d

e2 � �d

e1 � 0.25 mm � d

d

d

d � 0.25 mm,0.25 mm � 249.75 mm.

[250 mm � (1
8)(2 mm)] � 250 mm �

1
8

e2 � �d

d

d

d

d

 � 6.03(10�3) mm/kN

 f2 � a L
AE
b

2

�
250 mm

p [(12.5 mm)2 � (9.5 mm)2](200 kN/mm2)

 f1 � a L
AE
b

1

�
250 mm

p(7 mm)2(200 kN/mm2)
� 8.12(10�3) mm/kN

 e2 � f2F2

 e1 � f1F1

Deformation
Geometry
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Solving this compatibility equation and the equilibrium equation simul-

taneously, we get

(5)

Finally, the element stresses are given by

Ans.

Thus, the bolt has a tensile stress of 115 MPa, and the sleeve has a com-

pressive stress of 85 MPa as a result of tightening the nut by turn.

Review the Solution We expected the bolt to be in tension and the

sleeve to be in compression, and this is the result that we obtained. The

yield strength of the steel is not stated in the problem, but assuming that

it is 250 MPa or greater (see Table F.3 in Appendix F), the values of �bolt

and �sleeve are reasonable.

1
8

� �85.2 MPa

ssleeve K s2 �
F2

A2

�
�17.7 kN

p [(12.5 mm)2 � (9.5 mm)2]

sbolt K s1 �
F1

A1

�
17.7 kN

p(7.0 mm)2
� 114.8 MPa

F2 � �17.7 kN

F1 � 17.7 kN

x

In Sections 3.5–3.7, a number of example axial-deformation problems were solved by

a solution procedure that was labeled the Basic Force Method. That method is quite

useful for solving fairly simple problems with only two or three unknown forces, such

as those in Sections 3.5–3.7. In Sections 3.8 and 3.9, respectively, the Displacement
Method and the Force Method are introduced. Table 3.3 lists the three fundamental

sets of equations that enter into the solution of problems in the mechanics of 

3.8 DISPLACEMENT-METHOD SOLUTION OF 
AXIAL-DEFORMATION PROBLEMS

Bolt and Sleeve—is a program for analyzing statically indeterminate

bolt/sleeve assemblages, similar to the one in Example 3.14, by the Basic Force Method.

MDS3.12

T A B L E  3 . 3 Comparison of Displacement Method and Force Method

Fundamental Equation Sets

(1) Equilibrium

(2) Element force-temperature-deformation

behavior

(3) Deformation geometry

Solution Method Solution Procedure

Displacement Method: (3) → (2) → (1) (Sect. 3.8)

Force Method: (1) → (2) → (3) (Sect. 3.9)
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deformable solids, and indicates the difference in the order that these two methods

use to combine the three fundamental sets of equations.

This section presents a very important problem-solving approach called the

Displacement Method, which is the solution procedure used in all commercial

finite-element computer programs, like the ones used to produce the photos in the

color photo section of Chapter 1. For such computer applications, matrix algebra

operations are employed,9 but the Displacement Method is also a very systematic

procedure for solving problems “by hand.” It can be used to solve statically deter-

minate problems as well as statically indeterminate problems. As indicated in the

flow chart on the next page, this method results in solving simultaneously the equi-
librium equations written in terms of the unknown system displacements.

In Statics you were introduced to two procedures for solving equilibrium prob-

lems, especially truss equilibrium problems—the Method of Joints and the Method

of Sections. These were reviewed in Example 1.1 in Section 1.4. As illustrated by the

examples that follow in this section, the Displacement Method extends the Method
of Joints to deformable-body analysis. In Section 3.9 we solve several statically inde-

terminate problems by the Force Method.10 We show that the Force Method extends

the Method of Sections to deformable-body analysis.

Solution Procedure: Displacement Method. The steps in the Displacement

Method are outlined in the solution-procedure list and flow chart that follow.

Examples 3.14–3.16 are axial-deformation problems that are solved by the

Displacement Method, and MD Solids has a module for solving axial-deformation

problems by the Displacement Method. In Section 3.9 the Force Method is dis-

cussed and is compared with the Displacement Method.

169
Displacement-Method

Solution of Axial-Deformation
Problems

SOLUTION PROCEDURE: DISPLACEMENT METHOD

� SET UP THE FUNDAMENTAL EQUATIONS:

(1) Draw a free-body diagram (or free-body diagrams) and

write equations of equilibrium for these free bodies to

relate the external loads to the (unknown) element

forces. There should be one equation of equilibrium

associated with each independent system displacement
variable. Typical examples are: a F-type equilibrium

equation for each the nodal displacement of a nonuni-

form rod (see Example 3.14), or a M-type equilibrium

equation for each the angle of rotation of a “rigid” beam

(see Example 3.15).

(2) Write an element force-temperature-deformation equa-
tion for each axial-deformation element. Equation 3.28

(Eq. 3.15 if �Ti � 0),

where (3.28) 
repeated

is the most convenient form to use for this step.

(3) Use geometry of deformation to relate the element elon-

gations, ei, to the system displacement variables that were

identified in Step 1. Incorporate any “misfits,” here.di,

ki � (AE/L)iFi � ki(e � aL ¢T )i

g

g

� SOLVE FOR THE UNKNOWN SYSTEM
DISPLACEMENTS:

(4) Substitute the deformation-geometry equations (Step 3)

into the force-deformation equations (Step 2).This gives

element forces in terms of system displacements.
(5) Substitute the results of Step 4 into the equilibrium

equations of Step 1. This gives equilibrium equations
written in terms of system displacements.

(6) Solve the equations obtained in Step 5. The answer will

be the system displacements.

� SOLVE FOR THE ELEMENT FORCES:

(7) Substitute the system displacements of Step 6 into the

equations obtained in Step 4. The answer will be the

element forces. If element axial stresses are required,

the element forces can be divided by the respective

element cross-sectional areas, that is 

(8) Review the solution to make sure that all answers 

are correct.

si � Fi/Ai.

9See, for example, Refs. [3-1], [3-2].
10The so-called Basic Force Method employed in Sections 3.5 through 3.7 does not require one to iden-

tify specific forces as the “redundant” forces; the more formal Force Method, which is described in

Section 3.9, does.
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Force-Deformation
in Terms of
Displacements

Equilibrium
in Terms of
Displacements

DISPLACEMENT METHOD

Equilibrium
Equations

(3)

(2)

(1)

Force-Temp.-
Deformation
Equations
Fi = ki(e-αLΔT)i

Elongations
in Terms of
Displacements
(Compatibility)

FORCES

DISPLACEMENTS

E X A M P L E  3 . 1 5

The structural assemblage in Fig. 1 is made up of three uniform elements,

or members. Element (1) is a solid rod. Element (2) is a pipe that sur-

rounds element (3), which is a solid rod that is identical to element (1)

and collinear with it. The three elements are all attached at B to a rigid

plate of negligible thickness. With no external force at B, the three-

element assemblage exactly fits between the rigid walls at A and C; its

ends are then attached to the two walls. (a) Use the Displacement

Method to determine an expression that relates the displacement uB at

node B to the axial force PB applied there. (b) Determine expressions for

the axial forces in the three elements in terms of the external force PB.

Example 3.9 in Section 3.5 was solved by the Basic Force Method; in Example

3.15 the same problem is solved by the Displacement Method. If you compare these

two solutions you will see that, for this problem, the Displacement-Method solution

is more straightforward.

Plan the Solution We can follow the steps outlined in the Displacement-

Method Procedure. Step 1: We can think of this structure as being com-

posed of three uniform elements and one connecting node (joint), and

we can write an equilibrium equation for node B. Step 2: Using Eq. 3.15,

we can write a force-deformation equation for each of the three ele-

ments. Step 3:We can relate the element elongations to the displacement

at B. Steps 4–6: Finally, we can use the Displacement Method to combine

these three sets of fundamental equations to get expressions for the

(3)

(2) (2) outer pipe

(3) inner rod

(1)

A B C

PB

uB

Fig. 1 The original structure.
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Fig. 2 Free-body diagram of node B.

displacement for node B. Step 7: The forces in the individual elements

can then be determined by substituting this displacement into the element

force-deformation equations.

Step 8: If the external force PB acts to the right (i.e., if it is positive),

we should find that node B moves to the right, and we should find that

the left-hand element is in tension and that the two right-hand elements

are in compression.

Solution (a) Determine the displacement uB of node B.

Equilibrium: For node B, shown in the free-body diagram in Fig. 2.

Equilibrium (1)

Equation (1) relates the three unknown internal element forces to the

known external load. Since there are three unknown forces, but only one

equilibrium equation, this problem is statically indeterminate. That is, the

internal forces cannot be determined by statics alone. Thus, to find addi-

tional equations we must look to element force-deformation behavior

and to the geometry of deformation.

Element Force-Deformation Behavior: We have three uniform, axial-

deformation elements, and for each one we can write an element force-

deformation equation like Eq. 3.15. We have called the element forces

F1, F2, and F3 (tension positive), so we have

where 

where (2)

, where 

In Eqs. (2) the e’s are the element elongations. A positive Fi (tension)

produces a positive ei (element gets longer), since the ki’s are, by defini-

tion, positive.

So far, we have four equations in six unknowns—three F ’s and three

e’s. We must still enforce the deformation compatibility of the three

elements with each other and with the walls at A and C.

Geometry of Deformation: Referring to Fig. 1, we can easily relate the

elongation of each of the three elements to the displacement uB by using

the definition of elongation of an element, that is, e � u(L) � u(0). So,

(3)

Here we have used the fact that the displacements at nodes A and C are

zero. Equations (3) can also be called compatibility equations since they

express mathematically the fact that A and C are fixed ends and the fact

that the three elements are joined together at B. (Note that, since e is

positive when the element gets longer, a displacement of node B to the

right by an amount uB implies a shortening of elements (2) and (3) by

that amount; hence the minus sign in the equations for e2 and e3.)

e2 � e3 � �uB

e1 � uB

k3 � (A3E3/L3)F3 � k3e3

k2 � (A2E2/L2)F2 � k2e2,

k1 � (A1E1/L1)F1 � k1e1,

�F1 � F2 � F3 � PB � 0S� a Fx � 0:

Element
Force-
Deformation

Geometry of
Deformation
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B

PB and F1 are collinear with F3.
F2 is distributed around the
circumference of the pipe.

F3 F2
F1

PB
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Displacement-Method Solution: Now, if we count equations and un-

knowns, we find that we have six equations and six unknowns. Rather

than just combine Eqs. (1) through (3) in some arbitrary order, we can

note that, since there is only one node, there is only one equilibrium

equation; correspondingly, there is only one nodal displacement, uB. By

substituting Eqs. (3) into Eqs. (2), we are able to write the three F ’s in

terms of the nodal displacement, uB. If we then substitute these equations,

call them Eqs. (4), into Eq. (1), we will have one equilibrium equation
expressed in terms of the one unknown nodal displacement.

Substitute Eqs. (3) (deformation geometry) into Eqs. (2) (element

force-deformation) to obtain

(4)

Now substitute Eqs. (4) into Eq. (1).

(5)

The solution of this equation is

Ans. (a) (6)

The strategy of substituting deformation geometry equations (3)

into element force-deformation equations (2) into equilibrium equations

(1) is called the Displacement Method because the major solution step,

Eq. (6), gives an answer that is a displacement. It is also sometimes re-

ferred to as the Stiffness Method since stiffness coefficients appear in the

final solution.

(b) Determine the element forces. This is simple to do, because we only

need to substitute the nodal displacement uB into Eqs. (4). Thus, we 

get

Ans. (b) (7)

Review the Solution As one check of our work, we can substitute Eqs.

(7) back into Eq. (1) to see if equilibrium is satisfied.

Is F1 � F2 � F3 � PB? Yes.

The fact that equilibrium is satisfied by our answers means that we have

probably not made errors in our solution.Also, from Eqs. (7) we see that,

when PB is positive, element (1) is in tension and elements (2) and (3) are

in compression. This is what we expected to find.

F1 � k1uB �
k1PB

k1 � k2 � k3

F2 � �k2uB �
�k2PB

k1 � k2 � k3

F3 � �k3uB �
�k3PB

k1 � k2 � k3

uB �
PB

k1 � k2 � k3

Node Equilibrium
in Terms of Node
Displacement

(k1 � k2 � k3)uB � PB

F3 � �k3uBF2 � �k2uB,F1 � k1uB,

x
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Note how the stiffness coefficients enter into the answer for uB in Eq. (6) of the

above example and the answers for the element forces Fi in Eqs. (7) of the above

example. From Eq. (6), an increase in any one of the stiffness coefficients will cause

a decrease in the displacement of node B.Also, from Eqs. (7), an increase in any one

of the ki’s causes the fraction of the load PB that is transferred by that particular

element to the supports to be increased.

After completing the analysis of any structure, whether it is statically determinate

or statically indeterminate, your goal should be to understand the behavior of the
structure under load—why are the stresses distributed the way they are, and why does

the structure deform the way your analysis says that it does? You should always think

first about how to obtain correct equations of all of the three fundamental types—

equilibrium equations, force-deformation equations, and compatibility equations!

Like the Basic Force Method, the Displacement Method, illustrated in Example

Problem 3.15, is just one systematic procedure for combining the fundamental equa-

tions to get the final solution. However, since it is a very systematic procedure, it is the

procedure that forms the basis of the finite-element programs that are used to solve

structures problems involving thousands of equations with thousands of unknowns. It

is also a very straightforward method to use for most “hand” calculations.

End-to-End Rods: Displacement Method is a program for analyzing

statically indeterminate structures, similar to the one in Example 3.15, by the

Displacement Method.

The next example illustrates Displacement-Method solution of thermal-defor-

mation problems like those in Section 3.6.

MDS3.13

E X A M P L E  3 . 1 6

Three rods are attached to a rigid L-shaped bracket ABD, as shown in

Fig. 1. Determine the force in each of the three rods if element (3) is

cooled by 50�C. Assume that the rotation of the bracket is small and that

all rods are force-free when the system is assembled.

A1 � A2 � A3 � 1000 mm2

L1 � 1.25 m, L2 � 2.00 m, L3 � 1.25 m

a � 1.25 m, b � 1.00 m, c � 2.50 m

E � 70 GPa, a � 23 � 10�6/°C

Fig. 1

L2

L3 δD

L1

A

B C D

b

(1)

(2)

(3)

c

a
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Plan the Solution Since it is the element forces that are required, it

would seem best to try a Basic-Force-Method solution. There are three

unknown rod forces and, by taking moments about point B, we will get

one equilibrium equation. Therefore, the number of redundant internal

forces is (# Redundants) � (# Unknown Forces) � (# Equilibrium

Equations) � 3 � 1 � 2. A Basic-Force-Method solution would require

us to solve an equilibrium equation and two compatibility equations

simultaneously for the three rod forces. A Displacement-Method solu-

tion only requires that one equilibrium equation be solved for one dis-

placement, say the angle of rotation of the bracket or the displacement

at some point on it. Therefore, the Displacement Method will be used

here. (See Homework Prob. 3.9-16 for a Force-Method version of this

problem.)

Since rod (3) is cooled, it will tend to shorten, and the force

induced in it will be tension. This will cause the bracket ABD to rotate

counter-clockwise, putting rod (1) into tension and rod (2) into

compression.

Solution

Equilibrium: Since we want a free-body diagram that will permit us to

relate the internal element forces to each other and to the external loads

(actually, there are no external loads in this problem), we select the rigid

bracket ABD as shown in Fig. 2. As always, we select tension as positive

for the force in each element.

The equilibrium equation is

Equilibrium (1)

Element Force-Temperature-Deformation Equations: Since we will

employ the Displacement Method, Eq. 3.28 is the convenient form to

use.

(2)

where

a3L3¢T3 � (23 � 10�6/°C)(1.25 m)(�50°C) � �1.4375 mm

 k3 � aAE
L
b

3

�
(1000 mm2)(70 GPa)

(1.25 m)
� 56 � 103 kN/m

 k2 � aAE
L
b

2

�
(1000 mm2)(70 GPa)

(2 m)
� 35 � 103 kN/m

 k1 � aAE
L
b

1

�
(1000 mm2)(70 GPa)

(1.25 m)
� 56 � 103 kN/m

F3 � k3(e3 � a3L3¢T3)

F2 � k2e2

F1 � k1e1

�F1a � F2b � F3c � 0

�F1(a) � F2(b) � F3(c) � 0aaMb
B

� 0:

Fig.  2 Free-body diagram.

A

B C D

b
c

a

Bx

By F2 F3

F1

Element
Force-
Temperature-
Deformation
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Geometry of Deformation: We need to sketch a deformation diagram.
We will assume, as seems reasonable since element (3) is cooled, that

bracket ABD rotates counterclockwise, and will use similar triangles in

Fig. 3 to relate the elongations of the three elements to the displacement

�D at the tip of the bracket.

In Eqs. (2) a positive e corresponds to a lengthening of the element.

Thus, on the deformation diagram in Fig. 3 a counterclockwise rotation

of ABD corresponds to elongation of rod (1) but contraction of rods

(2) and (3). The appropriate deformation compatibility equations are

equations that relate the e’s to the rotation of the bracket. However,

without introducing the beam’s rotation angle, �, we can make use of the

geometry of similar triangles and write the following deformation-

compatibility equations:

(3)

Solution of Equations by the Displacement Method: Now we use the

Displacement-Method steps to combine Eqs. (1) through (3). First, we

substitute Eqs. (3) into Eqs. (2) to get the element forces all written in

terms of the one displacement �D.

(4)

Finally, these equations are substituted into the equilibrium equation,

Eq. (1), and rearranged to obtain the following equilibrium equation in
terms of the unknown displacement:

(5)

The solution of this equation gives the unknown displacement �D.

(6)

Substituting numerical values into this equation, we get

�D � 1.0648 mm

Then, from Eqs. (4) we can directly compute the values of the three rod

forces:

 F3 � (56 � 103 kN/m)(�1.0648 mm � 1.4375 mm) � 20.87 kN

 F2 � (35 � 103 kN/m)(�0.4)(1.0648 mm) � �14.907 kN

 F1 � (56 � 103 kN/m)(0.50)(1.0648 mm ) � 29.81 kN

dD �
�k3(a3L3¢T3)c2

k1a2 � k2b2 � k3c2

(k1a2 � k2b2 � k3c2)dD � �k3(a3L3¢T3)c2

F1 � k1aa
c
b dD

F2 � k2 c�ab
c
b dD d

F3 � k3(�dD � a3L3¢T3)

Deformation
Compatibilitye3 � �dDe2 � �ab

c
b dD,e1 � aa

c
b dD,

x

Fig. 3 Deformation diagram.

b
c

a

B
C

δA = e1

δD = –e3

δC = –e2
D

A
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Rounding off these values, we have

Ans. (7)

Review the Solution As we expected, cooling element (3) puts elements

(1) and (3) into tension, while element (2) is put into compression. Note

that cooling of element (3) would have shortened it by 1.4375 mm if it

were not attached to bracket ABD. However, since it must pull against

the bracket as it tries to shorten, it actually shortens by only 1.0648 mm.

An equilibrium check can be used as one means of verifying the cor-

rectness of the solution.

Is � F1(a) � F2(b) � F3(c) � 0? Yes.

F1 � 29.8 kN(29.8 kN T)

F2 � �14.91 kN(14.91 kN C)

F3 � 20.9 kN(20.9 kN T)

e

Finally, we will use the Displacement Method to solve an axial-deformation

problem that involves an external load, a temperature change, and an element that

was not manufactured the correct length.

E X A M P L E  3 . 1 7

A stepped rod is made up of three uniform elements, or members, as

shown in Fig. 1. The rod was intended to exactly fit between rigid walls

with the ends of the rod welded to the rigid walls at A and D. However,

member (2) was manufactured too short. First, the entire rod is

stretched so that its ends can be welded to the rigid walls. Then, an axial

load PB is applied to the rod at B and member (3) is heated by an

amount �T3 (a) Determine expressions for the displacements uB and uC

of the two nodes B and C measured, as indicated in Fig. 1, from the

intended original locations of these nodes; and (b) determine expres-

sions for the internal forces in the three elements.

Plan the Solution We can think of this structure as being composed of

three uniform elements and two connecting nodes, or joints, as shown in

Fig. 2. We can write equilibrium equations for the joints and force-

temperature-deformation equations for the separate elements. Finally,

d2

Fig. 1

A1, E1

(1)

A2, E2
A3, E3

L1 L2 L3

uB

PB

PA PD

BA
C D

uC

(2) (3)
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we can relate element elongations to the displacements of the joints, tak-

ing into account the fact that member (2) was initially too short. We can

then follow the Displacement-Method procedure to combine these three

sets of equations to get the required answers.

Consider the effect of each of the three “loads” separately:

(1) External Force PB: If PB is positive, that is, if it acts to the right, we

should find that the element (1) is in tension and that elements (2)

and (3) are in compression.

(2) Member (2) too short: The three-element rod will have to be

stretched in order to weld the ends to the rigid walls. Therefore, all

three elements will exhibit tensile internal force due to this

“load.”

(3) Member (3) heated: Heating member (3) will cause it to push against

the members to its left; they, in turn, will push back. Therefore, all

three elements will exhibit a compressive internal force due to this

“load.”

Solution (a) Determine the nodal displacements uB and uC.

Equilibrium: In Fig. 3 we isolate each of the joints as a free body, and on

each free body we show the external force (if there is one) acting on the

joint and the internal forces exerted by the elements that connect to the

joint. We label the element forces and, as usual, adopt the sign conven-

tion that element forces are taken to be positive in tension.

BA
C D

Element
1

Element
2

Element
3

Joint
A

Joint
B

Joint
C

Joint
D

Fig. 2 The stepped rod divided into elements and joints (nodes).

PA

F1 F1
F2

PB
BA D

F3

PD

F1

F2 F3

C

F1

(1)

F2F2

(2)

L1

F3F3

(3)

L2 L3

Fig. 3 Free-body diagrams.
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For Node (Joint) B:

For Node (Joint) C:

(1)

Equations (1) relate the three unknown internal element forces to

the known external load PB and to each other. Since there are three un-

knowns, but only two equilibrium equations, this system is statically inde-
terminate. That is, the internal forces cannot be determined by statics

alone. This situation arises, of course, because both ends of the stepped

rod are attached to rigid walls. There is no way that we can find another

equilibrium equation that will not be just a combination of these two

joint-equilibrium equations. Therefore, to find additional equations we

must look to the geometry of deformation and to element force-defor-

mation behavior.

Element Force-Deformation Behavior: We have three uniform, axial-

deformation elements, and for each one we can write an element force-

temperature-deformation equation like Eq. 3.28. We have called the

element forces F1, F2, and F3 (tension positive), so we have

where 

where 
(2)

where 

In Eqs. (2) the e’s are the total element elongations. A positive Fi (ten-

sion) produces a positive ei (element gets longer), since the ki’s are, by

definition, positive.

Although we have three new equations, we have introduced three

new unknowns, so we now have five equations in six unknowns—three F ’s

and three e’s. Geometry of deformation provides the additional equations.

Geometry of Deformation: The joint displacements are labeled uB and

uC and are measured from the intended positions of the joints, as shown

in Figs. 1 and 4. We can easily relate the elongation of each element to

these two joint displacements by using the definition of elongation of an

k3 � (A3E3/L3)

F3 � k3(e3 � a3L3¢T3).

k2 � (A2E2/L2)F2 � k2e2,

k1 � (A1E1/L1)F1 � k1e1,

Equilibrium
 F2 � F3 � 0

 F1 � F2 � PB

�F2 � F3 � 0�
S ©Fx � 0:

�F1 � F2 � PB � 0�
S ©Fx � 0:

Element
Force-
Temp.-
Deformation

Fig. 4 Definition of displacement coordinates.

(1)

L1 L2 L3

uB

A B
C D

uC

(2) (3)

δ
_

2
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Geometry 
of 
Deformation

Joint Equil.
in Terms of 
Joint Displs.

element, that is, e � u(L) � u(0). But we also have to account for the fact

that element (2) was initially too short by an amount and would have

to be stretched by this amount for its ends to occupy their intended

positions. So,

(3)

Here we have used the fact that the displacements at joints A and D are

zero. (Note that, since e is positive when the element gets longer, a dis-

placement of joint C to the right by an amount uC implies a shortening

of element (3) by that amount.)

Displacement-Method Solution: Now, if we count equations and un-

knowns, we find that we have eight equations and eight unknowns.

Rather than just combine Eqs. (1) through (3) in some arbitrary order,

we can note that, since there are two joints, there are two equilibrium

equations, and also there are two joint displacements, uB and uC. By sub-

stituting Eqs. (3) into Eqs. (2), we will be able to write the three F’s in

terms of the two u’s. If we then substitute these equations, call them Eqs.

(4), into Eqs. (1), we will have two equilibrium equations expressed in
terms of two unknown joint displacements.

Substitute Eqs. (3) (deformation geometry) into Eqs. (2) (element

force-temperature-deformation) to obtain

(4)

Now substitute Eqs. (4) into Eqs. (1).

which can be written

(5)

where

(5�)

Note how the terms and the �T3 term produce effective “loads” on the

nodes at B and C.

d2

 (PC)eff � �k2d2 � k3a3L3¢T3

 (PB)eff � PB � k2d2

 �k2uB � (k2 � k3)uC � (PC)eff

 (k1 � k2)uB � k2uC � (PB)eff

k2(d2 � uC � uB) � k3(�uC � a3L3¢T3) � 0

k1uB � k2(d2 � uC � uB) � PB

 F3 � k3(�uC � a3L3¢T3)

 F2 � k2(d2 � uC � uB)

 F1 � k1uB

 e3 � uD � uC � �uC

 e2 � d2 � uC � uB

 e1 � uB � uA � uB

d2
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The solution of Eqs. (5), a set of two equations in two unknowns, can

easily be obtained by applying Cramer’s Rule. The solution is

Ans. (a) (6)

(b) Determine the three element forces. This is very straightforward, since

we only need to substitute the above expressions for the nodal displace-

ments, Eqs. (6), together with the definitions of (PB)eff and (PC)eff from

Eqs. (5�), into Eqs. (4). Thus, we get

Ans. (b) (7)

Review the Solution As one check of our work, we can substitute Eqs.

(7) back into Eqs. (1) to see if equilibrium is satisfied.

Is Yes. Is Yes.

The fact that equilibrium is satisfied by our answers means that we have

probably not made errors in our solution.Also, by examining Eqs. (7) we

can see that the tension/compression contributions of PB, and �T3 to

the various element axial forces are what we expected to find.

d2,

F2 � F3 � 0?F1 � F2 � PB?

F1 �
k1[(k2 � k3)PB � k2k3(d2 � a3L3¢T3)]

k1k2 � k1k3 � k2k3

F2 �
k2[�k3PB � k1k3(d2 � a3L3¢T3)]

k1k2 � k1k3 � k2k3

F3 �
k3[�k2PB � k1k2(d2 � a3L3¢T3)]

k1k2 � k1k2 � k2k3

 uC �
k2(PB)eff � (k1 � k2)(PC)eff

k1k2 � k1k3 � k2k3

 uB �
(k2 � k3)(PB)eff � k2(PC)eff

k1k2 � k1k3 � k2k3

x

The Displacement Method was used as the basis for the development of a com-

puter program to solve multisegment axial-deformation problems involving exter-

nally applied axial loads, element temperature changes, and misfits. This computer

program is one of the General Analysis suite of the MDSolids computer program.

Multisegment Axial Rod: Displacement Method is a program for ana-

lyzing multi-segment statically indeterminate structures, like the one in Example

3.17, by the Displacement Method. Temperature changes and misfits are included.

MDS3.14

180

In Sections 3.5–3.7 the analysis of relatively simple statically indeterminate

systems followed a procedure called the Basic Force Method. As problem

complexity increases, the number of simultaneous equations that arise—equilibrium

equations, force-temperature-deformation equations, and compatibility equations—

increases, and it becomes necessary to examine ways of solving these as
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systematically as possible. One of these ways is the Displacement Method, de-

scribed in Section 3.8. Another is the Force Method, which is also referred to as

the Flexibility Method or the Method of Consistent Deformations. The Basic

Force Method does not require one to identify specific forces as the “redundant”

forces; the more formal Force Method, described here, does. It is the natural

extension of the Method of Sections that is used in statics to solve statically

determinate problems.

Solution Procedure: Force Method.11 The Force Method, outlined in the fol-

lowing solution-procedure list and flow chart, is illustrated in Example Problems

3.18 and 3.19. and comparison is drawn between the Displacement Method and the

Force Method.

11Because the Force Method is far less widely used in computer-based structural analysis and finite ele-

ment analysis than is the Displacement Method, this introduction to the Force Method is treated as an

“optional” section.
12If displacements are required in addition to element forces and/or reactions at the supports, the

Displacement Method, which is discussed in Section 3.8. is generally easier to use than the Force Method.

SOLUTION PROCEDURE: FORCE METHOD

� SET UP THE FUNDAMENTAL EQUATIONS:

(1) Determine NE the number of independent equilibrium

equations that can be written. The number of redundant
internal forces is equal to the total number of unknown

internal forces minus the number of independent equi-

librium equations that are available, that is,

Select NR Internal forces to be the redundant internal

forces; the other NE forces will be the determinate inter-
nal forces. Using free-body diagrams, write down NE

independent equilibrium equations by expressing each
of the NE determinate internal forces in terms of the NR

redundant internal forces and the external loads. This is

most conveniently done by imagining that the structure

is made statically determinate by making a “cut” that re-

leases each constraint that gives rise to a selected redun-

dant force, thereby treating the redundant forces as

though they were known loads.

(2) Write an element force-temperature-deformation equa-
tion for each axial-deformation element. Equation 3.27

(Eq. 3.14 if �Ti � 0) is the most convenient form to use

for this step:

(3.27)

repeated

(3) Use geometry of deformation to write down the NR com-
patibility equations(s) in terms of the element elonga-

tions, ei.

fi � (L/AE)iei � fiFi � aiLi¢Ti,

NR � NU � NE

� SOLVE FOR THE UNKNOWN FORCES:

(4) Substitute the NE determinate-force equilibrium equa-

tions of Step 1 into the element force-temperature-defor-
mation equations of Step 2. This produces NU force-

temperature-deformation equations in terms of the NR

redundant forces (and the external loads and �T ’s).

(5) Substitute the results of Step 4 into the NR geometric-

compatibility equations of Step 3. This gives NR

geometric-compatibility equations in terms of the NR

redundant internal forces.
(6) Solve simultaneously the equations obtained in Step 5.

The answer will be the NR redundant internal forces.
The remaining NR (determinate) internal forces are ob-

tained by substituting the redundant forces into the

equilibrium equations of Step 1.

� SOLVE FOR THE DISPLACEMENTS:

(7) To obtain system displacements, substitute the internal

forces from Step 6 into the force-temperature-deforma-

tion equations of Step 2. Finally, use geometry of defor-

mation to relate element elongations to system displace-

ments.12

(8) Review the solution to make sure that all answers seem

to be correct.

181
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In some cases, it is easier to solve a problem by the Force Method, rather than

by the Displacement Method, as is demonstrated now in the Force-Method solution

of Example Problem 3.18 as compared to the Displacement Method solution of

Example Problem 3.17.

182
Axial Deformation

FORCE  METHOD

(3)

(2)

(1)

Force-Temp.-
Deformation
Equations
ei = (fF + aLΔT)i

Equilibrium
Equations
in Terms of
Redundant Forces

Compatibility
Equation(s)
in Terms of
Elongations, ei

Force-Temp.-
Deformation
in Terms of
Redundant Forces

Compatibility
in Terms of
Redundant Forces

REDUNDANT
FORCES

DETERMINATE
FORCES

E X A M P L E  3 . 1 8

A stepped rod is made up of three uniform elements, or members, as

shown in Fig. 1. The rod exactly fits between rigid walls when no exter-

nal forces are applied, and the ends of the rod are welded to the rigid

walls. (a) Determine the axial stress, �i , in each of the three elements. Let

F1, the internal force in member AB, be the redundant force.

(b) Determine the joint displacements uB and uC.

A1, E1

(1)

A2, E2
A3, E3

L1 L2 L3

uB

PB

PA PD

BA PC C D

uC

(2) (3)

Fig. 1 The original structure.

Plan the Solution As always, we will first set up the three fundamental

sets of equations—equilibrium equations, force-deformation equations,

and compatibility equations. In solving these equations we are asked to

let F1 be taken as the redundant force. As illustrated in Fig. 2, by making

a single (imaginary) “cut” anywhere along element (1) we make the re-

sulting structure “statically determinate,” with F1 treated as a known

load rather than as an unknown internal force. There is one compatibil-

ity (constraint) equation, namely, that the total elongation is zero. By

writing this equation in terms of the redundant force F1, we will be able

to solve this one equation for the one unknown.
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Fig. 2 The “cut” structure.

L1 L2 L3

PB

PD

B PC C D

(2) (3)(1)
PA

A

F1

Element
Force-
Deformation
Behavior

Fig. 3 Free-body diagrams.

F1
C

B

(b) Free-body diagram 2.

F3

PCPB

(2) (3)(1)
F1 B

(a) Free-body diagram 1.

F2

PB

(1) (2)

Solution (a) Determine the axial stresses �i.

Equilibrium: Having selected F1 as the redundant internal force, we

need to draw two free-body diagrams that can be used to express F2 and

F3 in terms of the redundant force F1. By cutting on both sides of the

joint at B, we produce the free-body diagram of Fig. 3a, which relates F2

to F1. Similarly, by cutting through elements (1) and (3) we get the free-

body diagram in Fig. 3b, which relates F3 to the redundant force F1. Note

that we have applied the method of sections in drawing the free-body

diagrams and writing the equilibrium equations. You will find that the

method of sections is the best way to draw free-body diagrams for Force-
Method solutions.

For Fig. 3a :

For Fig. 3b :

As indicated in Step 1 of the Force-Method Procedure, we rearrange

these equilibrium equations so that they express the determinate forces

F2 and F3 in terms of the one redundant force F1 and the external loads.

Equilibrium (1)

Note that, once we have solved for the redundant force F1, we will come

back to Eqs. (1) to solve for the remaining unknown forces.

Element Force-Deformation Behavior: The force-deformation equations

for the three elements can be written in the form given by Eq. 3.14,

namely,

(2)

f3 � (L/AE)3e3 � f3F3,

f2 � (L/AE)2e2 � f2F2,

f1 � (L/AE)1e1 � f1F1,

 F3 � F1 � PB � PC

 F2 � F1 � PB

�F1 � PB � PC � F3 � 0
�
S ©Fx � 0: S

�F1 � F2 � PB � 0
�
S ©Fx � 0: S
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Geometry of Deformation: At this point we have five equations and

six unknowns. Since we have one redundant force, F1, we need one

equation of geometric compatibility. We can see (Fig. 1) that the total

length of the three-element rod system must remain constant, that is,

there is no elongation of the rod. The appropriate compatibility equa-
tion is

Compatibility (3)

Force-Method Solution of the Fundamental Equations: Note that the

equilibrium equations have been written in a form that expresses the de-

terminate forces, F2 and F3, in terms of the redundant force, F1, and the

two nodal loads. Following Step 4 in the Force-Method Procedure, we

first combine Eqs. (1) and (2) so that all of the force-deformation equa-

tions will be expressed in terms of the known loads and the one redun-

dant force, F1.

(4)

Next (Step 5), we substitute Eqs. (4) into the compatibility equation,

Eq. (3), to get

(5)

We have reduced six equations in six unknowns to one equation 

in one unknown, which we can easily solve for the redundant force
(Step 6).

(6a)

This is the key solution step. We have determined the redundant inter-

nal force in terms of the given external loads and properties of the

structure. The approach we have used is called the Force Method
because the major solution step gives us a force quantity. It is some-

times referred to as the Flexibility Method because it is convenient to

use flexibility coefficients, fi, in the solution; and it is sometimes re-

ferred to as the Method of Consistent Deformations because the key

equation(s) in the solution is (are) the deformation-compatibility

equation(s).

Knowing the redundant force F1, we can now use the equilibrium

equations, Eqs. (1), to obtain the determinate forces F2 and F3, thus com-

pleting Step 6.

(6b,c) F3 � F1 � PB � PC �
�f1PB � (f1 � f2)PC

f1 � f2 � f3

 F2 � F1 � PB �
�f1PB � f3PC

f1 � f2 � f3

F1 �
( f2 � f3)PB � f3PC

f1 � f2 � f3

(f1 � f2 � f3)F1 � f2PB � f3(PB � PC)

e3 � f3(F1 � PB � PC)e2 � f2(F1 � PB),e1 � f1F1,

etotal � e1 � e2 � e3 � 0

Compatibility
in Terms of 
the Redundant
Force
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Since we were asked for the stresses in the three elements, we need to

divide the forces in Eqs. (6) by their respective cross-sectional areas,

that is,

Ans. (a) (7)

(b) Obtain the displacements uB and uC. We need to use geometry of
deformation equations. We can note (Fig. 1) that

(8)

The first and third of Eqs. (2) may be substituted into these to give

(9)

Then, forces F1 and F3 from Eqs. (6) can be substituted into Eqs. (9) giving

Ans. (b) (10)

Review the Solution We can easily check the dimensions in each of the

answers and see that the answers are dimensionally homogeneous. For

example, dimensionally, the f ’s in the numerator and the f ’s in the de-

nominator of Eqs. (6) cancel, leaving the dimensional equation F � F.As

a second check, we can see (Fig. 1) that, if PB � 0 and PC � 0, element

(1) will be in tension while elements (2) and (3) will be in compression.

From Eqs. (6) we can see that this is the case.

 uC �
f3[ f1PB � ( f1 � f2)PC]

f1 � f2 � f3

 uB �
f1[(f2 � f3)PB � f3PC]

f1 � f2 � f3

uC � �f3F3uB � f1F1,

Geometry of
Deformation

uC � �e3uB � e1,

s3 �
F3

A3

s2 �
F2

A2

s1 �
F1

A1

,

x

You should always think first about how to obtain correct equations of all of the

three fundamental types—equilibrium equations, force-deformation equations, and

compatibility equations! The Force Method is just one systematic procedure for

combining them to get the final solution. It is a direct extension of the procedure

used for statically determinate structures: equilibrium first, then element force-

temperature-deformation, and finally geometry of deformation.

Comparison of the Force Method and the Displacement Method. Any

method of solving the simultaneous equations—the Displacement Method or the

Basic Force Method or the Force Method—may be used as long as you have all of

the necessary equations at hand. However, it may be more convenient to use one

procedure rather than another one. The Basic Force Method is best if there is only

one equilibrium equation and one compatibility equation. For more complex situa-

tions, it is preferable to follow the Displacement Method or the Force Method.Table 3.3

in Section 3.8 compares the steps in these two procedures. The Displacement

Method is the more straightforward of the two, because it is not necessary to select

redundant forces and because the deformation-compatibility equations directly in-

volve system displacements. However, there are circumstances, such as solving for

the axial forces in the elements in Fig. 3.21, where the Force Method requires less

185

 c03AxialDeformation.qxd  8/31/10  7:45 PM  Page 185



work. In this case we could just let F1 be the redundant force and, using the Force

Method, solve the deformation compatibility equation

once it has been written in terms of F1.

In Example Problem 3.19 there are two independent equilibrium equations and

one deformation-compatibility equation. Therefore, it is probably easier to solve it

by using the Force Method, rather than the Displacement Method. It is “starred” as

a more difficult problem because there are three unknown forces and because spe-

cial care must be taken in order to obtain the correct compatibility equation.

Nevertheless, the Force-Method solution is very straightforward.

e1 � e2 � e3 � e4 � e5 � 0

FIGURE 3.21 A multisegment statically indeterminate structure.

(2) (4)(1) (5)(3)
A

PB
PA PFPC PD

PE

B C D E F

EXAMPLE  3 .19*

Two rods and a post support a rigid beam AD, as shown in Fig. 1. When

assembled together as a system, the two rods and post would be stress-

free and the beam AD would be horizontal, were it not for the fact that

rod (1) was manufactured too short. (a) Use the Force Method to de-

termine the force in rod (1) after the whole system is assembled and the

vertical load P is applied to the beam at C. Assume that the rotation of

beam AD is small. (b) Determine the vertical displacement

Plan the Solution Since the post at B and the rods at A and D are all de-

formable, we will have to allow for both vertical translation and rotation

dA.

d1

(2)

(3)

(1)

a a

A DC

P

B

L2

a

δA
L3

L1

Fig. 1

A1 � A3 � 1000 mm2, A2 � 1500 mm2

L1 � 4.2 m, L2 � 2.1 m, L1 � 2.8 m

a � 2 m, 1 � 1.0 mm, E � 70 GPa, P � 25 kNd
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of the rigid beam AD. We can write one equilibrium equation for the

summation of forces in the vertical direction and, by taking moments

about some point along the beam point (e.g., point B), we will get a sec-

ond equilibrium equation.A more efficient approach, however, will be to

use two moment equilibrium equations. Since there are three unknown

internal forces, we will need to designate one of them as the redundant

force, and one deformation-compatibility equation will have to be

obtained and solved for this redundant force.

Because rod (1) is initially too short, it will tend to displace end A
upward, and the force induced in rod (1) will be tension. This will cause

post (2) and rod (3) to be in tension also. However, the effect of the load

P is less clear, since both post (2) and rod (3) are deformable.

Solution (a) Determine the force in rod (1).

Equilibrium: Since we want a free-body diagram that will permit us to

relate the internal element forces to each other and to the external load

P, we select the rigid beam AD as shown in Fig. 2. As always, we select

tension as positive for the force in each element. We need to designate

one force as the redundant force. Since the problem statement only asks

for F1 and , the best approach is to designate F1 as the redundant force

and write equilibrium equations that express F2 and F3 in terms of F1 and

the external load P.

With these, we can write equilibrium equations that give F2 and F3 in

terms of the designated redundant force F1 and the applied load. P.

(1)

Element Force-Temperature-Deformation Equations: Since we are to

employ the Force Method, Eq. 3.14 is the convenient form to use.

(2a–c)

where

 f3 � a L
AE
b

3

�
(2.80 m)

(1000 mm2)(70 GPa)
� 4.00 � 10�2

 
 mm/kN

 f2 � a L
AE
b

2

�
(2.10 m)

(1500 mm2)(70 GPa)
� 2.00 � 10�2

 
 mm/kN

 f1 � a L
AE
b

1

�
(4.20 m)

(1000 mm2)(70 GPa)
� 6.00 � 10�2

 
 mm/kN

 e3 � f3F3

 e2 � f2F2

 e1 � f1F1

 F3 � 1
2F1 � 1

2P

 F2 � 3
2F1 � 1

2P

�F1(3a) � F2(2a) � P(a) � 0aaMb
D

� 0:

�F1(a) � F3(2a) � P(a) � 0aaMb
B

� 0:

dA

Fig. 2 Free-body diagram.

DA
CB

PF2

F1 F3

a a a

Equilibrium 
in Terms of the
Redundant Force

Element 
Force-
Deformation
Behavior
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Geometry of Deformation: We need to sketch a deformation diagram.
For simplicity, let us assume that beam AD displace upward throughout

its entire length, and that it rotates clockwise. In Fig. 3 the three element

elongations are related to the vertical displacements at their points of

connection to the beam. (Recall that a positive e corresponds to a length-

ening of the element.) We can now write a single compatibility equation

that relates the elongations of the three elements to each other.

Without introducing the beam’s rotation angle we can make use of

the geometry of similar triangles in Fig. 3 and write

This deformation compatibility equation can be written in the form

Compatibility (3)

Solution of Equations by the Force Method: Now we use the Force-

Method steps to combine Eqs. (1) through (3). First (Step 4), we substi-

tute Eqs. (1) into Eqs. (2) to get the element force-displacement equa-

tions all written in terms of the one redundant force F1.

(4)

Next (Step 5), these equations are substituted into the compatibility

equation, Eq. (3), to obtain the following compatibility equation in terms
of the redundant force F1:

(5)

We have reduced six equations in six unknowns to one equation in one

unknown, which we can easily solve for the redundant force (Step 6).

(6)

Inserting numerical values into Eq. (6). we get

Ans. (a)

(b) Determine the displacement at A. From Fig. 3 and Eq. (2a),

(7)dA � d1 � e1 � d1 � f1F1

F1 � 9.78 kN

F1 �
[3(2 � 10�2 mm/kN) � (4 � 10�2 mm/kN)](25 kN) � 4(1.0 mm)

4(6 � 10�2 mm/kN) � 9(2 � 10�2 mm/kN) � (4 � 10�2 mm/kN)

F1 �
(3f2 � f3)P � 4d1

4f1 � 9f2 � f3

(4f1 � 9f2 � f3)F1 � (3f2 � f3)P � 4d1

 e3 � f3F3 � f3(1
2F1 � 1

2P)

 e2 � f2F2 � f2(3
2F1 � 1

2P)

 e1 � f1F1

2e1 � 3e2 � e3 � 2d1

e2 �
1

3
dD �

2

3
dA �

1

3
(�e3) �

2

3
(d1 � e1)

Fig. 3 Deformation diagram.

A B D
δD = –e3δB = e2δA = δ–

1 – e1

δA δB δD

a 2a

Compatibility
in Terms of 
the Redundant
Force

Geometry of
Deformation
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Numerical values are inserted into Eq. (7) giving

Ans. (b)

Review the Solution From Eq. (6) it is clear that a tensile force is in-

duced in rod (1) by the “misfit” 1. However, it is not so easy to see why

the contribution of P is also tension. If the post at B were “rigid” rather

than deformable (i.e., if f2 � 0), the contribution of load P to F1 should

be compression, as it is in Eq. (6). If the rod at D were “rigid” rather than

deformable (i.e., if f3 � 0), the contribution of load P to F1 should be

tension, as it is in Eq. (6).

As an exercise, you can solve for F2 and F3 and show that the sum of

the forces in the vertical direction is zero.

d

dA � 0.413 mm

dA � 1.0 mm � (6 � 10�2 mm/kN)(9.78 kN)

Notice that, compared with a solution by the Basic Force Method, where the

number of equations to be solved simultaneously is equal to NU, the total number

of unknown forces, the Force Method described in this section makes that task eas-

ier by reducing the number of equations that must finally be solved simultaneously

to NR, the number of redundant forces.

*3.10 INTRODUCTION TO THE ANALYSIS 
OF PLANAR TRUSSES

Figure 3.22 shows a three-element planar truss. In this section we examine the fun-

damental equations for an inclined element that is pinned to a rigid base at one end

and connected to another member or members at the other end, like the elements

in the planar truss in Fig. 3.22.13 We restrict our attention to uniform, linearly elas-

tic elements.

Fundamental Equations. Figure 3.23 snows a typical uniform planar truss ele-

ment that is assumed to be subjected to an axial force F and uniformly heated by an

amount �T.14 Let u be the horizontal displacement of the “free” end, positive in the

�x direction, and let be the vertical displacement of the free end, positive in the

�y direction. Let Fx be the x component of force applied to the element at the free

end, and Fy be the y component. Then, F is the total axial force (tension is assumed

positive).The angle is always taken positive counterclockwise and is measured from
the x axis, as shown in Fig. 3.23.

Equilibrium: When we show a free-body diagram of the joint to which the element

in Fig. 3.23 is attached, we can show either the axial force F, or we can show the com-

ponents Fx and Fy.

u

y

13This section exemplifies the systematic problem-solving procedure that is employed in matrix structural
analysis. Since only elements that have one end pinned to is rigid base are considered here, the problems

can be readily solved, even without the use of a computer.
14The temperature increment is measured from the reference temperature, the temperature at which

the truss element is stress-free.

¢T

FIGURE 3.22 A Planar truss.

P

AC

D

B
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Element Force-Temperature-Deformation Behavior: Equations 3.27 and 3.28 relate

the axial force F to the elongation of the element and to its (uniform) temperature

change. That is,

(3.27) 

repeated

(3.28) 

repeated

Geometry of Deformation: Now we need to relate the elongation e to the joint’s

displacement components u and . We will assume that u and are very small in

comparison with L. We need expression that relate e to u and . Let us take u and 

separately, as shown in Fig. 3.24.

Since u and are assumed to be small, we can determine their contributions to

e by projecting the displacements onto the original element direction, noting that

the small triangles have a vertex angle �.15

(3.29)

It is beyond the scope of this text to treat trusses with more than one node

(joint), since this is, properly, a principal topic treated in courses in matrix structural

analysis. We will, however, consider one-node trusses in order to show how easily

the procedures used in Sections 3.4 and 3.5 through 3.9 to solve axial-deformation

problems can be extended to the solution of planar truss problems.

e � eu � ey � u  cos  u � y  sin  u

y

yy

yy

F � k(e � aL¢T)

e � fF � aL¢T

FIGURE 3.23 Planar truss

element notation.

L

y

x

(a) (b)

θ

y

θ

F
Fy

Fx

u

v
Deformed

Undeformed

15See Problem 3.10-26 for an exercise that illustrates the validity of this approximation.

y

xθ

y

xθ
Undeformed

Undeformed

Deformed
(v only)

Deformed
(u only)

v

ev
u

eu

FIGURE 3.24 The contributions of displacements u and to the elongation e.y
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191
Introduction to the Analysis

of Planar Trusses

Analysis of Simple Statically Determinate Trusses. If a one-node planar

truss; has only two elements, it is statically determinate. The Force-Method

Procedure outlined below is a very efficient way to solve this type of problem. If the

one-node truss has more than two elements, like the three-element planar truss in

Fig. 3.22, the Displacement-Method Procedure is preferable.

FORCE-METHOD PROCEDURE FOR STATICALLY DETERMINATE TRUSS PROBLEM

1. Draw, free-body diagram of the joint where the truss

members are joined by a pin. Solve the two equilibrium

equations for the unknown element forces. F1 and F2.

2. Use Eq. 3.27 to determine the elongations ei due to forces

Fi and temperature changes �Ti .

3. Write two geometry equations of the form given in 

Eq. 3.29 and solve these for the joint displacement com-

ponents u and .y

In Example 3.20 we consider a statically determinate planar truss acted on by

an external load and having one member cooled. In Example 3.21 we consider a

statically indeterminate truss with one member that is not manufactured the

correct length.

E X A M P L E  3 . 2 0

A (statically determinate) two-bar planar truss has the configuration

shown in Fig. 1 when it is assembled. If a downward load P � 20 kN is

applied to the pin at C, and, at the same time, element (1) is cooled by

20�C, (a) what are the stresses �1 and �2 in elements (1) and (2), respec-

tively? (b) What are the horizontal and vertical displacements, uC and 

C) respectively?y

2 m

1.5 m

(2)

(1)

vC

uCC

A

B

x

y

P = 20 kN

A1
A2

= 1000 mm2, E1 = 200 GPa, α1 = 20(10–6)/°C
= 1000 mm2, E2 = 100 GPa

Fig. 1
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Solution (a) Determine the element stresses �1 and �2.

Equilibrium: We should use a free-body diagram of joint C shown in

Fig. 2, summing forces in the x and y directions.

Equilibrium (1)

Thus, the stresses are:

Ans. (a)

(b) Determine the joint displacement components uC and C.

Element Force-Temperature-Deformation Behavior: From Eq. 3.27,

(2)

where

Then, from Eq. (2),

Geometry of Deformation: From Eq. 3.29,

(3)ei � uC  cos ui � yC  sin ui

 e2 � (1.500 � 10�8 m/N)(�15 000 N) � �0.225 mm

 � �0.000 688  m � �0.688  mm

 e1 � (1.250 � 10�8 m/N)(25 000 N) � (20 � 10�6/°C)(2.5 m)(�20°C)

 f2 � a L
AE
b

2

�
1.5 m

(0.001 m2)(100 � 109
 N/m2)

� 1.500(10�8) m/N

 f1 � a L
AE
b

1

�
2.5 m

(0.001 m2)(200 � 109 N/m2)
� 1.250(10�8) m/N

ei � fiFi � aiLi¢Ti

y

s2 � 15 MPa (C)s1 � 25 MPa (T),

 s2 �
F2

A2

�
�15 000 N

0.001 m2
� �15 MPa

 s1 �
F1

A1

�
25 000 N

0.001 m2
� 25 MPa

 F2 � �15 kN

 F1 � 25 kN

F1 � 25 kN4
5F1 � 20 kN � 0,�ca Fy � 0:

F2 � �3
5F1�3

5F1 � F2 � 0,S� a Fx � 0:

Fig. 2 Free-body diagram of joint C.

3

45

F1

P = 20 kN

C
F2

x

y

Element
Force-Temp.-
Deformation
Behavior

Geometry 
of
Deformation
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Then,

Ans. (b)

Review the Solution The displacement of joint C, upward and to the

left, seems a bit strange, since the applied force P pulls downward.

However, we must remember that since element (1) is cooled, it will tend

to pull joint C upward and to the left, apparently overriding the down-

ward displacement due to load P.

Note that Eq. (3), the geometry-of-deformation equation, is the only

really “new” feature that distinguishes this truss problem from the axial-

deformation problems treated in Section 3.5.

yC � 0.691 mmuC � �0.225 mm,

 e2 � uC � �0.225 mm

 e1 �
3

5
uC �

4

5
yC � �0.688 mm

 cos u1 �
3

5
, sin u1 � �

4

5
, cos u2 � 1, sin u2 � 0

Analysis of Simple Statically Indeterminate Trusses. If the truss is stati-

cally indeterminate, that is, if it has more than two members but only one joint, a

Displacement-Method solution is the most straightforward. Of course, the

Displacement Method could also be used to solve statically determinate truss

problems.

DISPLACEMENT-METHOD PROCEDURE 
FOR TRUSS PROBLEMS

1. Draw a free-body diagram of the joint where the truss

members are joined together by a pin. Write the two

equilibrium equations in terms of the unknown element

forces.

2. Write an element force-temperature-deformation equa-
tion for the each element Equation 3.28

is the most convenient from to use for this step.

3. Use geometry of deformation, Eq. 3.29, to relate the ele-

ment elongations to the joint displacement components 

u and .

4. Substitute the deformation-geometry equations (Step 3)

into the force-temperature-deformation equations 

y

ki � (AE/L)Fi � ki(ei � aL¢Ti),

Fi.

(Step 2). This gives element forces in terms of system dis-
placements.

5. Substitute the results of Step 4 into the equilibrium equa-

tions of Step 1. This gives equilibrium equations written in
terms of system displacements.

6. Solve the equations obtained in Step 5. The answer will

be the system displacements.

7. Substitute the system displacements of Step 6 into the

equations obtained in Step 4. The answer will be the

element forces. If element normal stresses are required,

the element forces can be divided by the respective

element cross-sectional areas, that is si � Fi/Ai.

The following example problem illustrates the solution of truss problems using

the Displacement Method.
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E X A M P L E  3 . 2 1

A three-element truss has the configuration shown in Fig. 1. Each mem-

ber has a cross-sectional area of 1.2 in2, and all of them are made of alu-

minum, with E � 10 � 103 ksi. When the truss members were fabricated,

members (1) and (3) were manufactured correctly (i.e., correct lengths of

L1 � 40 in. and L3 � 30 in.). However, member (2) has a distance be-

tween hole centers of L2, � 49.90 in., rather than the correct value of

50.00 in. If member (2) is stretched so that a pin can be inserted to con-

nect all three members together at B, and then the system is released,

(a) what displacements, u uB and will occur at node B? 

(b) What forces will be induced in the three members?

Plan the Solution As always, we need to formulate equations for

equilibrium, element force-deformation behavior, and geometry of

deformation.We must incorporate the “misfit” condition in the deformation-

compatibility equations.

Because member (2) will tend to return to its original length but will

be restrained by members (1) and (3), we should expect member (2) to

be in tension and the other two members to be in compression.

Solution (a) Use the Displacement Method to solve for the displace-
ments u and .

Equilibrium: The node at B (Fig. 2) is acted on only by the element

forces, since there is no external load. As usual, the axial forces in the

elements are taken positive in tension.

Equilibrium (1)

Element Force-Deformation Behavior: We have three elements, so we

need to write Eq. 3.28 for each of these elements. It will be helpful to

compile a table of element properties first.

 k3 � aAE
L
b

3

�
(1.2 in2)(10 � 103 ksi)

(30 in.)
� 400 kips/in.

 k2 � aAE
L
b

2

�
(1.2 in2)(10 � 103 ksi)

(50 in.)
� 240 kips/in.

 k1 � aAE
L
b

1

�
(1.2 in2)(10 � 103 ksi)

(40 in.)
� 300 kips/in.

3

5
F2 � F3 � 0

F1 �
4

5
F2 � 0

�
3

5
F2 � F3 � 0�ca Fy � 0:

�F1 �
4

5
F2 � 0�

Sa Fx � 0:

y

y � yB,�

Fig. 1

A

C
D

B

v

u(1)

(2)
(3)30 in.

40 in.x

y

Fig. 2 Free-body diagram.

B
F1

F2 F3

4

5
3

x

y
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Table of Element Properties

Element, i Li (in.) ki (kips/in.) cos �i sin �i

1 40 300 1.0 0.0

2 50 240 0.8 0.6

3 30 400 0.0 1.0

Then, from Eq. 3.28,

(2)

Geometry of Deformation: We sketch a deformation diagram (Fig. 3) so

that we can see how to relate the element elongations to the system dis-

placements u and . We greatly exaggerate the gap between the end of

element (2) and node B, where it is supposed to connect to elements

(1) and (3).

First, we can use Eq. 3.29 to express the elongation of each element

in terms of the displacement at its “free” end, that is, end B.

However, we will have to modify the equation for element (2) to account

for the “misfit.” Since all elements are pinned together at joint B,

Combining these equations, and referring to the Table of Element

Properties, we get

(3)

Displacement-Method Solution: All we need to do is combine Eqs. (1)

through (3) in the Displacement-Method order: (3) → (2) → (1).

(4)F3 � 400yF2 � 192u � 144n � 24.00,F1 � 300u,

 e3 � u  cos u3 � y  sin u3 � y

 � 0.8u � 0.6y � d

 e2 � u  cos u2 � y  sin u2 � d

 e1 � u  cos u1 � y  sin u1 � u

y1 � y2 � y3 � yu1 � u2 � u3 � u,

i � 1, 2, 3ei � ui  cos ui � yi  sin ui

y

 F3 � k3e3 � 400e3

 F2 � k2e2 � 240e2

 F1 � k1e1 � 300e1
Element Force-
Deformation
Behavior

Fig. 3 Deformation diagram.

Deformation
Compatibility

40 in.

30 in.
δ

θ2

(2)

(1)

v

u

B
A

C D

Undeformed
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Then, from Eqs. (1) and (4), we have

or

(5)

Solving these simultaneous algebraic equations, we get

Ans. (a) (6)

(b) Solve for the element forces. The displacements u and y can be substi-

tuted into Eqs. (4) to give

Ans. (b) (7)

Review the Solution One way to verify our results is to check equilib-

rium (using full calculator precision, not the reported rounded values).

Is Yes.

Is Yes.

Also, we note that all of the element forces have the signs that we

expected them to have, that is, member (2) is in tension, while members

(1) and (3) are in compression.

0.6F2 � F3 � 0?

F1 � 0.8F2 � 0?

F3 � 8.33 kips (C)

F2 � 13.89 kips (T)

F1 � 11.11 kips (C)

F3 � 400y � �8.33 kips

F2 � 192u � 144y � 24.00 � 13.89 kips

F1 � 300u � �11.11 kips

y � �2.08(10�2) in.

u � �3.70(10�2) in.

115.2u � 486.4y � �14.40

453.6u � 115.2y � �19.20

 0.6(192u � 144y � 24.00) � 400y � 0

 300u � 0.8(192u � 144y � 24.00) � 0

Nodal
Equilibrium 
in Terms of 
Nodal
Displacement

From the two truss examples of this section we can conclude that, by establish-

ing a geometric relationship between the elongation of an element and the

Cartesian components of displacement at its “free” end (Fig. 3.24), we can solve pla-

nar truss problems involving elements attached to “ground” at one end by exactly

the same procedures used in Sections 3.4 through 3.9.
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Up to this point in our analysis of axial deformation we have considered only lin-

early elastic behavior. It is important, however, that we also study the inelastic be-

havior of deformable bodies whose stress has exceeded the proportional limit. If

properly designed, structures and machines do not completely fail when the stress

at one or more points reaches the proportional limit, or yield point. This is true for

statically indeterminate structures, as you will discover in the elastic-plastic analysis

that follows. In many cases present design codes acknowledge the fact that “failure”

does not necessarily correspond to the first yielding of a structural element or

machine component.

Fundamental Equations. Of the three fundamental concepts of deformable-

body mechanics—equilibrium, geometry of deformation, and material behavior—

only material behavior is treated in a manner different from that in the previous
analysis of linearly elastic behavior. Let as consider the axially loaded element in

Fig. 3.25a. Assume that it is homogeneous (i.e., it has the same material proper-

ties throughout), and that it may be stressed beyond the proportional limit of the

material.

Geometry of Deformation: For inelastic axial deformation, just as for linearly elas-

tic axial deformation, we assume that the axis of the member remains straight and
that plane sections remain plane. Therefore, Eq. 3.1 holds, so the strain is independ-

ent of position in the cross section, and the strain-displacement equation for axial

deformation is

(3.1)

repeated

The elongation of the axial-deformation member is obtained by integrating Eq. 3.1,

that is, by summing the elongations of infinitesimal fibers of length dx.

(3.2,3.3)

repeated

Equilibrium: The extensional strain may vary with x, but it is constant at any cross

section. Since the material is assumed to be homogeneous, the stress will also be a

constant on the cross section. Then Eqs. 3.7 apply:

(3.7)

Therefore, axial deformation occurs when the axial force F(x) acts through the

centroid of the cross section of the member, the loading situation shown in 

 Mz � ��
A

ys dA � �ysA � �yF � 0

 My � �
A

zs dA � zsA � zF � 0

 F � �
A

s dA � sA

e � u(L) � u(0) � �
L

0


(x) dx


 �
du
dx

*3.11 INELASTIC AXIAL DEFORMATION

FIGURE 3.25 An element

undergoing axial deformation.

y

P

P

P

z x

(a) A slender member subjected
      to axial loading.

(b) A free-body diagram of a
      portion of the member.

C

C

F(x)
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Fig. 3.25. The axial stress is related to the (internal) axial force F(x) by

(3.30)

just as in the case of a homogeneous, linearly elastic axial-deformation member.

Material Behavior: Figure 3.26 depicts three typical stress-strain curves that exhibit

inelastic behavior beyond the proportional limit, �PL. Figure 3.26a is typical of met-

als like aluminum; Fig. 3.26b is an idealization of the behavior of a material with a

definite yield point, like mild steel; and Fig. 3.26c is an idealization of a material that

exhibits strain hardening after it yields. In each of the three cases illustrated in 

Fig. 3.26 the material is linearly elastic (and, therefore, it obeys Hooke’s Law) up to

the proportional limit. And, in each case, if unloading occurs from a point on the

stress-strain diagram above the yield stress, the unloading will proceed along a path

that is parallel to the original linearly elastic portion of the � versus 
 curve, as illus-

trated in Fig. 3.26.

s �
F(x)

A(x)

198
Axial Deformation

FIGURE 3.26 Three types of nonlinear stress-strain behavior: (a) elastic, nonlinearly 

plastic, (b) elastic, perfectly plastic, and (c) elastic, strain-hardening.

FIGURE 3.27 A prismatic

bar with axial loading.

Yσσ

�

1

1

E1

E2 < E1

Linearly elastic

PL = 

Strain hardening

(c)

Yσσ

�

1

E

Linearly elastic

PL = 

Perfectly plastic

(b)

σ

�

σ σ σ

1

E

Linearly elastic

PL

Nonlinear

Unloading

(a)

L

F F

Uniform End-Loaded Element. If the element is prismatic and is loaded only

by axial forces at its ends, as in Fig. 3.27 then

(3.31)

where is the strain that corresponds to the stress �.

Elastic-Plastic Analysis of Statically Indeterminate Structures. An im-

portant illustration of inelastic axial deformation is the behavior of it statically

indeterminate system whose elements exhibit elastic, perfectly plastic behavior, as

represented by the stress-strain diagram in Fig. 3.26b. Consider the statically inde-

terminate rod system in Fig. 3.28a. Let both members be made of a material whose

stress-strain curve exhibits the elastic, perfectly plastic behavior shown in Fig. 3.28b.

(It is assumed that the compressive yield stress has the same magnitude, �Y, as the

tensile yield stress.) We wish to determine a load-displacement curve that relates the

force P at B to the displacement u of point B in Fig. 3.28a.

We handle equilibrium and geometry of deformation just as in the previous

analysis of linearly elastic axial deformation.


(s)

e � 
(s)L

s �
F
A

� const

 c03AxialDeformation.qxd  8/31/10  7:46 PM  Page 198



Equilibrium: From a free-body diagram of the node (joint) at B, we get

Equilibrium (3.32)

Geometry of Deformation: By examining Fig. 3.28a, we see that element I elon-

gates an amount u and element 2 shortens the same amount u when node B
moves to the right by an amount u. Therefore, from deformation compatibility,

we have

(3.33)

Material Behavior: Now let us consider the linear and nonlinear material behavior

that occurs as the load P is increased. There are three cases: Case 1—both elements

are linearly elastic; Case 2—one member has yielded, but the other is still linearly

elastic; and Case 3—both elements have yielded.

Case 1—Both elements are linearly elastic. From Eq. 3.15 of Section 3.3,

(3.34)

Combining Eqs. 3.32 through 3.34 in Displacement-Method fashion, we get

(a)
(k1 � k2)u � P S     u �

P

aAE
L
b

1

� aAE
L
b

2

Material
Behavior—
Case 1

Fi � kiei � aAiEi

Li
b ei

Geometric
Compatibility

e2 � �ue1 � u,

F1 � F2 � P

F1

F2P
B

(1) (2)

u

B

P
L1

Let L1 > L2 

L2

(a) A two-element rod system with axial loading.

CA

FIGURE 3.28 An elastic-plastic system with axial loading.

θ

Yσ

Y�

Y�
�

σ

–

Yσ–

1
E

(b) Stress-strain diagram.
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The element stresses are

(b)

It was assumed in Fig. 3.28a that L1 � L2 Therefore, from Eqs. (b),

so element 2 reaches yield in compression before element 1 reaches yield in tension

The yield load, PY, is therefore determined by setting giving

Yield Load (3.35)

We can also use the second of Eqs. (b) to obtain

(c)

Case 2—One element has yielded. Since element 2 yields first, for this case we must

replace the linear force-elongation equation of element 2 to reflect a constant yield

stress of (��Y). Element 1, however, is still linearly elastic, so the material behavior

for Case 2 is represented by the equations

(3.36)

Combining Eqs. 3.32 (equilibrium), 3.33 (geometric compatibility), and 3.36 (mate-

rial behavior) in Displacement-Method fashion, we get

or

(d)

This phase of loading behavior extends from P � PY to P � PP, the plastic load, at

which rod 1 also yields. Line segments (1) and (2) in Fig. 3.29 are defined by Eqs. (a)

and (d), respectively.

u �
(P � sYA2)L1

A1E

k1u � P � F2 � P � sYA2

 F2 � �sYA2

 F1 � k1e1

uY �
sYL2

E

PY � sY aA1L2 � A2L1

L1

b

s2 � �sY,

�s2� 7 �s1�

 s2 �
F2

A2

�
�k2u

A2

�
�PL1

A1L2 � A2L1

 s1 �
F1

A1

�
k1u
A1

�
PL2

A1L2 � A2L1
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Axial Deformation
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FIGURE 3.29 A load-

displacement diagram for 

elastic- plastic axial 

deformation. O

PP

PY

(1)

(2)

(3)

P

uY uP u
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Case 3—Both elements have yielded. In this case both elements have yielded, and

the appropriate material behavior equations (replacing Eqs. 3.34 and 3.36) are:

(3.37)

Combining these with the equilibrium equation, Eq. 3.32, we get the value of the

plastic load PP.

Plastic Load (3.38)

This plastic load is reached when member 1 also yields, so equating the strain in

member 1 to �Y/E, we get

(e)

or

(f)

Note that

(g,h)

The above elastic-plastic analysis is summarized on the load-displacement diagram

in Fig. 3.29, with the ranges of applicability of the three cases indicated on the plot.

uP

uY
�

L1

L2

PP

PY
�

A1L1 � A2L1

A1L2 � A2L1

,

uP �
sYL1

E


1P �
uP

L1

�
sY

E

PP � sY(A1 � A2)

 F2 � �sYA2

 F1 � sYA1
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The two support rods in Fig. 1 are made of structural steel that may be

assumed to have a stress-strain diagram like Fig. 3.28b, with E � 30(103)

Fig. 1

A1 = A2 = 1.0 in2

50 in. 50 in. 50 in.

50 in.

80 in.

E

A B C D

F

(1)

(2)

Rigid

P (kips)
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ksi and �Y � 36 ksi. (a) Construct a load-displacement diagram that re-

lates the load P to the vertical displacement at D. Make the usual small-

angle assumption for the rotation of the “rigid” beam AD. (b) Determine

the allowable load if the factor of safety (see Eq. 2.26) for first yield-

ing is FSY � 2.0, and the factor of safety for fully-plastic-behavior is

FSP � 2.5.

Plan the Solution The equilibrium analysis and the geometry-of-

deformation analysis will be the same as in Example Problem 3.8. As

in the above discussion of elastic-plastic behavior, the material behav-

ior here falls under three cases—(1) both support rods are linearly

elastic, (2) one rod has yielded, and (3) both rods have yielded. The

load-displacement diagram should resemble Fig. 3.29. The allowable

load is determined by applying the factors of safety as defined in Eq.

2.26, with the allowable load being the lower of the two loads (Pallow)Y

and (Pallow)P.

Solution (a) Construct a load-displacement diagram relating load P to
the vertical displacement at D.

Equilibrium: For the free-body diagram in Fig. 2, the equation of equi-

librium is

Equilibrium (1)

Geometry of Deformation: Figure 3 is a deformation diagram for small

rotation of the rigid beam AD. From it, the equations of geometric com-

patibility can be written as

(2)

where � is the vertical displacement at D.

Material Behavior: There are three cases to be considered: Case 1, both

rods are linearly elastic; Case 2, one rod has yielded; and Case 3, both

rods have yielded.

Case 1—Both rods are linearly elastic. From Eq. 3.15 we have

and

(3)
 F2 � k2e2 � 600e2

 F1 � k1e1 � 375e1

k2 � aAE
L
b

2

� 600 

kips

in.
k1 � aAE

L
b

1

� 375 

kips

in.
,

 e2 �
2

3
 d

 e1 �
1

3
 d

F1 � 2F2 � 3PaaMb
A

� 0:

Fig. 2 Free-body diagram.

Geometric
Compatibility

Fig. 3 Deformation diagram.

Material
Behavior—
Case 1

50 in. 50 in. 50 in.
P

F1

Ax

Ay

F2

A

e1 e2

θ
D*

D
δ
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Equations (1) through (3) may be combined to give the following

load-displacement equation for Case 1:

or Ans. (a) (4)

The corresponding stresses in the two rods are obtained by combining

Eqs. (2) through (4). Thus,

(5)

Since �2 � �1, rod 2 will yield before rod 1 does. Therefore, the yield

load PY is given by setting �2 � �Y � 36 ksi in Eq. (5b), the equation for

�2. This gives

Ans. (a) (6)

The corresponding displacement at which first yield occurs is obtained

by substituting Eq. (6) into Eq. (4a), the equation for �, giving

Ans. (a) (7)

The load-displacement formula for loads up to load PY is given by 

Eqs. (4).

Case 2—One rod has yielded; one is linearly elastic. After rod 2 yields

and up until the load at which rod 1 yields, the material-behavior equa-

tions for rods 1 and 2 are:

(8)

Combining Eqs. (1) (equilibrium equation), (2a) (deformation-geometry

equation for e1), and (8) (force-deformation equations), we get

or

Ans. (a) (9)

This formula characterizes the load-displacement behavior from the

yield load PY up to the fully plastic load PP, which corresponds to the

yielding of rod 1.

P � a125

3
 d � 24b kips

375 a1

3
db � 2 a36b � 3P

 F2 � sYA2 � 36 kips

 F1 � 375e1 kips

dY �
3

925
(27.8) � 0.090 in.

PY � 27.8 kips

s2 �
F2

A2

�
48

37
 Ps1 �

F1

A1

�
15

37
 P,

P �
925

3
 dd �

3

925
 P,

203
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Case 3—Both rods have yielded. Once rod 1 also yields, the material be-

havior equations become

(10)

These rod forces can be substituted into the equilibrium equation. Eq.

(1), to give the plastic load PP.

or

Ans. (a) (11)

The corresponding displacement �P is obtained by substituting Eq. (11)

into Eq. (9) to obtain

Ans. (a) (12)

We can now use Eqs. (4), (6), (7), (9), (11), and (12) to plot the load-

displacement diagram, Fig. 4.

(b) Determine the allowable load. Based on first yield, the allowable load

is given by

(13a)

(13b)

Based on the fully-plastic load, the allowable load is given by

(14a)

So,

(14b)

In this case, the allowable load is determined by the first-yield criterion.

Therefore,

Ans. (b) (15)

Review the Solution The key results in the preceding analysis are the

“break points,” (PY, �Y) and (PP, �P), in the load-displacement diagram.

Pallow � 13.88  kips

(Pallow)P �
36 kips

2.5
� 14.40 kips

(Pallow)P �
PP

FSP

(Pallow)Y �
27.75 kips

2.0
� 13.875 kips

(Pallow)Y �
PY

FSY

dP �
3

125
 (12) � 0.288 in.

PP � 36 kips

PP �
F1 � 2F2

3
�

36 � 2(36)

3

 F2 � sYA2 � 36  kips

 F1 � sYA1 � 36 kips

Fig. 4 A load-displacement diagram.
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Let us check the first of these, starting with �Y � 0.090 in. The compatibil-

ity equations, Eqs. (2) are easily checked by referring to Fig. 3, and these

give

The strain 
2Y � e2Y/L2 � 0.0012 is in agreement with the yield strain

�Y/E, so we have the correct elongations. We can get the rod forces by

using Eqs. (3). Thus, F1Y � 11.25 kips and F2Y � 36 kips. When these

forces are substituted into the equilibrium equation, Eq. (1), we do get

PY � 27.75 kips, so our solution appears to be correct.

e2Y � 0.060 in.e1Y � 0.030 in.,

O

1

E

1

E

A

D

B

C

σ

� PS� B� �

σ

Elastic
recovery

Permanent
set

Y

Y

Residual Stress. Let us now see what happens when the load is removed after

yielding has occurred in one or more elements in an assemblage of axial deforma-

tion members made of an elastic-plastic material represented by the stress-strain

curve in Fig. 3.30.

Statically Determinate Case: Consider a single axial-deformation member that has

been stretched to a strain of 
B. Upon removal of the load, the member will undergo

linearly elastic recovery along the straight line BD to point C, where there is a resid-

ual strain, or permanent set, which is given by Fig. 3.30.

There is, however, no residual stress, because the load can be completely re-

moved from the member, since the member is statically determinate. A similar

situation would hold for a statically determinate assemblage of two or more

members—there would be some permanent set, but there would not be any resid-

ual stress.

Statically Indeterminate Case: If the assemblage of axial-deformation members is

statically indeterminate, it is possible to have self-equilibrating internal forces after

all external loads have been removed. The corresponding member stresses are

called residual stresses, because they are stresses that result from some prior load-

ing, but they remain after removal of all external loads. The next example illustrates

how residual stresses may result from inelastic material behavior.


PS � 
B � 
Y

FIGURE 3.30 Loading and unloading paths for an elastic-plastic member.
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Fig. 1b Elastic-plastic material behavior.

E X A M P L E  3 . 2 3

Let us take a special case of the statically indeterminate system in Fig.

3.28. This special case is shown in Fig. 1a. If the load P is increased until


2 � �1.5 
Y and is then removed, what residual stresses will be left in

the two elements? What is the permanent deformation? Let A1 � A2 �
A, L1 � 2L2 � 2L, and let both elements be made of the elastic-plastic

material depicted in Fig. 1b.

O

A

D C

Bσ

�

�

σ

–

σ–

2′ = –1.5�

2″�
1��

2′ 

2″ 
1″ 

Y 

Y 

Y 

1′ 
�

Y �

Y �

Y �

Y �

1′ = 0.75�

–0.5–0.5�Y

2��

Fig. 1a A statically indeterminate assemblage.

Plan the Solution We can divide the analysis into a loading phase and

an unloading phase. The analysis of the loading phase can be taken

directly from the discussion of elastic-plastic analysis of statically inde-

terminate members at the beginning of Sect. 3.11. For the unloading

phase we must set P � 0 in the equilibrium equation and use linearly

elastic material behavior to represent the unloading � � 
 paths of the

two members.

Solution

Geometry of Deformation: Let us consider the geometry of deformation

first, since this is the same for both loading and unloading. The member

elongations are related to the displacement of node B by

(1)e2 � �ue1 � u,

206

(1) (2)

u

B

P
L1 = 2L L2 = L

A C
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Fig. 2 Free-body diagram.

Geometric 
Compatibility

Material 
Behavior—
Loading

Since the strain is uniform along each member, the geometric compati-

bility equations can be written in terms of strains as

(2)

These strain equations will prove to be more convenient than Eqs. (1),

since we have to carefully examine the loading and unloading paths on

the stress-strain diagram.

Equilibrium: Equilibrium of node B (Fig. 2) gives

Equilibrium (3)

(At the end of the unloading phase, P � 0.)

Loading Phase: You should follow the loading and unloading strain

paths on Fig. 1b. We are given that the load is increased until load P pro-

duces a strain For member 2 this corresponds to a path 

O C 2� in Fig. 1b. Combining this information with Eq. (2b) we get

(4)

where the primes denote quantities when the load has been increased

until it produces the given strain in member 2. Point 2� on Fig. 1b char-

acterizes the state for member 2. From Eq. (4),

(5)

Combining Eqs. (2a) and (5) gives

(6)

Therefore, member 1 is still elastic at the point designated 1� on Fig. 1b.

Material Behavior—Loading Phase: Since the

appropriate material-behavior equations are given by Case 2 of the

earlier elastic-plastic analysis, namely

(7)

To determine the external load P� that corresponds to the given state

(i.e., that makes we can combine Eqs. (7), (2a), and (5) to
¿2 � �1.5
Y),

F2 � As2 � �sYA

F1 � As1 � AE
1

�
¿2� 7 
Y and �
¿1� 6 
Y


¿1 �
1.5
YL

2L
� 0.75
Y

u¿ � 1.5
YL


¿2 � �1.5
Y �
�u¿

L

SS

¿2 � �1.5
Y.

F1 � F2 � P

 
2 �
e2

L
�

�u
L

 
1 �
e1

2L
�

u
2L

F1 F2
P

B
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Material 
Behavior—
Unloading

obtain the member forces

(8)

These may be substituted into the equilibrium equation, Eq. (3), giving

the external load

(9)

From Eq. (5) the corresponding displacement of node B is

(10)

Unloading Phase: When the load is removed, members 1 and 2 unload

to points 1� and 2�, respectively, on Fig. 1b. Since P � � 0, the equilibrium

equation, Eq. (1), becomes

(11)

The geometry of deformation is still described by Eqs. (1) and (2), but

the material-behavior equations must now correspond to the unloading

paths indicated in Fig. 1b. Point 1� lies on the original linear portion, AC,

of the � � 
 diagram, but point 2� lies along the unloading path 2� � 2�
that intersects the 
 axis at 
�2 � 
Y � �0.5
Y. Hence, along these two re-

spective paths,

(12)

Substituting Eqs. (2) into Eqs. (12), we get the following expressions

for the internal forces:

(13)

The permanent displacement of point B, u�, at which these forces satisfy

the equilibrium equation, Eq. (11), is

Ans. (14)u– �
1

3
 

sYL
E

F2 � AE  a �
u
L

�
sY

2E
b

F1 � AE a u
2L
b

F2 � As2 � AE(
2 � 0.5
Y)

F1 � As1 � AE
1

F–1 � F–2 � 0

u¿ � 1.5 

sYL
E

P¿ � 1.75sYA

 F¿2 � �sYA

 F¿1 �
AE
2L

(1.5
YL) � 0.75sYA

208

 c03AxialDeformation.qxd  8/31/10  7:47 PM  Page 208



209

with corresponding element forces

(15)

Therefore, the two members are left with a residual stress of

Ans. (16)

Review the Solution A key equation is the geometric-compatibility

equation, Eq. (2). It tells us that for any increment of displacement �u,

�
1 � �u/2L and �
2 � ��u/L. Therefore, we can easily check points 

2� and 1� on Fig. 1b. From the corresponding stresses, �1 � 3/4�Y and 

�2 � ��Y, and the nodal equilibrium equation we can verify that the

force P� given in Eq. (9) is correct.

Next, to determine the residual stresses we know that F�1 � F �2, so 

� �1 � � �2. We also know that We see in Fig. 1b that points 1�
and 2� have equal stress and that the strain increments,

and satisfy this strain-increment equation. Therefore,

our residual stress answers in Eqs. (16) appear to be correct.

¢
2 � (
2– � 
2¿),

¢
1 � (
1– � 
1¿)

¢
1 � �1
2¢
2.

s–1 � s–2 �
1

6
 sY

F–1 � F–2 �
1

6
 sYA

Following the elastic-plastic loading and unloading behavior of a statically inde-

terminate structure, as in the above analysis, is obviously not a very easy task.

However, note that by considering separately the roles of equilibrium, of geometry
of deformation, and of material behavior, we have been able to make the analysis

both straightforward and tractable.

AXIAL DEFORMATION—NONHOMOGENEOUS
CROSS SECTION

Prob. 3.3-3. Solve Prob. 3.3-2 using the following dimen-

sions, material constants, and load: L � 20 in., b � 2 in.,

3.12 PROBLEMS

▼

Prob. 3.3-1. The bimetallic bar in Fig. 1 of Example 3.1 has

length L. Using results from Example 3.1, develop an ex-

pression for the total elongation, e, of the bimetallic bar due

to the axial force P.

Prob. 3.3-2. A bimetallic bar is made by bonding together

two homogeneous rectangular bars, each having a width b
and length L. The moduli of elasticity of the bars are E1 and

E2, respectively.An axial force P is applied to the ends of the

bimetallic bar at (y � yP, z � 0) such that the bar undergoes

axial deformation. Let L � 1.5 m, b � 50 mm, t1 � 25 mm,

t2 � 15 mm, E1 � 70 GPa, E2 � 210 GPa, and P � 48 kN.

(a) Determine the normal stress in each material, that is, de-

termine �1 and �2. (b) Determine the value of yP. (c)

Determine the total elongation, e, of the bar.

P

y

z

b/2 b/2

yP
x

t2

t1

L

P

(1)

(2)

P3.3-2 and P3.3-3
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t1 � 1.0 in., t2 � 0.5 in., E1 � 10 � 103 ksi, E2 � 30 � 103 ksi,

and P � 15 kips.

Prob. 3.3-4. A steel pipe (E1 � 200 GPa) surrounds a solid

aluminum-alloy rod (E2 � 70 GPa), and together they are

subjected to a compressive force of 200 kN acting on rigid

end caps. Determine the shortening of this bimetallic com-

pression member, and determine the normal stresses in the

pipe and in the rod.

Prob. 3.3-7. A flat bar with rectangular cross section has a

constant thickness t and an unstretched length L. The width

of the bar varies linearly from b1 at one end to b2 at the other

end, and its modulus of elasticity is E. (a) Derive a formula

for the elongation, e, of the bar when it is subjected to an

axial tensile load P, as shown in Fig. P3.3-7. (b) Calculate the

elongation for the following case: b1 � 50 mm, b2 � 100 mm,

t � 25 mm, L � 2 m, P � 250 kN, E � 70 GPa.

P = 200 kN

(1)

(2)
P

L = 0.5 m

35 mm

50 mm

40 mm

P3.3-4

Prob. 3.3-5. A steel pipe is filled with concrete, and the re-

sulting column in subjected to a compressive load P � 80

kips. The pipe has an outer diameter of 12.75 in. and an in-

side diameter of 12.00 in. The elastic moduli of the steel and

concrete are: Es � 30 � 103 ksi and Ec � 3.6 � 103 ksi. (a)

Determine the stress in the steel and the stress in the con-

crete due to this loading. (b) If the initial length of the col-

umn is L � 12 ft, how much does the column shorten when

the load is applied? (Ignore radial expansion of the concrete

and steel due to Poisson’s ratio effect.)

P = 80 kips

L = 12 ft

P3.3-5

AXIAL DEFORMATION—VARYING CROSS
SECTION

Prob. 3.3-6. A homogenous rod of length L and modulus E
is a conical frustum with diameter d(x) that varies linearly

from d0 at one end to 2d0 at the other end, with An

axial load P is applied to the rod, as shown in Fig. P3.3-6. (a)

Determine an expression for the stress distribution, �(x), on

an arbitrary cross section. (b) Determine an expression for

the elongation of the rod.

d0 V L.

▼

L

P

P
2d0

d0

x

d(x)

P3.3-6

t

b1

b2

P

L

P

P3.3-7

Prob. 3.3-8. An axial load P is applied to a tapered rod, as

shown in Fig. P3.3-8. The radius of the rod is given by

where (a) Determine a symbolic expression for

the elongation of this tapered bar in terms of the parameters

P, L r0, and E, and (b) solve for the elongation in inches if 

P � 2 kips, L � 100 in., r0 � 20 in., and the rod is made of an

aluminum alloy for which E � 10 � 103 ksi.

r0 � r(0).

r(x) � c r0

1 � (x/L)
d

x

L

Pr(x)
x

r0

P3.3-8

Prob. 3.3-9. The tapered solid stone pier in Fig. P3.3-9 is 20 ft

high, and it has a square cross section with side dimension that

varies linearly from 36 in. at the top to 48 in. at the bottom.

Assume that the stone is linearly elastic with modulus of

210
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elasticity E � 4.0 � 103 ksi. Determine the shortening of the

pier under a compressive load of P � 150 kips. (Neglect the

weight of the stone.)

Prob. 3.3-12. Nonuniform distributed axial loading of the

circular rod AB in Fig. P3.3-12 causes an extensional strain

48 in.
48 in.

20 ft

P = 150 kips

36 in.
36 in.

P3.3-9

AXIAL DEFORMATION—DISTRIBUTED 
AXIAL LOAD

Prob. 3.3-10. A bar of unstretched length L and cross-

sectional area A is made of material with modulus of elastic-

ity E and specific weight � (weight per unit volume).

(a) Determine the elongation of the bar due to its own weight

(i.e., with P � 0). (b) Determine the compressive axial force

P that would be required to return the bar to its original

length L. Express your answer in terms of , A, E, and L.g

▼

P

L

g

P3.3-10

Prob. 3.3-11. A uniform circular cylinder of diameter d and

length L is made of material with modulus of elasticity E
and specific weight . It hangs from a rigid “ceiling” at A, as

shown in Fig. P3.3-11. Using Eq. 3.12, determine an expres-

sion for the (downward) vertical displacement, u(x), of the

cross section at distance x from end A.

g

L
g

x

u(x)

A

B

d

B*

P3.3-11

that can be expressed in the form 
(x) � c1 c1 � a x
L
b2 d ,

where c1 is a constant. (a) Determine an expression for the

total elongation of the rod AB. (b) If the maximum axial stress

in this rod is �max � 15.0 ksi, and its modulus of elasticity is 

E � 10 � 103 ksi, what is the value of the constant c1? (Give

the proper units of c1.) (c) Using your previous results, calcu-

late the total elongation of rod AB if its length is L � 10 ft.

B

L

x

A

P3.3-12 and P3.3-13

Prob. 3.3-13. Nonuniform distributed axial loading of the

circular rod AB in Fig. P3.3-12 causes an extensional strain

that can be expressed in the form ,
(x) � c1 c1 � a x
L
b2 d

where c1 is a constant. (a) Determine an expression for the

total elongation of the rod AB. (b) If the maximum axial

force in this rod is Fmax � 10.0 kN, its diameter is 40 mm, and

its modulus of elasticity is E � 70 GPa, what is the value of

the constant c1? (Give the proper units of the constant c1.)

(c) Using your previous results, calculate the total elonga-

tion of rod AB if its length is L � 4 m.

Prob. 3.3-14. A uniform circular cylinder of diameter d and

length L is made of material with modulus of elasticity E. It

is fixed to a rigid wall at end A and subjected to distributed

external axial loading of magnitude p(x) per unit length, as

shown in Fig. P3.3-14a. The axial stress, �x(x), varies linearly

with x as shown in Fig. P3.3-14b. (a) Determine an expres-

sion for the distributed loading, p(x). (Hint: Draw a free-

body diagram of the bar from section x to section (x � �x).)
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(b) Using Eq. 3.12, determine an expression for the axial

displacement, u(x), of the cross section at distance x from

end A.

*Prob. 3.3-17. (a) Derive a formula for the elongation of the

bar in Fig. P3.3-16 if its unstretched length is L and its mod-

ulus of elasticity is E. (b) Calculate the elongation of the bar

for the following case: b0 � 25 mm, L � 10 m, E � 200 GPa,

and � 77 kN/m3.g

A

B

σx

σ0

(a) (b)

d

x

L

u(x)

xL
p(x)

P3.3-14

Prob. 3.3-15. The stiffeners in airplane wings may be ana-

lyzed as uniform rods subjected to distributed loading. The

stiffener shown below has a cross-sectional area of 0.60 in2

and is made of aluminum (Ea � 10 � 106 psi). Determine the

elongation of section AB of the stiffener, whose original

length is 20 in., if the stress in the stiffener at end A is �A �
5,000 psi, and a uniform distributed loading of 40 lb/in. is

applied on either side of the stiffener over the 20-in. length

from A to B.

BAPA PB

20 in.

40 lb/in.

Stiffener

Top view End view

40 lb/in.

P3.3-15

AXIAL DEFORMATION—DISTRIBUTED AXIAL
LOAD & VARYING CROSS SECTION

Prob. 3.3-16. The trapezoidal flat bar in Fig. P3.3-16 is sus-

pended from above and loaded only by its own weight. The

thickness of the bar is constant, and its width varies linearly

from width b0 at the bottom to 2b0 at the top. The weight

density of the material is . For the following case, calculate

the normal stress on the cross section midway between the

bottom and top of the bar: b0 � 10 in., L � 20 ft, and �
0.284 lb/in3.

g

g

▼

b0

L

t
2b0

g

P3.3-16 and P3.3-17

SEGMENTED AXIAL—
DETERMINATE

Prob. 3.4-1. The two-segment steel rod in Fig. P3.4-1 has a

circular cross section with diameter d1 � 15 mm over one-

half of its length, and diameter d2 � 10 mm over the other

half. The modulus of elasticity of the steel is E � 200 GPa.

(a) How much will the rod elongate under the tensile load of

P � 20 kN? (b) If the same volume of material were to be

made into a rod of constant diameter and the same 2-m

length, what would be the elongation of this rod under the

same load P?

▼

1.0m 1.0m

(1) (2)
P = 20kN

d1 = 15mm d2 = 10mm

P3.4-1 and P11.7-5

Prob. 3.4-2. A column in a two-story building is fabricated

from square structural steel tubing having a modulus of elas-

ticity E � 210 GPa. The cross-sectional dimensions of the

two segments are shown in Fig. P3.4-2b. Axial loads PA �
200 kN and PB � 300 kN are applied to the column at levels

A and B, as shown in Fig. P3.4-2a. (a) Determine the axial

stress �1 in segment AB of the column and the axial stress 

�2 in segment BC of the column. (b) Determine the amount

� by which the column is shortened.
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Prob. 3.4-3. The three-part axially loaded member in Fig.

P3.4-3 consists of a tubular segment (1) with outer diameter

(do)1 � 1.25 in. and inner diameter (di)1 � 0.875 in., a solid

circular rod segment (2) with diameter d2 � 1.25 in., and an-

other solid circular rod segment (3) with diameter d3 � 0.875

in. The line of action of each of the three applied loads is

along the centroidal axis of the member. (a) Determine the

axial stresses �1, �2, and �3 in each of the three respective

segments. (b) If L1 � L2 � L3 � 20 in. and E � 30 � 103 ksi,

what are the nodal displacements uB, uC, and uD?

symbolic expressions for the downward displacements uA

and uB at the respective column joints.

(1)

(2)

A

B

C

PB = 300 kN

PA = 200 kN

200 mm

200 mm

150 mm

150 mm
t1 = 8 mm

t2 = 12 mm

(b)(a)

3 m

δ

3 m

P3.4-2

2 kips

(1)

A B C D

(2)
(3)

3 kips

4 kips
0.875 in

L1 L3L2

UB UC UD

0.875 in.
1.25 in.

P3.4-3

Prob. 3.4-4. A 1.2 in.-diameter aluminum-alloy hanger rod

is supported by a steel pipe with an inside diameter of 3.0 in.

and a wall thickness of t � 0.125 in. Determine the displace-

ment uC at the lower end of the hanger rod when the hanger

rod is supporting a load P � 10 kips. Let E1 � Eal � 10 � 103 ksi

and E2 � Est � 30 � 103 ksi.

Prob. 3.4-5. A two-story parking garage has steel columns

labeled (1) and (2), as shown in Fig. P3.4-5. The roof load PA

and the load PB from the second floor can both be assumed

to act downward directly through the centroids of the cross

sections of the two columns, as shown. Each column has an

effective length L, and the cross-sectional areas of the two

columns are A1 and A2, respectively. Let the modulus of elas-

ticity of the steel be designated as E1 � E2 � Est. Determine

3.0 in.

30 in.

90 in.

(2) Pipe

(1) Rod

B

C

P = 10 kips

uC

A

t

P3.4-4 and P3.4-7

L

L

(1)

(2)

C

B

A

PB

PA

P3.4-5

DProb. 3.4-6. A uniform rod of diameter d is subjected to

axial loads at the three cross sections, as illustrated in Fig.

P3.4-6. If the displacement at the right end, uD, cannot ex-

ceed 5 mm, and the maximum axial stress in the rod cannot

exceed 80 MPa, what is the minimum allowable diameter of

the (circular) cylindrical rod? Use E � 70 GPa.

2.5 m

60 kN80 kN 100 kN

3.5 m3.0 m

uDuB uC

A B C D
d

(1) (2) (3)

P3.4-6
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DProb. 3.4-7. A 1.2-in.-diameter aluminum-alloy hanger rod

is supported by a steel pipe with an inside diameter of 3.0 in.,

as shown in Fig. P3.4-4. Determine the minimum wall thick-

ness of the steel pipe if the maximum displacement, uC at the

lower end of the hanger rod is 0.10 in. Let E1 � Eal � 10 �
103 ksi and E2 � Est � 30 � 103 ksi.

BEAM AND TWO RODS

Prob. 3.4-8. A 12-ft beam AB that weighs Wb � 180 lb sup-

ports an air conditioner unit that weighs Wa � 900 lb. The

beam, in turn, is supported by hanger rods (1) and (2), as

shown in Fig. 3.4-8. If the diameters of the rods are

their lengths are L1 � L2 � 6 ft, and they are

both made of steel with E1 � E2 � 30 � 103 ksi, what will be

the downward displacements uA and uB of the two ends of

the beam AB?

d1 � d2 � 3
8 in.,

weight of beam AB. (a) At what distance x from A must the

load be placed such that uB � uA? (b) How much is this dis-

placement of the beam? (c) What are the corresponding

axial stresses �1 and �2 in the two hanger rods?
DProb. 3.4-10. A rigid beam AB is supported by vertical

rods at its ends, and it supports a downward load at C of P �
60 kN as shown in Fig. P3.4-10. The diameter of the support

rod at A is d1 � 25 mm. Both hanger rods are made of steel

(E � 210 GPa). Neglect the weight of beam AB. (a) If it is

found that uB � 2uA, what is the diameter, d2, of the hanger

rod at B? (b) What is the corresponding displacement at the

load point, C?

4 ft

6 ft6 ft

(1) (2)

Wa = 900 lb

Wb = 180 lb

A B

L1

uA

L2

uB

P3.4-8

Prob. 3.4-9. A rigid beam AB of total length 3 m is sup-

ported by vertical rods at its ends, and it supports a down-

ward load at C of P � 60 kN. as shown in Fig. P3.4-9. The

diameters of the hanger rods are d1 � 25 mm and d2 � 20 mm,

and both are made of steel (E � 210 GPa). Neglect the

▼

A BC

P = 60 kN

(1)

2 m

3 m

3 m

"Rigid"

(2)

uA uB

x

P3.4-9

A BC

P = 60 kN

(1)

1 m 2 m

2 m

3 m

"Rigid"

(2)

uA uB

P3.4-10

Prob. 3.4-11. Two steel pipe columns (E � 30 � 103 ksi,

A1 � A2 � 3.0 in2) support a rigid beam AC that has a 12-ft

overhang AB. The beam supports a linearly varying load of

maximum intensity w0 � 5 kips/ft, as shown in Fig. P3.4-11.

Neglect the weight of the beam AC, and assume that the

beam is supported on the two columns such that it transmits

load to each column as an axial load. (a) Determine the com-

pressive axial stress in each of the columns, and (b) deter-

mine the displacements uA and uC at the two ends of the

beam AC.

8 ft

12 ft 12 ft

(1) (2)
"Rigid"

5 kips/ft

C
B

A
uCuA

P3.4-11

Prob. 3.4-12. A hanger rod CD is supported by a rigid beam

AB that is, in turn, supported by identical vertical rods at A
and B (see Fig. P3.4-12). If the three rods all have the same

cross-sectional area, A, and modulus of elasticity, E, deter-

mine a symbolic expression that relates the load P to the
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PINNED BEAM AND STRUT

Prob. 3.4-13. As shown in Fig. P3.4-13, wire CD of length L,

cross-sectional area A, and modulus of elasticity E supports

a rigid beam of negligible weight, which, in turn, supports a

sign whose weight is W. Attachment pin D is directly above

pin A, and when there is no load acting on the beam, the

beam is horizontal. (a) Determine an expression for the axial

stress in the wire CD when the sign is hanging from the

beam at B and C. (b) Determine an expression for the verti-

cal displacement �C of the end of the beam. Simplify your

solution by assuming that dC V L.

allowable stress in rod CD is �allow � 100 MPa and the max-

imum allowable deflection at A is �allow � 10 mm.

L

a a

2L

A
B

C

D

P

(1)

"Rigid"

(2)

(3)

uD

P3.4-12

a a a

W

A

D

L, AE

B C

δC

Sail  'n Ski Sail  'n Ski

DProb. 3.4-14. As shown in Fig. P3.4-14, vertical rod CD of

length L � 2 m, cross-sectional area A � 150 mm2. and mod-

ulus of elasticity E � 70 GPA supports a rigid beam AC of

negligible weight, which, in turn, supports a uniformly dis-

tributed load over segment AB. When there is no load, the

beam is horizontal. Determine the maximum load intensity

w0 (kN/m) that can be placed on the beam if the maximum

P3.4-13

▼
MDS 3.3

Cw0

A

B

2 m 1 m

D

2 m

δA

P3.4-14

SPECIAL TRUSS

Prob. 3.4-15. Rod AB in Fig. P3.4-15a is pinned to a fixed sup-

port at A and is pinned at B to a block that is forced to move

horizontally when load P is applied, as shown in Fig. P3.4-15b.

Assume that the displacement of point B satisfies 

(a) Determine an expression for the axial stress in rod AB as

a function of P, L, E, A, and the angle �. (b) Similarly, deter-

mine an expression for the horizontal displacement uB.

uB V L.

▼

A

AE, L
θ

A

(a) Undeformed
configuration.

P

(b) Deformed
configuration.

uB

B

B

B*

P3.4-15

Prob. 3.4-16. The pin-jointed truss ABC in Fig. P3.4-16

consists of three aluminum-alloy members, each having a

(3)(2)

A

B

C

(1)

60° 30°

P = 40 kN

3 m
uC

P3.4-16
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cross-sectional area of A � 1000 mm2 and a modulus of elas-

ticity E � 70 GPa. If a horizontal load P � 40 kN acts to the

right on the pin at B, calculate the displacement uC of the

roller support at C.

subjected to a compressive force of 200 kN acting on rigid

end caps. Determine the shortening of this bimetallic com-

pression member, and determine the normal stresses in the

pipe and in the rod.

Solve the problems in this section by writing appropriate
equations of each of the following three fundamental
types:

1. Equilibrium equations.
2. Force-deformation relationships.
3. Geometry of deformation; Compatibility equations.

Use the Basic Force Method to solve these simultaneous
equations.

AXIAL DEFORMATION—
INDETERMINATE

Prob. 3.5-1. Two uniform, linearly elastic members are

joined together at B, and the resulting two-segment rod is at-

tached to rigid supports at ends A and C. A single external

force, PB, is applied symmetrically around the joint at B.

Member (1) has modulus E1, cross-sectional area A1, and

length L1; member (2) is made of material with modulus E2,

and has a cross-sectional area A2 and length L2. (a) Develop

symbolic expressions for the axial stresses �1 and �2 in the

respective segments, and (b) develop a symbolic expression

for the horizontal displacement, uB, of joint B.

▼

L1 L2

uB

A B C(1)
(2)

PB

P3.5-1, P3.5-2, P3.5-3, P3.8-1, P3.8-2, P3.8-24 
and P3.9-1

Prob. 3.5-2. Solve Prob. 3.5-1 for the following two-segment

rod: member (1) is steel with modulus E1 � 30 � 103 ksi, cross-

sectional area A1 � 2.0 in2, and length L1 � 80 in.; member

(2) is made of aluminum alloy, with E2 � 10 � 103 ksi, A2 �
3.6 in2, and L2 � 60 in. The axial load at B is PB � 10 kips.

Prob. 3.5-3. For the rod system in Fig. P3.5-1, let E1 � E2 �
E and A1 � A, A2 � 2A; and let an external horizontal force

PB be applied to the rod at joint B, at distance L1 from end

A and L2 from end C. (a) If the stresses are found to satisfy

the equation |�2| � 3�1, what is the length ratio L1/L2? (b) For

the case described in Part (a), determine an expression for the

displacement uB, of joint B. Express your answer in terms of

PB, L1, A, and E.

Prob. 3.5-4. A steel pipe (E1 � 200 GPa) surrounds a solid

aluminum-alloy rod (E2 � 70 GPa), and together they are

P = 200 kN

(1)

(2)
P

L = 0.5 m

35 mm

50 mm

40 mm

P3.5-4 and P3.8-13

Prob. 3.5-5. A magnesium-alloy rod (E1 � Em � 6.5 � 103 ksi)

of diameter d1 � 1 in. is encased by, and securely bonded to,

a brass sleeve (E2 � Eb � 15 � 103 ksi) with outer diameter

d2 � 1.5 in; the length is L1 � L2 � L � 20 in. An axial load 

P � 10 kips is applied to the resulting bimetallic rod. (a)

Treating the magnesium-alloy rod as Element (1) and the

brass sleeve as Element (2) of a statically indeterminate sys-

tem, determine the normal stresses �1 and �2 in the two mate-

rials, and (b) determine the elongation of the bimetallic rod.

L

P

d1

d2

P3.5-5 and P3.5-6

Prob. 3.5-6. The magnesium-alloy rod and brass sleeve in

Fig. P3.5-5 have the following properties and dimensions:

E1 � Em � 45 GPa), d1 � 30 mm, (E2 � Eb � 100 GPa); both

have length L � 500 mm. An axial load P � 40 kN is applied

to the resulting bimetallic rod. Assume that the magnesium

rod and the brass sleeve are securely bonded to each other.

(a) If three-fourths of the load P is carried by the magne-

sium rod, and one-fourth by the brass sleeve, what is the

outer diameter, dbo, of the brass sleeve? (b) What is the re-

sulting elongation of the bimetallic rod?

Prob. 3.5-7. A steel pipe with outer diameter do and inner

diameter di, and a solid aluminum-alloy rod of diameter d
form a three-segment system that undergoes axial deforma-

tion due to a single load PC acting on a collar at point C, as

shown in Fig. P3.5-7. (a) Calculate the axial stresses �1, �2,

and �3, in the three elements, and (b) determine the dis-

placements uB and uC.

E2 � E3 � 10 � 103 ksiE1 � 30 � 103 ksi,PC � 12 kips,

L3 � 50 in.L1 � L2 � 30 in.,

d � 0.75 in.di � 1.5 in.,do � 2 in.,
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Prob. 3.5-8. Solve Prob. 3.5-7 using the dimensions, material

properties, and load given below.

Prob. 3.5-9. A three-segment rod is initially stress free after

it is attached to rigid supports at ends A and D. It is sub-

jected to equal and opposite external axial loads P at nodes

(joints) B and C, as shown in Fig. P3.5-9. The rod is homoge-

neous and linearly elastic, with modulus of elasticity E. Let

A1 � A3 � A, and A2 � 2A; let L1 � 2L, and L2 � L3 � L.

(a) Determine symbolic expressions (i.e., formulas) for the

axial stresses �1, �2, and �3 in the three segments; and (b) de-

termine formulas for the horizontal displacements uB and uC

at nodes B and C, respectively.

E2 � E3 � 70 GPaE1 � 210 GPa,

PC � 50 kNL3 � 2 m,L1 � L2 � 1 m,

d � 20 mmdi � 36 mm,do � 50 mm,

load P is applied, and (b) determine the corresponding

elongation of support rod (1). Assume that the rotation of

the beam is very small, so 

b � 1.5 ma � 0.50 m,

P � 50 kNE1 � E2 � 210 GPa,

L2 � 2 mL1 � 1 m,A1 � A2 � 500 mm2,

e1 V L1.

L2 L3L1

do di

uB uC

A
D

dB
C

(1)
(2) (3)

PC

P3.5-7, P3.5-8, P3.8-3, P3.8-4, P3.8-26, P3.9-4, 
and P11.7-11

L1 L2 L3

uB uC

A DB C(1) (3)
(2)

PP

P3.5-9, P3.5-10, and P3.9-2

Prob. 3.5-10. For the three-segment rod in Fig. 3.5-9, the

respective dimensions and material properties are: A �
500 mm2, L � 800 mm, and E � 200 GPa. If the magnitude

of the force is P � 35 kN, (a) determine the reactions at ends

A and D; and (b) determine the amount by which segment

(2) (i.e., BC) is shortened.

PINNED RIGID BAR AND 
TWO RODS

Prob. 3.5-11. The rigid beam AD in Fig. P3.5-11 is supported

by a smooth pin at D and by vertical steel rods attached to

the beam at points A and C. Neglect the weight of the beam,

and assume that the support rods are stress-free when P � 0.

(a) Solve for the forces F1 and F2 in the support rods after

▼ MDS 3.6

A
C

P 

"Rigid"B

D

(2)

(1)
L2

L1

a a b

θ

P3.5-11, P3.5-12, P3.5-13, P3.8-15,
P3.9-5, and P11.7-14

Prob. 3.5-12. With Fig. P3.5-12 and the data below, (a) deter-

mine the axial stresses in support rods (1) and (2) after load

P is applied, and (b) solve for the corresponding rotation, �,

of the beam AD. Assume that angle � is very small.

DProb. 3.5-13. (a) With Fig. P3.5-11 and the data below, de-

termine the minimum cross-sectional area of support rod (1)

such that the maximum normal stress in that rod does not

exceed �max � 6 ksi when the load is P � 10 kips. (b) Derive

formulas to show that the normal stresses in rods (1) and (2)

are independent of the material used in the rods, as long as

they have the same modulus of elasticity, that is, E1 � E2.

,

D*Prob. 3.5-14. Wires (1) and (2) support a rigid, weightless

beam AD that is hinged to a wall bracket at A and supports

a load P at end D. as shown in Fig. P3.5-14. The wires are

taut, but stress-free, when P � 0. The wires are made of the

same material (i.e., same E). but have areas A1 and A2 and

lengths L1 and L2. What must be the relationship among the

parameters a, b, c, A1, A2, L1 and L2 if the wires are designed

b � 60 in.a � 20 in.,

P � 10 kipsE1 � E2 � 30 � 103 ksi,

L2 � 60 in.L1 � 40 in.,A2 � 1.0 in2,A1 � ?

b � 60 in.a � 20 in.,

P � 10 kipsE1 � E2 � 30 � 103 ksi,

L2 � 60 in.L1 � 40 in.,A1 � A2 � 1.0 in2.
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to be fully stressed, that is, designed such that the stresses in

the two wires are equal? Discuss your answer; that is, try to

justify the way various parameters enter into your answer.

(Assume that the rotation of the beam is very small.)

take moments about A and D to relate F3 and F1 to the re-

dundant force F2. Use the Basic Force Method to solve for

F2.) (b) Determine the vertical displacements uA and uD, as

identified in Fig. P3.5-16.

P � 10 kipsc � 60 in.,b � 40 in.,a � 20 in.,

E � 30 � 103 ksiL � 60 in.,A � 1.0 in2,

P

C

(2)

(1)

DBA
L1

L2

a
b

c

P3.5-14

*Prob. 3.5-15. A sign whose weight is W hangs from bolts at

points C and D on the rigid, weightless beam in Fig. 3.5-15.The

beam is supported at C and D by wires having cross-sectional

area A and made of material with modulus E, and it is

hinged to a wall bracket at end B. Before the sign is attached

to it, beam BD is horizontal and the two support wires are

taut but stress-free. Let h � b. (a) Determine expressions for

the tensile stresses �1 and �2 in the two wires, and (b) deter-

mine an expression for the vertical displacement, �D, at D.

Assume that the angle of rotation of the beam BD is very

small. Express your answers in terms of P, b, A, and E.

b

h

W

B

A

(1)

(2)

C D

δD

b––
2

b––
2

COMPUTERS
to  go

COMPUTERS
to  go

P3.5-15

RIGID BEAM WITH THREE SUPPORT RODS

*Prob. 3.5-16. A rigid beam AD is supported by three iden-

tical vertical rods that are attached to the beam at points A.

C, and D. When the rods are initially attached to the beam

and P � 0, the rods are stress-free. With Fig. P3.5-16 and the

data below, (a) solve for the axial forces F1, F2, and F3, in the

support rods. (Hint: Select F2 as the redundant force, and

▼

b

a

c

D*
A*

uA uD

L (1) (2) (3)

"Rigid"
B

P

A C D

P3.5-16, P3.5-17, P3.8-16 and P3.9-7

*Prob. 3.5-17. With Fig. P3.5-17 and the data below, (a) de-

termine the axial forces in the three support rods after load

P is applied, and (b) solve for the corresponding displace-

ment uB at the point of application of the load. Assume that

the angle of rotation of the beam AD is very small.

P � 20 kNc � 1.5 m,b � 1.0 m,a � 0.5 m,

E � 100 GPaL � 2 m,A � 500 mm2,

All of the problems in this section are statically indeter-
minate problems that involve temperature change. Solve
these problems by writing appropriate equations of each
of the following three fundamental types:

1. Equilibrium equations.
2. Force-temperature-deformation relationships.
3. Geometry of deformation; Compatibility equation.

Use the Basic Force Method to solve these simultaneous
equations.

Prob. 3.6-1. (a) Solve the thermal-stress problem stated in

Example 3.10, replacing the linear temperature distribution in

Fig. 2 with the following quadratic temperature distribution:

(b) Determine an expression for the axial displacement

u(L/2) of the center cross section of the rod AB.

¢T(x) � ¢TA c1 � a x
L
b2 d
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Prob. 3.6-2. A square aluminum-alloy bar is attached to

rigid walls at ends A and B when the temperature of the bar

is 90�F. If the bar is cooled to 40�F, what is the maximum nor-

mal stress in the bar and what is the maximum shear stress?

(Recall Section 2.9.) Let � � 13 � 10�6/�F and E � 10 � 103 ksi.

and give your answers in kips/in2.

Prob. 3.6-7. When a linear spring (1), with spring constant k,

and rod (2), with cross-sectional area A, length L, modulus

E, and coefficient of thermal expansion �, are fixed between

rigid walls, as shown in Fig. P3.6-7, there is no stress in the

spring-rod assembly. If the temperature of the rod is subse-

quently raised uniformly by an amount �T, determine an ex-

pression for the axial force induced in the rod. Assume that

the temperature of the spring remains unchanged.

P3.6-2 and P3.6-3

A B

Prob. 3.6-3. If the square steel bar in Fig. P3.6-3 is stress free

when it is attached to the rigid walls at A and B, how much

must the temperature of the bar be raised, in �C; to cause the

maximum shear stress in the bar to be 35 MPa? (Recall

Section 2.9). Let � � 12 � 10�6/�C and E � 200 GPa.

END-TO-END BARS WITH �T

Prob. 3.6-4. The two rod elements in Fig. P3.6-4 are stress

free when they are assembled together and attached to the

rigid walls at A and C. Determine expressions for the

stresses �1(�T) and �2(�T) that would result from a uniform

temperature increase �T1 � �T2 � �T. Express your an-

swers in terms of E1, E2, A1, A2, L1, L2, �1, �2, and �T.

MDS 3.7
▼

P3.6-4, P3.6-5, P3.6-6, and P3.8-5

L1

A1, E1, α1 A2, E2, α2
L2

uB

A B C(2)(1)

Prob. 3.6-5. Two uniform, linearly elastic rods are joined to-

gether at B, and the resulting two-segment rod is attached to

rigid supports at A and C. Element (1) is steel with modulus

E1 � 10 � 103 ksi, cross-sectional area A1 � 2.0 in2, length L1 �
80 in., and coefficient of thermal expansion �1 � 7 � 10�6/�F;

the corresponding values for the aluminum element (2)

are: E2 � 10 � 103 ksi, A2 � 3.6 in2, L2 � 60 in., and �2 �
13 � 10�6/�F. (a) Determine the axial stresses �1 and �2 in

the rods if the temperature of both is raised by �T1 � �T2 �
60�F. (b) Does node B move to the right, or does it move to

the left? How much does it move?

Prob. 3.6-6. For the two-element rod system in Fig. P3.6-6,

element (1) is steel with modulus E1 � 210 GPa, area A1 �
1000 mm2, length L1 � 2 m,and coefficient of thermal expansion

�1 � 12 � 10�6/�C; element (2) is of titanium alloy with E2 �
120 GPa, A2 � 1500 mm2, L2 � 1.5 m, and �2 � 8 � 10�6/�C.

Determine the axial stresses �1 and �2 in the rods if the tem-

perature of both is raised by �T1 � �T2 � 30�C.

P3.6-7

L

(1)

(2)

Prob. 3.6-8. A steel pipe with outer diameter do and inner

diameter di, and a solid aluminum-alloy rod of diameter d
form a three-segment system. When the system is welded to

rigid supports at A and D, it is stress free. Subsequently, the

aluminum rod is cooled by 100�F (i.e., �T2 � �T3 �
�100�F), while �T1 � 0. Determine the axial stresses �1, �2,

and �3 in the elements.

a2 � a3 � 6.5 � 10�6/°F

E2 � E3 � 10 � 103 ksiE1 � 30 � 103 ksi,

L3 � 50 in.L1 � L2 � 30 in.,

d � 0.75 in.di � 1.5 in.,do � 2 in.,

P3.6-8, P3.8-6, and P3.9-9

L1 L2 L3

do di

uB

B
A

C D

uC

d

(3)(2)

(1)

Prob. 3.6-9. Two flat steel bars are supposed to be con-

nected together by a pin at B, and the system is supposed to

be stress free after the pin is inserted (see Fig. 3.6-9a).

However, the distance between the rigid walls to which the

two bars are attached was measured incorrectly, so that a

misalignment of (exaggerated in Fig. 3.6-9b) results.

Determine the amount T( C) by which the two bars would

need to be uniformly heated to bring the holes in the two

bars into alignment. The mechanical properties and dimen-

sions of the two bars are

d � 1 mmL2 � 5 m,

L1 � 3 m,A2 � 50 mm2,A1 � 25 mm2,

a1 � a2 � 12 � 10�6/°CE1 � E2 � 200 GPa,

°¢
d
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COAXIAL BARS WITH �T

Prob. 3.6-10. The sleeve of the titanium-sleeve/aluminum-

core system described in the problem statement of Example

3.12 is heated by �T1 � 100�F, but the aluminum core is

maintained at the reference temperature. (a) Determine the

axial stress induced in each material, and (b) determine the

total elongation, e, of the sleeve/core system. (Assume that

the core and the sleeve are both stress-free at the reference

temperature.)

Prob. 3.6-11. The pipe-sleeve element (1) and cylindrical-

rod core element (2) in Fig. P3.6-11 are both stress-free after

they are attached to rigid end-plates. (a) Determine expres-

sions for the stresses �1 and �2 in the pipe and rod, respec-

tively, if the temperature of the system is uniformly in-

creased by �T. Express your answer in terms of E1, E2, A1,

A2, L1 � L2 L, �1, �2, and �T, and (b) determine an expres-

sion for the total elongation, e, of the pipe/rod system due to

the uniform temperature increase �T.

�

nated as A1, E1, and �1, and those of the bolt A2, E2, and �2.

(Neglect the reduction in bolt area A2 due to the threads,

and neglect the contribution of the washer’s thickness to

the effective length of the bolt.) Assume that the coefficient

of thermal expansion of the sleeve is greater than that of the

bolt, that is, �1 � �2. (a) Determine expressions for the

stresses �1 and �2 that would be induced in the sleeve and

the bolt, respectively, when the temperature of the bolt-

sleeve assembly is uniformly increased by an amount �T. (b)

Determine an expression for the resulting elongation, �, of

the sleeve and bolt.

P3.6-9

L1

(1) (2)

L2
δ

(a)

A B C

(b)

MDS 3.8
▼

P3.6-11

L

(2) (2)

(1) (1)

Prob. 3.6-12. A pipe sleeve (1) of length L is slipped over a

bolt (2), with a heavy washer between the bolt head and the

sleeve. The bolt is initially advanced until the sleeve is just

brought into firm contact with the heavy machine part, as

shown in Fig. 3.6-12 (i.e., the sleeve is held in contact with the

heavy machine part, but no stress is induced in either the

sleeve or the bolt). Let the properties of the sleeve be desig-

P3.6-12

(2) Bolt

(1) Sleeve

L

δ

RIGID MEMBER AND 2 OR 3 BARS WITH �T

Prob. 3.6-13. The mechanical system of Fig. P3.6-13 con-

sists of a “rigid” beam ABC and two identical ASTM A-36

steel bars with cross-sectional area A � 1.2 in2. (For E and

�, see Tables F.2 and F.3.) The beam is supported by a

smooth pin at B and is connected to “ground” by the bars

at A and C. After the pins have been inserted at A and C,

the two bars are stress free. (a) Using the dimensions listed

below, determine the axial stresses induced in bars (1) and

(2) if the temperature of bar (1) is decreased by 50�F. (b)

Determine the (small) angle � through which the beam AC
would rotate due to this temperature change. (c) Re-solve

Part (a) if the cross-sectional area of bar (1) is doubled to

A1 � 2.4 in2, while the cross-sectional area of bar (2) re-

mains unchanged.

a � 20 in., L1 � L2 � 20 in.

MDS 3.9

▼

P3.6-13

L2L1

aa

"Rigid"θ

A

B

C

(1) (2)

220

  c03AxialDeformation.qxd  8/31/10  8:12 PM  Page 220



Prob. 3.6-14. The mechanical system of Fig. P3.6-14 consists

of two identical steel rods (A � 40 mm2, E � 200 GPa, � �
12 � 10�6/�C) and a “rigid” beam AC.The beam is supported

by a smooth pin at B. The nuts at A and C are initially tight-

ened just enough to remove the slack, leaving the two rods

stress-free. (a) Determine the axial stresses induced in rods

(1) and (2) if the temperature of both rods is decreased by

50�C. (b) Determine the (small) angle � through which the

beam AC would rotate due to this temperature change.

three support rods. To solve this problem, let F1 be the re-

dundant force. (Hint:Take (�M)B and (�M)C for the equilib-

rium equations.)

a2 � a3 � a

E1 � E2 � E3 � EA2 � A3 � 2A,A1 � A,

250 mm

80 mm200 mm

"Rigid"

θA B C

(1) (2)

P3.6-14

Prob. 3.6-15. Steel rods (A � 0.050 in2, E � 30 � 103 ksi, � �
6.5 � 10�6/�F) are attached at points A and C to the “rigid”

right-angle bracket in Fig. P3.6-15. The bracket is supported

by a smooth pin at B, and the rods at A and C are initially

stress-free. (a) Determine the axial stresses induced in rods

(1) and (2) if the temperature of rod (1) is decreased by 50�F.

(b) Determine the transverse shear force VD and bending

moment MD on the cross section at D that result from this

temperature change.

P3.6-15 and P3.9-10

8 in.

8 in.

A

VD

MD

B

C

D

5 in.

5 in.

5 in.

(2)(1)

Prob. 3.6-16. Solve the problem as stated in Example 3.13 if

the structure in Fig. 1 of that example is modified by having

support A directly above point C on the beam, rather than

directly above point B. The length of the vertical wire AC is

still L.

*Prob. 3.6-17. A “rigid” beam AC is supported by three ver-

tical rods, as shown in Fig. P3.6-17. When originally assem-

bled, the rods are all stress free and beam AC is horizontal.

If rod (1) is maintained at the assembly temperature (i.e.,

�T1 � 0), and rods (2) and (3) are heated the same amount

(�T2 � �T3 � �T), determine the stresses induced in the

P3.6-17, P3.8-19, P3.9-11, P11.7-15, and P11.7-16

2L 2L

2L

C*
A*

uA uC

L (1)

(2)

"Rigid"

(3)

B*

A B C

The problems in this section are statically indeterminate
problems that involve misfits and, in a few cases, temper-
ature change. Solve these problems by writing appropri-
ate equations of each of the following three fundamental
types:

1. Equilibrium equations.
2. Force-temperature-deformation relationships.
3. Geometry of deformation; Compatibility equations.

Use the Basic Force Method to solve these simultaneous
equations.

END-TO-END BARS WITH “MISFIT”

Prob. 3.7-1. Elements (1) and (2) were supposed to fit ex-

actly between the rigid walls at A and C, as indicated in Fig.

P3.7-1a. Unfortunately, element (1) was manufactured a

small amount, too long (exaggerated in Fig. 3.7-1b).

However, an ingenious technician was able to cool element

(1) just enough to be able to insert it into the space between

A and B (indicated by dashed lines). (a) Determine expres-

sions for the stress �1 induced in element (1) and the stress

�2 induced in element (2) when element (1) returns to its

original temperature; and (b) determine the amount uB by

which element (2) is shortened when element (1) is thus

forced into the dashed-line position.

*Assume d V L.

E1 � E2 � EA2 � 1.5A,A1 � A,L*
1 � L2 � L,

d V L,

MDS 3.10 & 3.11

▼
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E1 � E2 � E, and L1 � L2 � L.) At end A the rod is connected

to a rigid wall, but at end C there is a small gap between the

original position of end C and the rigid wall, as shown in Fig.

P3.7-5. (a) Derive an expression for the width of the gap if,

when an axial force P is applied at B as shown in the figure, the

magnitude of the reaction at C is equal to the reaction at A. (b)

Derive an expression for the amount, uB, that joint B moves

under the conditions stated in Part (a). (Note: The gap shown

in the figure below is the gap before load P is applied at B.)

d

d

P3.7-1, P3.7-2

LL

L + δ

BA C

uB

(2)

(1)

Prob. 3.7-2. Solve Parts (a) and (b) of Prob. 3.7-1 for the fol-

lowing rod systems: System S1: E1 � E, E2 � 2E, and System

S2: E1 � 2E, E2 � E. Discuss the difference in the stresses in-

duced in the rods in these two cases.

Prob. 3.7-3. A pipe-rod system with flanges at ends A and C
was supposed to fit exactly between two rigid walls, as shown

in Fig. P3.7-3. Element (1) is a steel pipe with outside diam-

eter do and inside diameter di. Element (2) is a solid steel rod

with diameter d2 � d. Bolts hold the flange at A against a

rigid wall. Other bolts are installed in the flange at C and are

tightened until the gap is closed. Dimensions and material

properties are given below. (a) Determine the axial stress in-

duced in each element of the system as a result of closing the

gap at C; and (b) determine the displacement uB of joint B
when the gap at C has been closed.

E1 � E2 � 30 � 103 ksi

d � 0.1 in.L1 � L2 � 50 in.,

d � 0.75 in.di � 1.5 in.,do � 2 in.,

d

P3.7-3, P3.7-4, P3.7-7, P3.8-8, P3.8-11 
P3.8-27, P3.9-12, and P3.9-14

(1)

do di

L1 L2

uB

B

A

C

δ

d(2)

Prob. 3.7-4. Solve Problem 3.7-3 for a pipe-rod system with

the following dimensions and material property:

Prob. 3.7-5. A two-segment linearly elastic rod has a circu-

lar cylindrical cross section of area A2 � 1.5A. Half of the

rod, from A to B, is turned down so that A1 � A. (Note:

E1 � E2 � 200 GPa

d � 2 mmL1 � L2 � 1 m,

d � 20 mmd1 � 40 mm,do � 50 mm,

P3.7-5

L L δ 

uB

A BP C(1) (2)

Prob. 3.7-6. Two uniform, linearly elastic members are

joined together at B, and the resulting two-segment rod is

attached to a rigid support at end A. When there is no load

on the 2-element bar (i.e., when P � 0) there is a gap of

between the end of element (2) and the rigid

wall at C. Element (1) is steel with modulus E � 210 GPa,

cross-sectional area A1 � 1000 mm2, and length L1 � 2.1 m:

element (2) is titanium alloy with E2 � 120 GPa, A2 � 1000

mm2, and L2 � 1.8 m. A single external force P � 50 kN is

applied at node B. (a) Determine the axial stresses �1 and �2

induced in the respective rod elements when the load P is

applied, and (b) determine the corresponding displacement

uB of the joint B.

d � 0.2 mm

P3.7-6, P3.7-8, P3.8-9, P3.8-10, and P3.9-13

L1 = 2.1 m L2 = 1.8 m
δ = 0.2 mm

uB

A BP C(1) (2)

END-TO-END BARS WITH MISFIT AND �T

Prob. 3.7-7. Solve Prob. 3.7-3 if, in addition to having the

flange tightened against the wall at C, the pipe-rod system

ABC is heated uniformly by 50�F. Use � � 6.5 � 10�6/�F.

Prob. 3.7-8. Solve Prob. 3.7-6 if instead of having a force P
applied at B, the entire 2-segment rod is heated by 20�C. Let

�1 � 12 � 10�6/�C and �2 � 10 � 10�6/�C.

RIGID MEMBER AND RODS WITH “MISFIT”

Prob. 3.7-9. A rigid beam is supported by three aluminum-

alloy cylindrical posts, which are identical except that the

center post is slightly shorter than the two outer posts by an

amount as shown in Fig. P3.7-9. The dimensions and mate-

rial properties of the three posts are given below. Since the

d,

▼

▼
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two outer posts are identical, and since the system and load-

ing are symmetrical, the two outer posts are both labeled (1).

(a) A load P acts downward directly over the center of the

middle post. What is the width of the gap if, when an axial

force P � 14 kN is applied to the beam, as shown in the fig-

ure, the gap is just closed. (b) Determine the total amount,

uB, that the beam moves downward when the load is in-

creased to P � 28 kN. (c) Sketch a plot of P vs. uB for 0 �
P � 28 kN, including appropriate scales for P and for uB.

(Note: The gap shown in the figure below is the gap before

load P is applied to the beam.)

d

E1 � E2 � 70 GPa

L1 � L2 � 2 m,A1 � A2 � 2000 mm2,

d

Prob. 3.7-11. The mechanical system of Fig. P3.7-11 consists

of a brass rod (E1 � 15 � 103 ksi) with cross-sectional area

A1 � 1.5 in2, a structural steel rod (E2 � 30 � 103 ksi) with

cross-sectional area A2 � 0.75 in2, and a “rigid” beam AC.

The beam is supported by a smooth pin at B. The nuts at A
and C are initially tightened just enough to remove the slack,

leaving the two rods stress free and � � 0. (a) Determine the

axial stress �1 induced in rod (1) when the nut at C is ad-

vanced (i.e., tightened) by one turn (0.1 in. of thread length),

and (b) determine the corresponding rotation angle � of the

beam AC. Assume that � is small.

a a

L

P

uB

(1) (1)(2)

δ

Prob. 3.7-10. A “rigid” beam AD is supported by a smooth pin

at D and by vertical steel rods attached to the beam at points

A and C. Neglect the weight of the beam. Element (1) was fab-

ricated the correct length, and, when only rod (1) is attached to

beam AD, the beam is horizontal (i.e., � � 0). Element (2), on

the other hand, was fabricated too short, and it has to be

stretched manually in order to connect it to the beam by a pin

at C. (a) Determine expressions for the axial stresses, �1 and �2,

in the two support rods when load P is applied as shown in

Fig. P3.7-10, and (b) determine an expression for the corre-

sponding rotation of the beam AD. Express your answers in

terms of the following parameters: A, L, a, E, P, and .

b � 2aE1 � E2 � E,

L1 � L2 � LA1 � A2 � A,

d

d

P3.7-10

a a b

A B

(1)
(2)

"Rigid"

C
D

L2

δ

L1

P

θ

P3.7-11 and P3.8-22

40 in.

10 in.25 in.

"Rigid"

θA B C

(1) (2)

Prob. 3.7-12. A “rigid” beam AD is supported by a smooth

pin B and by vertical rods that are attached to the beam at

points A and C, as shown in Fig. P3.7-12. Neglect the weight

of the beam. The beam is horizontal when only rod (1) is at-

tached and P � 0, but rod (2) was manufactured 

too short. Determine the axial stresses �1 and �2 induced in

the respective support rods after rod (2) is attached to the

upper bracket and the load P � 20 kN is applied. Assume

that � is small.

b � 1.5 ma � 1 m,P � 20 kN,

E2 � 100 GPaE1 � 70 GPa,

L1 � L2 � 2 mA1 � A2 � 200 mm2,

d � 0.5 mm

P3.7-12, P3.8-21, and P3.9-15

a ba

L1

L2

A

B C
D

P

(2)

(1)

θ

"Rigid"

δ = 0.5 mm

223
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BOLT AND SLEEVE

Prob. 3.7-13. A brass pipe sleeve (E1 � 15 � 103 ksi) with

outer diameter do � 3 in., and inner diameter di � 2.5 in.

is held in compression against a rigid machine wall by a

high-strength steel bolt (E2 � 30 � 103 ksi) with diameter

d � 1 in. The head of the bolt bears on a 0.25-in.-thick

(rigid) washer, which, in turn, bears on the brass sleeve.

The bolt is initially advanced until there is no slack (i.e.,

the sleeve is held in contact with the rigid machine wall,

but there is no stress induced in the bolt or the sleeve).

Determine the axial stresses induced in the sleeve (�1)

and the bolt (�2) when the bolt is advanced an additional

turn (0.01 in. of thread length) beyond the just-light 

position.

1
4

END-TO-END BARS—DISPLACEMENT METHOD

Prob. 3.8-1. Using the data and figure of Prob. 3.5-2, (a)

solve for the horizontal displacement uB, and (b) solve for

the axial stresses �1 and �2 in the two elements that comprise

the stepped rod.

Prob. 3.8-2. Using the data below and the figure of Prob.

3.5-1, (a) solve for the horizontal displacement uB, and (b)

solve for the axial stresses �1 and �2 in the two elements that

comprise the stepped rod. The axial load at B is PB � 40 kN.

The dimensions and material properties of the system are

Member (1) is steel: E1 � 210 GPa, A1 � 1000 mm2, L1 � 2 m;

Member (2) is titanium alloy: E2 � 120 GPa, A2 � 1200 mm2,

L2 � 1.8 m

Prob. 3.8-3. Using the data and figure of Prob. 3.5-7 (a)

solve for the horizontal displacements uB and uC, and (b)

solve for the axial stresses �1, �2, and �3 in the three elements

that comprise the stepped rod.

Prob. 3.8-4. Using the data and figure of Prob. 3.5-8, (a)

solve for the horizontal displacements uB and uC, and (b)

solve for the axial stresses �1, �1, and �3 in the three elements

that comprise the stepped rod.

Prob. 3.8-5. Using the data and figure of Prob. 3.6-5, (a)

solve for the horizontal displacement uB, and (b) solve for

MDS 3.12
▼

P3.7-13 and P3.8-23

(2) Bolt

(1) Sleeve

25 in.
0.25 in.

u

ddido

Prob. 3.7-14. A “rigid” circular flat plate and two steel

bolts hold a brass cylinder firmly in place against a “rigid”

base, as shown in Fig. 3.7-14. Data for the bolt-cylinder as-

sembly are given below. The two holes in the plate are fit-

ted over the two bolts until the plate rests on the top of

the cylinder. The two nuts are then “snugged” against the

plate until they are just “finger tight,” that is, until the

plate makes contact around the entire circumference of

the cylinder without inducing any stresses in the bolts or

the cylinder.

Determine the normal stresses induced in the cylinder

(�1) and in the two bolts (�2) if the two nuts are slowly 

advanced alternately until each has been advanced an ad-

ditional 1/2 turn. Assume that the cylinder behaves as a

linearly elastic axial-deformation member; that is, it does

not buckle under the axial load imposed by the plate and

bolts.

outer diameter of cylinder: do � 4 in., inner diameter:

di � 3.5 in.

length of cylinder: L1 � 12 in., thickness of plate:

t � 1.0 in.

diameter of bolts: d2 � 0.5 in., pitch of bolt threads:

p � 0.04 in.

E1 � Ebrass � 15 � 103 ksi, E2 � Esteel � 30 � 103 ksi

(1) (2)(2) L1

t

Steel
bolt

Solve the problems in this section by writing appropriate
equations of each of the following three fundamental types:

1. Equilibrium equations.
2. Force-Temperature-deformation relationships.
3. Geometry of deformation; Compatibility equations.

Use the Displacement Method to solve these simultane-
ous equations, that is, (3) S (2) S (1).

MDS 3.13 & 3.14

▼
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the axial stresses �1 and �2 in the two elements that comprise

the stepped rod.

Prob. 3.8-6. The three-element pipe-rod system in Fig. P3.6-8

is stress free when it is welded to rigid supports at A and D.

Subsequently, segment (2) is cooled by an amount �T2 �
�20�C, while �T1 � �T3 � 0. The dimensions and material

properties of the system are:

(a) Use the Displacement Method to solve for the horizontal

displacements uB and uC at joints B and C, respectively, and

(b) solve for the stresses �1, �2, and �3 that are induced in the

three segments.

Prob. 3.8-7. The three-element stepped-rod system in Fig.

P3.8-7 is stress free when ends A and D are attached to rigid

walls. Subsequently, the middle segment is heated to an

amount �T2 � �T, while �T1 � �T3 � 0. Use the

Displacement Method: (a) to obtain analytical expressions for

the horizontal displacements uB and uC at joints B and C, re-

spectively; and (b) to obtain expressions for the axial stresses

�1, �2, and �3 induced in the three segments. Let A1 � A3 � A,

A2 � 2A, L2 � L3 � L, L1 � 2L, E � const., � � const.

a2 � 23 � 10�6/°C

E2 � E3 � 70 GPa.E1 � 210 GPa,

L3 � 2 mL1 � L2 � 1 m,

d � 20 mm,di � 36 mm,do � 50 mm,

VARIOUS CONFIGURATIONS—
DISPLACEMENT METHOD

Prob. 3.8-12. Three members that are attached together and

supported by two rigid walls undergo axial deformation due

to a single applied load P, as shown in Fig. P3.8-12. Member

AB is a solid brass rod with diameter d1 � 1.0 in. and modu-

lus E1 � 15 � 103 ksi; member BC is a steel pipe with outer

diameter (do)2 � 1.0 in., inner diameter (di)2 � 0.75 in., and

modulus E2 � 30 � 103 ksi; and member BD is a solid alu-

minum-alloy rod with diameter d3 � 0.50 in. and modulus E3

� 10 � 103 ksi. L1 � L2 � 20 in., L3 � 50 in. (a) Determine

the displacement uD of the point D where the load P � 2

kips is applied, and (b) calculate the axial stress, �2, in the

pipe section, BC.

L1 L2 L3

uB uC

A B C D(2)(1) (3)

P3.8-7 and P3.9-8

Prob. 3.8-8. Using the data and figure for the pipe-rod sys-

tem in Prob. 3.7-3, (a) solve for the horizontal displacement

uB when the gap at C has been closed, and (b) solve for the

corresponding axial stresses �1 and �2 in the two elements.

Prob. 3.8-9. Using the data and figure for the multisegment

rod system in Prob. 3.7-6, (a) solve for the horizontal displace-

ment uB when the load P is applied at B, and (b) solve for the

corresponding axial stresses �1 and �2 in the two elements.

Prob. 3.8-10. Using the data and figure of Prob. 3.7-6. (a)

solve for the horizontal displacement uB when the load P �
50 kN is applied at B, and, in addition the entire rod is

heated by 20�C. Let �1 � 12 � 10�6/�C and �2 � 10 � 10�6/�C.

(b) Solve for the corresponding axial stresses �1, and �2 in

the two elements that comprise the stepped-rod system.

Prob. 3.8-11. Using the data and figure of Prob. 3.7-3, (a)

solve for the horizontal displacement uB if, in addition to

having the flange tightened against the wall at C, the entire

pipe-rod system is heated by 50�F. Let � � 6.5 � 10�6/�F. (b)

Solve for the corresponding axial stresses �1 and �2, respec-

tively, in the pipe element AB and rod element BC.

▼

P3.8-12

L2

L3

L1

uB uD

A
D

B C(1) (2)
(3)

P

Prob. 3.8-13. Using the Displacement Method, solve Prob.

3.5-4.

Prob. 3.8-14. The rigid beam AD in Fig. P3.8-14 is supported

by a smooth pin at B and by vertical rods attached to the

beam at points A and C. Neglect the weight of the beam, and

assume that the rods are stress-free when P � 0. (a) Use the

Displacement Method to solve for the rotation, �, of the

beam AD when load P is applied, (b) Determine the axial

stresses in support rods (1) and (2) when load P is applied.

Assume that � is very small.

P � 20 kNb � 2 m,a � 1 m,

E2 � 100 GPaE1 � 70 GPa,

L1 � L2 � 2 mA1 � A2 � 200 mm2,

P3.8-14, P3.9-6, and P11.7-13

L2

C

(2)

ba aL1

A

B
D

P(1)

θ

"Rigid"
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Prob. 3.8-15. The rigid beam AD in Fig. P3.5-11 is supported

by a smooth pin at D and by vertical steel rods attached to the

beam at points A and C. Neglect the weight of the beam, and
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assume that the support rods are stress-free when P � 0.

(a) Use the Displacement Method to solve for the rotation, �, of

the beam AD when load P is applied. (b) Determine the axial

stresses in support rods (1) and (2) when load P is applied.

A1 � A2 � 1.0 in2, L1 � 40 in., L2 � 60 in.

E1 � E2 � 30 � 103 ksi, P � 10 kips

a � 20 in., b � 60 in.

*Prob. 3.8-16. The rigid beam AD in Fig. P3.5-16 is sup-

ported by three identical vertical rods that are attached to

the beam at points A, C, and D. When the rods are initially

attached to the beam and P � 0, the rods are stress-free.

(a) Use the Displacement Method to solve for the vertical dis-

placements uA and uD of points A and D when the load P is

applied to the beam at point B. (b) Calculate the axial stress

in each of the three support rods when the load is applied.

A � 1.0 in2, L � 60 in., E � 30 � 103 ksi

a � 20 in., b � 40 in., c � 60 in., P � 10 kips

Prob. 3.8-17. The “rigid” beam AD in Fig. P3.8-17 is sup-

ported by a smooth pin at B and by vertical rods at A, C, and

D. Neglect the weight of the beam, and assume that the rods

are stress free when the system is assembled. Rods (1) and

(2) are kept at the assembly temperature (i.e., �T1 � �T2 � 0),

and rod (3) is cooled by an amount �T3 � �50�C.

A1 � A2 � A3 � 200 mm2, L1 � L2 � L3 � 2 m

a � 1 m, b � 1.5 m, E1 � E3 � 70 GPa

E2 � 100 GPa, �3 � 20 � 10�6/�C

(a) Use the Displacement Method to solve for the angle of

rotation, �, of the beam caused by cooling rod (3). (b)

Determine the stresses �1, �2, and �3 induced in the three

rods by the cooling of rod (3).

�80�F). (b) Solve for the axial stresses �1, �2, and �3 induced

in the three rods by the cooling of rod (3).

A1 � A2 � A3 � 1.0 in2, L1 � L3 � 40 in., L2 � 60 in.

a � 20 in., b � 60 in.

E1 � E2 � E3 � 30 � 103 ksi, �3 � 6.5 � 10�6/�F

P3.8-17

b

θA

B

(3)

(2)

"Rigid"C

D

L2

L1 L3
(1)

a a

P3.8-18

a b

θ

A

B

(1)

(3)

(2)

"Rigid"C D

L2L1

L3
a

Prob. 3.8-19. The “rigid” beam AC in Fig. P3.6-17 is supported

by three vertical rods. When originally assembled, all of the

rods are stress-free and beam AC is horizontal. Subsequently,

rod (1) is maintained at the assembly temperature (i.e., �T1 �
0), and rods (2) and (3) are heated the same amount (�T2 �
�T3 � �T). (a) Use the Displacement Method to solve for the

displacements uA and uC of the ends of the beam, and (b)

solve for the stresses induced in the three support rods.

A1 � A, A2 � A1 � 2A, E1 � E2 � E3 � E

�2 � �3 � �

Prob. 3.8-20. A “rigid beam AD is supported by a smooth pin

at D and by vertical steel rods attached to the beam at points

A and C; neglect the weight of the beam. Element (1) was

fabricated the correct length, and, when only rod (1) is

attached to beam AD, the beam is horizontal (i.e., � � 0).

Element (2), on the other hand, was fabricated 

too short, and it has to be stretched manually in order to con-

nect it to the beam by a pin at C. (a) Use the Displacement
Method to solve for the rotation � of the beam AD after rod

(2) has been connected and, in addition, the load P � 2 kips

has been applied at B. (b) Solve for the corresponding axial

stresses �1 and �2 in the two support rods.

A1 � A2 � 1.0 in2, L1 � 40 in., L2 � 60 in.

E1 � E2 � 30 � 103 ksi, a � 20 in., b � 60 in., P � 2 kips

d � 0.02 in.

P3.8-20

a a b

A B

(1)
(2)

"Rigid"

C
D

L2

δ = 0.02 in.

L1

P

θ
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Prob. 3.8-18. The “rigid” beam AD in Fig. P3.8-18 is sup-

ported by a smooth pin at D and by vertical steel rods at-

tached to the beam at points A, B, and C. Neglect the weight

of the beam, and assume that the support rods are stress-free

when the system is assembled. Use the Displacement
Method to solve this problem. (a) Solve for the rotation, �, of

the beam AD when element (3) is cooled by 80�F (i.e., �T3 �

  c03AxialDeformation.qxd  8/31/10  8:12 PM  Page 226



Coefficient
Area (Intended) Modulus of of Thermal Gap

Elem. Ai Length Li Elasticity Ei Expansion �i i

1 2.00 in2 30.00 in. 15(103) ksi — —

2 1.50 in2 20.00 in. 30(103) ksi — 0.01 in.

3 1.00 in2 20.00 in. 30(103) ksi 7(10�6)/�F —

D

Prob. 3.8-21. With the data and figure of Prob. 3.7-12, (a)

use the Displacement Method to solve for the rotation � of

the beam AD after rod (2) has been attached to the bracket

at the rod’s upper end and, in addition, the load P � 20 kN

has been applied at D. (b) Solve for the corresponding axial

stresses �1 and �2 in the two support rods.

Prob. 3.8-22. With the data and figure of Prob. 3.7-11 (a) use

the Displacement Method to solve for the (small) rotation

angle � through which the rigid beam AC would rotate if the

nut at C were to be advanced (tightened) by one turn (i.e.,

0.1 in. of thread length). (b) Determine the corresponding

axial stress �1 in rod (1).

Prob. 3.8-23. With the data and figure of Prob. 3.7-13, (a)

use the Displacement Method to solve for the amount u by

which the sleeve is shortened when the bolt is advanced 

turn (i.e., 0.01 in. of thread length). (b) Solve for the corre-

sponding stresses �1 in the sleeve and �2 in the bolt.

1
4

CProb. 3.8-27. Write a computer program for the two-

element statically indeterminate system in Fig.P3.7-3,and illus-

trate its use by solving Probs. 3.8-8 and 3.8-11. See Example

3.15, but note that you must include the “gap” in the geomet-

ric compatibility equations, as discussed in Example 3.17.

For Problems 3.8-24 through 3.8-27, you are to write a
computer program that carries out a Displacement-
Method solution of the stated problems. Your computer
program must incorporate equilibrium equations, ele-
ment force-temperature-deformation equations, and de-
formation compatibility equations, and should include
the following steps:

1. Input given data.
2. Solve equilibrium equation(s) for nodal displace-

ment(s).
3. Solve force-temperature-displacement equations to

obtain element stresses.
4. Output computed results.

See the Displacement-Method flowchart on p. 170.

CProb. 3.8-24. Write a computer program for the two-

element statically indeterminate system in Fig. P3.5-1, and

illustrate its use by solving Probs. 3.8-1 and 3.8-2. See

Example 3.15.
CProb. 3.8-25. Write a computer program for the three-

element statically indeterminate system in Example 3.17.

Illustrate the use of your computer program with PB � 10 kips

and �T3 � �100�F, and with the following physical data:

Solve the problems in this section by writing appropriate
equations of each of the following three fundamental types:

1. Equilibrium equations.
2. Force-Temperature-deformation relationships.
3. Geometry of deformation; Compatibility equations.

Use the Force Method to solve these simultaneous equa-
tions, that is, (1) S (2) S (3).

FORCE-METHOD PROBLEMS

Prob. 3.9-1. For Fig. P3.9-1, see Prob. 3.5-1. Two uniform,

linearly elastic members are joined together at B, and the 

resulting two-segment rod is attached to rigid supports at ends

A and C. A single external force, PB, is applied to the joint at

B. Member (1) is steel with modulus E1 � 30 � 103 ksi, cross-

sectional area A1 � 2.0 in2 and length L1 � 80 in.; member

(2) is made of aluminum alloy with E2 � 10 � 103 ksi, A2 �
3.6 in2, and L2 � 60 in. Let PB � 16 kips, and use the Force
Method: (a) to solve for the axial stresses �1 and �2 in the

two elements, and (b) to solve for the horizontal displace-

ment, uB, of joint B.

Prob. 3.9-2. For Fig. P3.9-2, see Prob. 3.5-9. A three-segment

rod is attached to rigid supports at ends A and D and is sub-

jected to equal and opposite external loads P at nodes (joints)

B and C, as shown in Fig. P3.9-2.The rod is homogeneous and

linearly elastic, with modulus of elasticity E. Let A1 � A3 � A.

and A2 � 2A; let L1 � 2L and L2 � L3 � L. (a) Let the force

in member (2) be the redundant force, and use the Force
Method to determine the axial stresses �1, �2. and �3 in the 

elements. (b) Determine expressions for the horizontal 

displacements uB and uC, at nodes B and C, respectively.

Prob. 3.9-3. The five-segment stepped rod shown in Fig. P3.9-

3 is stress free when it is attached to rigid supports at ends A
and F. Subsequently, it is subjected to two external loads of

magnitude P at nodes B and D, as shown in Fig. P3.9-3. The

bar is homogeneous with modulus of elasticity E, and the

cross-sectional areas are A1 � A5 � A, and A2 � A4 � 2A,

and A3 � 3A. Use the Force Method to solve for the reaction

PF at end F. (Hint: Let PF � F5 be the redundant force, and

use the Force Method to solve directly for this force.)

▼
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CProb. 3.8-26. Write a computer program for the three-

element statically indeterminate system in Fig. P3.5-7, and 

illustrate its use by solving Probs. 3.8-3 and 3.8-4. See Exam-

ple 3.17. P3.9-3

L LL L L

A F
B EC D

(1) (5)
(3)

(2) (4)
PA PFP

P
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Prob. 3.9-9. For Fig. P3.9-9, see Prob. 3.6-8. A steel pipe 

with outer diameter do and inner diameter di, and a solid 

aluminum-alloy rod of diameter d form a three-segment 

system.When the system is welded to rigid supports at A and

D, it is stress-free. Subsequently, the steel pipe is cooled by

100�F (i.e., �T1 � �100�F). while �T2 � �T3 � 0. Let the

force in segment (2) be the redundant force, and use the

Force Method to determine the axial stresses �1, �2, and �3 in

the elements.

do � 2 in., di � 1.5 in., d � 0.75 in.

L1 � L2 � 30 in., L3 � 50 in.

E1 � 30 � 103 ksi, E2 � E3 � 10 � 103 ksi

�1 � 6.5 � 10�6/�F

Prob. 3.9-10. With the figure and data of Prob. 3.6-15, (a)

use the Force Method to solve for the axial forces F1 and F2

in the two rods. Use F2 as the redundant force. (b) Determine

the (counterclockwise) rotation � of the bracket ABC.

Prob. 3.9-11. For Fig. P3.9-11, see Prob. 3.6-17. A “rigid”

beam AC is supported by three vertical rods, as shown in 

Fig. P3.9-11. When originally assembled, the rods are all

stress-free and beam AC is horizontal. If rod (1) is main-

tained at the assembly temperature (i.e., �T1 � 0), and rods

(2) and (3) are heated the same amount (�T2 � �T3 � �T),

determine the stresses induced in the three support rods.

Use the Force Method to solve this problem, letting F1 be the

redundant force. (Hint: Take (�M)B and (�M)C for the equi-

librium equations.)

A1 � A, A2 � A3 � 2A, E1 � E2 � E3 � E

Prob. 3.9-12. For Fig. P3.9-12, see Prob. 3.7-3. For the

piperod system of Prob. 3.7-3, use the Force Method to deter-

mine the stresses �1 and �2 induced in elements (1) and (2),

respectively, when the gap at C is closed.

Prob. 3.9-13. For Fig. P3.9-13, see Prob. 3.7-6. With the data

of Prob. 3.7-6, use the Force Method to solve for the axial

stresses, �1 and �2, in the two rod segments when the load 

P � 50 kN is applied. Let F1 be the redundant force.

Prob. 3.9-14. For Fig. P3.9-14, see Prob. 3.7-3. Solve Prob.

3.7-3. if, in addition to having the flange tightened against the

wall at C, the pipe-rod system ABC is heated uniformly by

50�F. Use � � 6.5 � 10�6/�F.

Prob. 3.9-15. For Fig. P3.9-15, see Prob. 3.7-12.With the data

of Prob. 3.7-12, use the Force Method to solve for the axial

stresses, �1 and �2, in the two support rods after rod (2) is 

attached to the upper bracket and the load P � 20 kN is 

applied. Let F1 be the redundant force.

Prob. 3.9-16. With the figure and data of Example 3.16, (a)

use the Force Method to solve for the axial forces F1, F2, and

F3 in the three rods. Use F1 and F2 as the two redundant
forces. (b) Determine the (counterclockwise) rotation � of

the bracket ABD.

a2 � a3 � a
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Prob. 3.9-4. For Fig. P3.9-4, see Prob. 3.5-7. Consider the

three-segment system shown in Fig. P3.9-4. Using the dimen-

sions, material properties, and load given below, and using

the Force Method, (a) determine the element axial forces F1,

F2, and F3, and (b) calculate the two nodal displacements uB

and uC.

do � 50 mm, di � 36 mm, d � 20 mm

L1 � L2 � 1 m, L3 � 2 m, PC � 50 kN

E1 � 210 GPa, E2 � E3 � 70 GPa

Prob. 3.9-5. With Fig. P3.9-5 (See Prob. 3.5-11) and the

data below, (a) use the Force Method to solve for the

forces F1 and F2 in the support rods. Use force F1 as 

the redundant force. (b) Determine the elongation of

support rod (1).

A1 � A2 � 500 mm2, L1 � 1 m, L2 � 2 m

E1 � E2 � 210 GPa, P � 50 kN

a � 0.50 m, b � 1.5 m

Prob. 3.9-6. With Fig. P3.9-6 (See Prob. 3.8-14) and the data

below, (a) use the Force Method to solve for the forces F1

and F2 in the support rods. Use force F1 as the redundant
force. (b) Determine the axial stress in each support rod. (c)

Calculate the elongation of support rod (1).

A1 � 1.0 in2, A2 � 0.50 in2, L1 � L2 � 5 ft

E1 � E2 � 10 � 103 ksi

a � 2 ft, b � 4 ft, P � 5 kips

*Prob. 3.9-7. With Fig. P3.9-7 (See Prob. 3.5-16) and the

data below. (a) use the Force Method to solve for the axial

force F1, F2, and F3 in the support bars. Use F2 as the redun-
dant force. (Hint: Take moments about A and D to relate F3

and F1 to F2.) (b) Determine the vertical displacement of

point B, the point of application of the load.

A � 500 mm2, L � 2 m, E � 100 GPa

a � 0.5 m, b � 1.0 m, c � 1.5 m, P � 20 kN

Prob. 3.9-8. For Fig. P3.9-8, see Prob. 3.8-7. A three-segment

rod is attached to rigid supports at ends A and D. When the

rod is initially attached to the supports, it is stress free.

Subsequently, the middle segment is heated by an amount

�T2, while segments (1) and (3) are kept at their original

temperature (i.e., �T1 � �T3 � 0). There are no external

forces acting on the rod, other than the reactions at ends A
and D. Let the force in segment (2) be the redundant force,

and use the Force Method to determine the axial stresses �1,

�2, and �3 in the elements. Let A1 � A3 � A, A2 � 2A, L2 �
L3 � L, L1 � 2L, E � const, � � const.
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Prob. 3.10-4. Repeat Prob. 3.10-3 if member (2) is heated by

25�C and, at the same time, the load P � 200 kN is applied

to the truss at C. Member (1) is held at the reference temper-

ature, that is, �T1 � 0. Use �2 � 23 � 10�6/�C.
DProb. 3.10-5. A force P � 400 kN is applied at joint C of the

planar truss in Fig. P3.10-5. (a) Determine the required cross-

sectional areas of members (1) and (2) if the allowable

stresses are 100 MPa in tension and 75 MPa in compression.

(b) For the truss with areas determined in Part (a), determine

the displacements uC and yC of joint C. E1 � E2 � 70 GPa.

Prob. 3.10-6. Each of the two bars of the planar truss in Fig.

P3.10-6 has length L, and they are made of a material with

modulus of elasticity E. If A1 � A, and A2 � 2A, and a hori-

zontal load P is applied at joint C, determine: (a) the stresses

�1 and �2 in the two bars, and (b) the horizontal displace-

ment, uC, and vertical displacement, yC, of the pin joint at C.
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Problems 3.10-1 through 3.10-12 are statically determi-
nate planar truss problems. The appropriate solution
procedure for these problems is the Force Method, since
the internal resisting force in any member can be deter-
mined directly from equilibrium equations. Therefore,
the appropriate order of solution is:

1. Equilibrium equations.
2. Force-temperature-deformation relationships.
3. Geometry of deformation (compatibility) equations.

STATICALLY DETERMINATE TRUSSES

Prob. 3.10-1. Bar AC is L1 � 8 ft long, has a cross sectional

area A1 � 1.0 in2, and is made of steel with a modulus of elas-

ticity E1 � 30 � 103 ksi. Member BC has the following proper-

ties: L2 � 10 ft, A2 � 1.4 in2, and E2 � 10 � 103 ksi.A load P �
10 kips acts downward on the pin at joint C. (a) Determine the

axial stresses in rods (1) and (2). (b) Determine the horizontal

and vertical displacements of joint C, uC and yC, respectively.

▼

P3.10-1 and P3.10-2

45°

30°

(1)

(2)

P = 10 kips

C

A

B

uC

vC

Prob. 3.10-2. Repeat Prob. 3.10-1 if member (1) is heated by

80�F and, at the same time, the load P � 10 kips is applied.

Member (2) is held at the reference temperature. Use �1 �
8 � 10�6/�F.

Prob. 3.10-3. A two-bar planar truss has the geometry

shown in Fig. P3.10-3. A force P � 200 kN is applied to the

truss at joint C. (a) What are the resulting stresses in ele-

ments (1) and (2)? (b) What are the horizontal and vertical

displacements of joint C, uC and yC, respectively?

A1 � A2 � 1500 mm2, E1 � E2 � 70 GPa

P3.10-3, P3.10-4, and P3.10-5

2 m

2 m

3 m3 m

(1)

(2)

C

A

B

3
4

5

uC

vC P

P3.10-6

L

uC

vC

PC

(1) (2)

A B

Prob. 3.10-7. A planar truss ACB is part of an apparatus

used to lift a weight W, as shown in Fig. P3.10-7. If W � 4

kips, determine: (a) the stresses �1 and �2 in the two truss

members, and (b) the horizontal and vertical displacements

of joint C, uC and yC, respectively.

A1 � 0.8 in2, A2 � 1.0 in2

E1 � 10 � 103 ksi, E2 � 30 � 103 ksi

P3.10-7

W

B

A

45°

Lift
motor

3 ft1 ft

(1)

(2)
3 ft

3 ft vC

uC

C

DProb. 3.10-8. The two tie rods in Fig. P3.10-8 support a maxi-

mum horizontal load P � 10 kips at joint B. Rod (1) is made of

structural steel with a modulus of elasticity E2 � 29 � 103 ksi
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*Prob. 3.10-12. The cross-sectional area of tie rod AB is 

A1 � A, and the cross-sectional area of post BC is A2 � 8A.

Both are made of the same material with modulus of elasticity

E.A load P is applied horizontally at B. If the length, L2 � L,

of the post is fixed, but the length L1 and position of the

bracket at A are both variable, determine the angle � of the

tie rod that will minimize the horizontal displacement uB at

B. (Hint: Obtain an expression for uB as a function of �; dif-

ferentiate this expression with respect to �; and set duB/d�
equal to 0. You will obtain an equation involving sin � and

cos � that can be solved by trial and error or by computer.)

and a yield point of �Y1 � 36 ksi.The corresponding properties

for the aluminum rod (2) are E2 � 10 � 103 ksi and �Y2 �
60 ksi. (a) If the two-bar truss is to have a factor of safety of 2.5

with respect to failure by yielding, what are the required areas

A1 and A2? (b) If the truss is sized according to the require-

ments stated in Part (a),and loaded by a force P � 10 kips,what

will be the values of uB and yB, the horizontal and vertical dis-

placements at joint B, at the maximum-load condition?

along the dashed line perpendicular to the original line

BC. That is yB � �4
3uB.)

P3.10-8

4 ft

6 ft

(1)

(2)

30°

P

uB

vB

B

C

A

*Prob. 3.10-9. The rigid beam BD in Fig. P3.10-9 is supported

by a steel rod that is connected to the beam by a smooth pin

at C.The beam is horizontal when there is no weight W hang-

ing at D.The properties of rod AC are: A � 500 mm2 and E �
200 GPa. (a) If a weight W � 10 kN is suspended from the

beam at D, what is the stress in rod AC? Neglect the weight of

the beam. (b) What is the elongation of rod AC? (c) What is

the vertical displacement of D? (Make the assumption that

beam BD rotates through an angle that is small, so points C
and D can be assumed to move only vertically.)

P3.10-9

W

DCB

2 m 2.8 m

"Rigid"

A

4.8 m

P3.10-10

6 ft

8 ft

"Rigid"

A

C

B

vB

uB

Total weight = W

Prob. 3.10-11. Truss members (1) and (2) in Fig. P3.10-11

have the same modulus of elasticity E. The cross-sectional

areas of the members are Ai � A and A2 � 2A. At what

angle � must load P be applied in order to make yB � uB,

that is, to make joint B move upward to the right at 45�?

3

(1)

4

(2) L

P

θ
B

A C

uB

vB

P3.10-11

(1)
(2) L

PB

A C
θ

P3.10-12
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DProb. 3.10-10. The crane hoist in Fig. P3.10-10 consists of

a “rigid,” “weightless” boom BC supported by a tie-rod

AB. The rod has a cross-sectional area A � 0.75 in2 and is

made of steel with modulus of elasticity E � 29 � 103 ksi.

(a) If the yield point of the steel is �Y � 50 ksi and there is

to be a factor of safety with respect to yielding of FS � 2.5,

what is the maximum weight W that can safely be hoisted

by the cable suspended from the pin at B? (b) If a load 

W � 2 kips is suspended from the pin at B, what will be the

vertical displacement yB? (Note: Assume that the angle

through which boom BC rotates is small, so point B moves
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Problems 3.10-13 through 3.10-22 are statically indetermi-
nate planar truss problems. Set up the three fundamental
sets of equations:

1. Equilibrium equations.
2. Force-temperature-deformation relationships.
3. Geometry of deformation (compatibility) equations.

The most efficient way to solve these problems is to use
the Displacement Method. Unless otherwise stated, all 
of the trusses in this group are stress-free when they are
initially assembled.

STATICALLY INDETERMINATE TRUSSES

Prob. 3.10-13. The three truss members in Fig. P3.10-13 all

have cross-sectional area A and modulus of elasticity E. A
horizontal load P is applied to the truss at joint A. (a)

Determine expressions for the horizontal and vertical 

displacements of joint A, that is, uA and yA. (b) Determine

expressions for the member axial forces F1, F2, and F3.

▼

P3.10-13, P3.10-14, P3.10-15, and P11.5-53

3

4
(1)

C

3

4

D

B

A

uA

vA

(3)

(2)

L

P

P3.10-16, P3.10-17, P3.10-18, and P11.5-54

(1)

B

A

uA

(3)(2)

C

60°

60°

D

P

vA

Prob. 3.10-17. For the truss in Fig. P3.10-17: L1 � L2 � L3 � 2.1

m, E1 � E2 � E3 � 70 GPa, A1 � A2 � 600 mm2, and 

A3 � 900 mm2. (a) If the truss is subjected to a horizontal force

P � 60 kN at joint A, what are the resulting horizontal displace-

ment, uA, and vertical displacement, yA, at that joint? (b) What

are the resulting axial forces in the members—F1, F2, and F3?

Prob. 3.10-18. Re-solve Problem 3.10-17, but this time let 

P � 0. �T1 � �T3 � 0, and �T2 � �20�C. Let �2 � 23 �
10�6/�C.

Prob. 3.10-19. For the truss in Fig. P3.10-19: A1 � A2 � A3 �
1.0 in2, E1 � E2 � E3 � 30 � 103 ksi, and P � 15 kips.

(a) Determine the horizontal displacement, uA, and vertical

displacement, yA, at joint A. (b) Determine the member axial

forces—F1, F2, and F3.
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P3.10-19, P3.10-20, P3.10-21, P3.10-22(a),
and P11.5-55

(1)

B

A

(3)

(2)

C

D

P

6 ft 6 ft

8 ft

6 ft

uA

vA

Prob. 3.10-14. Repeat Prob. 3.10-13 with A1 � 2A, A2 �
A3 � A.

Prob. 3.10-15. Repeat Prob. 3.10-13 with A1 � 2A, A2 � A3 �
A. Let P � 0, but let member (2), whose coefficient of ther-

mal expansion is �2, be heated by an amount �T2 � �T, with

�T1 � �T3 � 0.

Prob. 3.10-16. Each of the three truss members in Fig.

P3.10-16 has a length L and modulus of elasticity E. The

cross-sectional areas of the members are A1 � A2 � A and

A3 � 2A. (a) Determine expressions for the horizontal and

vertical displacements, uA and yA, at joint A when a horizon-

tal load P is applied to the right to the pin at joint A. (b)

Determine expressions for the axial forces—F1, F2, and F3—

in the three truss members when load P is applied.

Prob. 3.10-20. If P � 0, how much must member (2) in Prob.

3.10-19 be cooled to cause joint A to move upward by 0.05

in. (i.e., yA � 0.05 in.)? Let �2 � 6.5 � 10�6/�F?

Prob. 3.10-21. Consider the truss in Prob. 3.10-19. Suppose

that member (3) was originally fabricated 0.05 in. too short

(i.e., ) so that it had to be temporarily stretched

enough to insert the pin at A. (a) If P 0, what displace-

ments uA and yA will result when the truss is forcefully as-

sembled as described above? (b) What “initial stresses”—�1,

�2, and �3—will be induced in the members when the truss is

forcefully assembled?

*Prob. 3.10-22. Re-solve Prob. 3.10-19, this time assuming

that there is a clearance of 0.02 in. in the hole at A in mem-

ber (2) so that the pin does not act on member (2) at A until

this clearance (gap) has been closed. See Prob. 3.10-19 for

Fig. P3.10-22a.

�
d3 � 0.05 in.
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P3.10-22(b)

(1)
(2)

(3)

0.02 in. clearance (gap)

A

Prob. 3.10-23. Three members form the pin-jointed truss in

Fig. P3.10-23. The joint at A is constrained by a slider block

to move only in the horizontal direction (i.e., yA � 0). All

members have the same cross-sectional area A � 400 mm2,

and the modulus of elasticity is E � 70 GPa for all three

members. (a) Determine the horizontal load P that would be

required to move joint A to the right by 5 mm (i.e., uA � 5 mm).

(b) Determine the member forces—F1, F2, and F3—

corresponding to the load P determined in Part (a), (c)

Determine the vertical reaction between the slider block at

A and the track.

P3.10-23, P3.10-24, and P3.10-25

(2)

(3)

(1)

C

D

B

A

60°

P

4 m

3 m

Prob. 3.10-26. Using the Pythagorean Theorem, show that if

u/L is “small” (i.e., the change in length, eu, of

member AB, of initial length L, is given by 

if end B moves in the x-direction from B to B* by an amount

u, while end A does not move. (Note:This problem relates to

Fig. 3.22 and Eq. 3.26.)

eu � u  cos  u

u/L V 1),

P3.10-26

y

L

A

L + eu

B u B*

x

θ

INELASTIC AXIAL DEFORMATION

*Prob. 3.11-1. The two-segment bar in Fig. P3.11-1a has a

constant cross section and is homogeneous, with bilinear

stress-strain behavior given by the diagram in Fig. P3.11-1b.

External loads of magnitude P are applied at B and C as

shown. (a) If A � 1.0 in2, determine the value of P that

causes first yielding in the bar AC. (Call this load PY1.) 

(b) Determine the total elongation, uC, of the bar AC if P �
20 kips and L � 20 in.

▼

P3.11-1 and P3.11-2

P

0.001 0.003

30

40

(in./in.)

(ksi)

�

(1)

(2)

uC

B

A

P

2L

L

(a) A two-segment bar. (b) A bilinear stress-strain curve.

C

σ
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Prob. 3.10-24. The coefficient of thermal expansion for all

members of the truss in Prob. 3.10-23 is � � 23 � 10�6/�C. (a)

If P � 0, but all three members of the truss are uniformly

heated by �T � 20�C, how much will joint A move? That is,

what horizontal displacement, uA, will occur as a result of the

heating of all members? (b) What stresses—�1, �2, and �3—will

be induced in the truss members due to the uniform heating?

Prob. 3.10-25. Member (2) of the truss in Prob. 3.10-23 was

manufactured 2 mm too short (i.e., so that

members of the truss have to be forcefully assembled. (a)

What will be the “initial displacement” of joint A, that is,

what is the value of uA prior to the application of any exter-

nal load P? (b) What “initial stresses”—�1, �2, and �3—will

be induced in the truss members due to the error in the orig-

inal length of member (2)?

d2 � �2 mm),
*Prob. 3.11-2. For the two-segment bar in Prob. 3.11-1, (a)

determine the value, PY1, of load P that causes first yielding

in the two-segment bar AC. (b) Determine the value, PY2, of

load P that causes the other segment to yield also. (c)

Sketch a load-elongation diagram (i.e., P vs. uC) for loads 

up to 2PY2.
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Prob. 3.11-3. The two-segment statically indeterminate bar in

Fig. P3.11-3a has a constant cross-sectional area A � 0.8 in2. It

is made entirely of material that has an elastic, perfectly-plastic

stress-strain behavior illustrated in Fig. P3.11-3b, with �Y �
36 ksi and E � 30 � 103 ksi. (a) Determine the load PY at

which first yielding occurs, and determine the corresponding

displacement uY of section B where the load P is applied.

(b) Determine the load PU at which yielding occurs in the re-

maining segment of the bar, and determine the corresponding

displacement uU of section B. (c) Sketch a load-displacement

diagram, that is, sketch a diagram of P versus u up to PU.

*Prob. 3.11-5. A symmetric three-bar planar truss is loaded

by a single horizontal force P at joint A. The members of 

the truss are all made of the same linearly elastic, perfectly-

plastic material (see Fig. P3.11-3b) with �Y � 36 ksi and E �
30 � 103 ksi, and all have a cross-sectional area A � 2.0 in2.

(a) Determine the load PY at which first yielding occurs, and

determine the corresponding displacement uY of joint A,

where the load P is applied. (b) Determine the load PU at

which yielding occurs in the remaining members of the truss,

and determine the corresponding displacement uU of joint A.

(c) Sketch a load-displacement diagram, that is, sketch a 

diagram of P versus u up to PU.

P3.11-3 and P3.11-7

(1)

(2)

u

B

A

P
20 in.

40 in.

(a) A two-segment bar. (b) A stress-strain diagram for an elastic,
      perfectly-plastic material.

C

Yσ

Y�Y�

σ

–

Yσ–

1
E

�

P3.11-4 and P3.11-8

(1) (2)

u
P

A B C

1 m 1.6 m

P3.11-5

(3)

(1)

(2)

C

A

D

B

3 ft

3 ft

4 ft

u

P
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*Prob. 3.11-6. When there is no load on the two-segment bar

in Fig. P3.11-6, there is a 1-mm gap between the bar and the

rigid wall at C. The two-segment rod is made of linearly elas-

tic, perfectly plastic material with a stress-strain diagram like

the one in Fig. P3.11-3b, with �Y � 250 MPa and E � 200 GPa.

The bar has a constant cross-sectional area A � 500 mm2.

(a) Determine the value of P, say PR, where the right end of

the bar initially makes contact with the rigid wall at C.

Determine the displacement uR of node B that corresponds

to the load PR. (b) Determine the load PY at which first yield-

ing occurs, and determine the corresponding displacement uY

of section B where the load P is applied. (c) Determine the

load PU at which yielding occurs in the remaining segment of

the bar, and determine the corresponding displacement, uU,

of section B. (d) Sketch a load-displacement diagram, that is,

sketch a diagram of P versus u up to PU.

P3.11-6

(1) (2)

BA

P

2 m 1 m

C

  = 1 mmδ
u

Problems 3.11-7 through 3.11-8 are statically indetermi-
nate, and they involve unloading as well as loading. You
are strongly urged to follow the procedure used in
Example Problem 3.22 of tracking the loading and un-
loading stress-strain behavior of each element on a plot
like the one in Fig. 1b of that example problem.

RESIDUAL STRESSES

*Prob. 3.11-7. Determine the residual stresses in segments

(1) and (2) of the bar AC in Prob. 3.11-3 if a force P � 50

kips is applied and then completely removed.

*Prob. 3.11-8. Determine the residual stresses in segments

(1) and (2) of the bar AC in Prob. 3.11-4 in a force P � 300

kN is applied and then completely removed.

▼

Prob. 3.11-4. Repeat Prob. 3.11-3 for the two-segment bar in

Fig. 3.11-4. Let the bar have a stress-strain diagram of the

form illustrated in Fig. P3.11-3b, with �Y � 250 MPa and 

E � 200 GPa.The cross-sectional areas of the respective seg-

ments of the bar are A1 � 500 mm2 and A2 � 800 mm2.
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Section
Suggested

Review

Problems

C H A P T E R  3  R E V I E W — A X I A L  D E F O R M A T I O N

3.2

Axial deformation of a member has two

characteristics:

(1) the axis of the member remains

straight, and

(2) plane cross sections remain plane and

remain perpendicular to the axis after 

deformation.

The extensional strain 
 is related to the

axial displacement u by the equation

The total elongation of a member undergo-

ing axial deformation is given by

The stress-strain equation for linearly elastic

behavior is called Hooke’s law.

Geometry of axial deformation (Fig. 3.2).

(3.1)

e � �
L

0


(x)dx


(x) �
du(x)

dx

s(x) � E
(x)

Derive 

Eq. 3.1.

s(x) �
F (x)

A(x)

(3.11)e � �
L

0

F(x)dx

A(x)E

Resultant force for axial deformation of a bar

with E � constant (or E � E(x)) (Fig. 3.7).

The elongation of a linearly elastic member

undergoing axial deformation is given by

Prove this

State 

Eq. 3.11 

restrictions.

The normal stress on the cross section at x of

a linearly elastic member with E � constant

(or E � E(x)) that is undergoing axial defor-

mation is given by the axial stress formula

A member having E � const. will undergo

axial deformation if the applied loading re-

sults in a resultant axial force F(x) that acts

through the centroid at cross section x.

(a) Before Deformation

x
u(x + Δx)

Δx

L

x

u(x)

(b) After Deformation

Δx*

A* B*

A B

x

y

z xC

F(x)
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Problems

e � fF where (3.14)

f is the flexibility coefficient

F � ke where (3.15)

k is the stiffness coefficient

k �
AE
L

f �
L

AE

A uniform* axial-deformation member 

(Fig. 3.10a).

s(x,̌ y, z) � E(x, y, z)�(x)

3.3

The force-deformation equation for lin-

early elastic behavior of a uniform* mem-

ber undergoing axial deformation can be

stated in the form

or, in the form

(*uniform: E � const., A � const.)

Section 3.3 treats three examples of nonuni-
form linearly elastic axial deformation:
(1) Nonhomogeneous members, E � E(y, z)

(Example 3.1),

(2) Members with varying cross section,

A � A(x) (Example 3.2), and

(3) Members with distributed axial loading,

F � F(x) (Example 3.3).

For all of these cases of axial deformation,

the extensional strain is constant at any
cross section x; that is, � (x). So the axial
stress has the form

��

See Probs.

for 

Sects. 3.4 &

3.5.

3.3-3 

3.3-5 

3.3-7 

3.3-13

3.4

A statically determinate structure is one for

which all reactions and all internal forces

can be determined by the use of equilib-
rium equations (i.e., statics) alone.

3.4-3 

3.4-7 

3.4-9 

3.4-16

Typical statically determinate structures with 

uniform axial-deformation elements

FF A, E

x

L

A BC

P = 60 kN

(1)

1 m 2 m

2 m

3 m

"Rigid"

(2)

uA uB24 ft

20 ft

16 ft

uC

uB

uA

A

B

C

(1)

(2)

(3)

10 kips

10 kips

8 kips
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Problems

3.5

3.6

3.7

3.8

L2 L3L1

do di

uB uC

A
D

dB
C

(1)
(2) (3)

PC

Analysis of a statically indeterminate struc-
ture requires the use of (1) equilibrium
equations, (2) member force-deformation
equations, and (3) geometry of deformation
equations (compatibility equations).

Review the Solution Procedure and the Flow
Chart for the Basic Force Method before

solving the Suggested Review Problems.

Section 3.6 treats the effect of temperature
change on axial deformation.

The stress-strain-temperature equation for

axial deformation is

Section 3.7 treats the effect of geometric
“misfits” on axial deformation.

The equilibrium equation(s) and force-defor-
mation equation(s) are not directly affected.

Section 3.8 introduces the Displacement
Method and illustrates its use for analyzing

simple structures that consist of uniform

axial-deformation members.

Review the Solution Procedure and the Flow
Chart for the Displacement Method before

solving the Suggested Review Problems.

Sections 3.9–3.11 are all “optional” sections.

3.5-1 

3.5-9 

3.5-11 

3.5-17

3.6-1 

3.6-5 

3.6-11

3.6-13

3.7-3 

3.7-5 

3.7-9 

3.7-13

3.8-3 

3.8-7 

3.8-15

3.8-17

Typical statically indeterminate structures with

uniform axial-deformation elements

(3.23)

(3.24)� � �s � �T �
s

E
� a¢T

�T � a¢T

(3.28)

where e is the total elongation and

ki � aAE
L
b

i

Fi � ki(e � a¢T)i

(1)

B

A

uA

(3)(2)

C

60°

60°

D

P

vA
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TORSION 4

4.1 INTRODUCTION

237

In Chapter 3 we considered the behavior of slender members subjected to axial load-

ing, that is, to forces applied along the longitudinal axis of the member. In this chap-

ter we will concentrate on the behavior of slender members subjected to torsional

loading, that is, loading by couples that produce twisting of the member about its axis.

Figure 4.1 shows a common example of torsional loading and indicates the

shear stresses and the stress resultant associated with torsion. A torque (couple) of

magnitude 2Pb is applied to the lug-wrench shaft AB by the application of equal

and opposite forces of magnitude P at the ends of arm CD (Fig. 4.1a,b). We say that

shaft AB is a torsion member. As indicated in Fig. 4.1c, the shaft AB is subjected to

equal and opposite torques of magnitude T that twist one end relative to the other,

and, as shown in Fig. 4.1d, the torque T acting on a cross section between A and B
is the resultant of distributed shear stresses.

Another common example of a torsion member is a power transmission shaft,

like the drive shaft of an automobile or a truck. Several names are applied to tor-

sion members, depending on the application: shaft, torque tube, torsion rod, torsion
bar, or simply torsion member. This chapter deals primarily with torsion of slender

members with circular cross sections, such as solid or tubular circular cylinders.

However, torsion of noncircular thin-wall tubular members and torsion of noncircu-

lar prismatic bars are treated in Sections 4.9 and 4.10, respectively.

FIGURE 4.1 An example

of torsion.

T

b

A B P
E

D

C b

(a) Use of a lug-wrench.

(b) Lug-wrench shaft in torsion.

(c) A torsion rod.

B T = P(2b)
A

T

T
A

B
(d) The shear-stress distribution.

T

A

B

P
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You will find that the two key concepts—stress and strain—and the three

fundamental types of equations—equilibrium, material behavior, and geometry of
deformation—which were stressed in Chapter 3, have their counterparts in the

analysis of torsion. There is a direct analogy between axial deformation and torsion,

as indicated by the entries in Table 4.1. Thus, although there is new theory to be

learned in Chapter 4, particularly in Sections 4.2, and 4.3 you should quickly feel at

home solving problems in the same systematic manner used to solve the axial-

deformation problems of Chapter 3.

238
Torsion

FIGURE 4.2 Examples of torsional deformation. (Roy Craig)

(a) A steel torsion rod
with circular cross
section.

(b) A steel torsion bar
with square cross
section.

4.2 TORSIONAL DEFORMATION OF CIRCULAR BARS

Geometry of Deformation of Circular Bars. As noted in the previous sec-

tion, most of this chapter concerns torsion of members with circular cross sections.

Figure 4.2 shows the deformation patterns of a circular steel rod (Fig. 4.2a) and a

square steel bar (Fig. 4.2b) that have been subjected to torsion. In each case, the

upper figure is of the undeformed member, on which lines have been scribed paral-

lel to the axis and perpendicular to the axis; the latter represent cross sections. When
a circular shaft, whether solid or tubular, is subjected to torsion, each cross section
remains plane and simply rotates about the axis of the member, as you can see by

comparing the upper figure and lower figure of Fig. 4.2a. On the other hand, as can

be seen in Fig. 4.2b, cross sections of the square bar become warped when the bar is

twisted about its axis. Because of the mathematical simplicity of the theory of torsion

Axial Deformation Torsion

Axial Force (F) Torque (T)

Elongation (e) Twist angle ( )

Normal stress ( ) Shear stress ( )

Extensional strain ( ) Shear strain ( )

Modulus of elasticity (E) Shear modulus (G)

g�

ts

f

T A B L E  4 . 1 Analogy Between Axial Deformation and Torsion
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of Circular Bars

of members with circular cross section, and because of the widespread application

of such members, we will now develop the theory of torsion for circular members.

Torsion of solid noncircular bars is treated later in Section 4.10.

We begin with an analysis of the geometry of deformation and develop a

strain-displacement equation for torsion of circular members. Figure 4.3 shows a

circular cylinder before and after the application of equal and opposite torques to

the ends of the member. Note that the circumferential lines, which represent plane

cross sections before deformation, remain in a plane after deformation, but that

longitudinal lines, which are parallel to the axis of the member before deforma-

tion, become helical as a result of torsional deformation. Furthermore, right an-

gles, such as the before-deformation angle ABC, are no longer right angles after

deformation. This angle change is evidence of shear deformation due to torsion.

We will now develop a mathematical expression for the torsional strain-displacement
relationship.

Strain-Displacement Analysis. On the basis of observation of how a circular

bar deforms when subjected to twisting about its axis, as illustrated in Figs. 4.2 and

4.3, torsion of circular members can be characterized by three fundamental

torsional-deformation assumptions:

1. The axis remains straight and remains inextensible.

2. Every cross section remains plane and remains perpendicular to the axis.

3. Radial lines remain straight and radial as the cross section rotates about the
axis.

The torsional-deformation assumptions are illustrated in Fig. 4.4a where, before de-

formation, ABFE is a radial plane. When torque TL is applied to the end x � L, the

radial lines CD and EF remain straight and rotate to positions CD* and EF*, respec-

tively, as the cross sections rotate through angles �(x) and �L � �(L), respectively.

A sign convention for torsion is defined as follows:

• The longitudinal axis of the bar is labeled the x axis, with one end of the

member being taken as the origin. (In Fig. 4.4a the left end is taken as the ori-

gin, with the x axis going from left to right.)

FIGURE 4.3 The deforma-

tion of a circular cylinder.

FIGURE 4.4 Torsional deformation; Sign convention for torsion.

A D

B C

(a) Before deformation.

A* D*

B* C*

(b) After deformation.

P

PφL

(a) An example of torsional deformation.

TL
A

C

D*

F* r

D
B

F
E

φ(x)

φ(L) ≡ φL

x

L

Δxx

(b) Sign convention for internal (resisting) torque T(x).

x

+T(x)
+T(x)

+φ(x)

(c) Sign convention for angle of rotation φ(x).

x

+φ(x)

+φ(L)

x
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• A positive torque, T(x), is a moment that acts on the cross section at x in a

right-hand-rule sense about the outer normal to the cross section. On a cross-

sectional cut at x there will be equal and opposite torques T(x), as indicated

in Fig. 4.4b.

• A positive angle of rotation, �(x), is a rotation of the cross section at x in a

right-hand-rule sense about the x axis, as illustrated in Fig. 4.4c.

Our task now is to establish a mathematical relationship between torsional de-

formation (rotation angle �) and the resulting shear strain �.To determine the shear

strain associated with twisting of a circular cylinder, like the one in Fig. 4.4a, we use

Fig. 4.5a, where we have redrawn the portion of the shaft between the crass sections

at x and (x � �x). In Fig. 4.5b we concentrate on the central core of radius p. The

angle QRS in Fig. 4.5b is a right angle. However, as a result of torsional deformation

the angle QRS becomes angle Q*R*S*, which is no longer a right angle, but is

smaller by the shear-strain angle

as seen in Fig. 4.5b. Since � is small, we can approximate the angle by its tangent, at

the same time taking the limit as �x → 0, to get

Therefore, the strain-displacement equation for torsional deformation of a circular

member is

(4.1)

Here � is the shear strain at cross section x at a distance � from the axis. The deriv-

ative d�/dx is called the twist rate. Figure 4.6 shows plots of this shear-strain distri-
bution at a typical cross section of a solid circular cylinder (Fig. 4.6a) and of a tubular

circular cylinder (Fig. 4.6b). Note that, in each case, the shear strain, �, varies linearly
with �, the distance from the axis. Even if a circular torsion member were to be

made of a central core of one material bonded to an outer tubular sleeve of another

material. Eq. 4.1 would still represent the torsional shear-strain distribution. (See

Example Problem 4.1 in Section 4.3.)

Strain-
Displacement
Equation

g � g(x, r) � r 
df

dx

g � lim
¢xS0

 

S*S¿
R*S¿

� lim
¢xS0

 

r¢f
¢x

� r 
df

dx

g � g(x, r) �
p

2
� �Q*R*S* � �S ¿R*S*
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FIGURE 4.5 Torsional

deformation details.

(a) An element of length Δx.
Δx

x

φ(x + Δx)φ(x) D

D*

R

R* C S

S* r

(b) The core of radius ρ.

Δx
x

φ(x)

γ

R

Q

Q*
R*

S
S'

S*

ρ

ρ

Δφ

FIGURE 4.6 Examples of torsional shear-strain distribution.

γ

γmax = r

ρ
r

(a)

d  __
dx
φ

γ

γmax = ro

ρ
ro

ri

(b)

d  __
dx
φ
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Examples that involve the torsional strain-displacement behavior given by Eq.

4.1 and illustrated in Fig. 4.6 follow in Section 4.3. 241
Torsion of Linearly Elastic

Circular Bars

4.3 TORSION OF LINEARLY ELASTIC CIRCULAR BARS

Shear Stresses Due to Torsion. The twisting of a circular shaft produces shear

strains throughout the shaft, as was described in Section 4.2.This torsional deforma-

tion, which is illustrated again in Fig. 4.7a, results in shear stresses in the shaft. The

shear stress on a typical cross section is illustrated in Fig. 4.7b; and Fig. 4.7c shows

the shear stress, �, and the corresponding shear strain, �, at typical points. As indi-

cated by Fig. 4.7d, the shear stress has the same distribution, �(x, �), along every

radial line in the cross section at x. Also note, in Figs. 4.7c and 4.7d, that there is
shear stress not only on cross sections, but there is always an accompanying shear
stress that acts on radial planes (from Eq. 2.37).

Stress Resultant and Equilibrium. Figure 4.8 shows the increment of shear

force, dFs, contributed by the shear stress � acting on an incremental area dA at

distance � from the center. The resultant of the incremental torques dT � � dFs is

the torque T(x) at the cross section, which is given by

(4.2)
Resultant
Torque

T � �
A

r dFs � �
A

rt dA

FIGURE 4.7 Relationship of shear strain to shear stress in torsion of a circular shaft.

(a) Torsional deformation.

T

A

B

T

(b) Shear stress due to torsion.

T

T
A

B

(c) Shear stress and shear strain at typical points.

φ(x)

φ(x + Δx)

ρ

γ(x, ρ)

τ(x, ρ)

(d) Shear stresses along two typical radial lines in a
    cross section, and shear stress on radial planes.

ρ2

ρ1

τ(x, ρ2)

τ(x, ρ2)

τ(x, ρ1)

τ(x, ρ1)
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Equation 4.2 is general, since the distribution of � is not specified in this equation.

We will now determine the shear-stress distribution �(x, �) for a linearly elastic

torsion bar, and will relate the shear stress to the resultant torque, T(x), at the

cross section.

Linearly Elastic Stress-Strain Behavior. To continue our development of the

theory of torsion of circular bars we need a relationship between the shear strain.

�(x, �), and the shear stress, �(x, �). Chapter 2 describes how a tension test may be

used to determine the uniaxial stress-strain behavior of materials, that is, � versus .

We will defer discussion of torsion testing until later in this chapter (Section 4.4)

and will here confine our attention to the simplest case—linearly elastic material
behavior.1 For this case, Eq. 2.23 gives Hooke’s Law for shear as

(4.3)

where G is called the shear modulus of elasticity, or simply the shear modulus.

By combining Eqs. 4.1 and 4.3 we obtain

(4.4)

This equation gives the shear-stress distribution at a typical cross section of a linearly

elastic bar. If the torsion bar is homogeneous (i.e., G � const), then the shear stress
varies linearly with the distance � from the center of the shaft, with the maximum

shear stress acting at the outer edge of the cross section, as illustrated in Fig. 4.9. As

indicated in Fig. 4.7d, this same shear-stress distribution acts along each radial line

in the cross section.

For the particular case of linearly elastic behavior, where Eq. 4.4 holds, the

torque T(x) is given by

(4.5)

Furthermore, if G is independent of � we get

(4.6)T � G 
df

dx �
A

r2 dA

T � �
A

r aGr df

dx
b dA

t � Gr
df

dx

t � Gg

�
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1In Section 4.11 we consider nonlinear stress-strain behavior.

Hooke’s Law
for Shear

FIGURE 4.8 The relation-

ship of torque to shear stress.

dFs = τdA
  dT = ρdFs

T = ∫AdT = ∫AρτdA

dA

(a) The shear stress distribution.

(b) The resultant torque.

ρ

τ

τmax = Gr

ρ
r

(a)

τ

τmax = Gro

ρ
ro

ri

(b)

d  __
dx
φ d  __

dx
φ

FIGURE 4.9 Torsional

shear-stress distribution along

a typical radial line—

homogeneous, linearly elastic

case.
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The integral in Eq. 4.6 is called the polar moment of inertia, for which we will use

the symbol Ip.2 That is,

(4.7)

It is shown in Appendix C.2 that, for a solid cross section of radius r

(4.8)

and for a tubular shaft of outer radius ro and inner radius ri

(4.9)

The combined symbol GIp is referred to as the torsional rigidity.
Finally, Eq. 4.6 can be written in the form

(4.10)

This is the derivative form of the torque-twist equation. Note its similarity to the

axial-deformation analogue, Eq. 3.10. When applying Eq. 4.10, it is important to re-

member that a sign convention is associated with both T and �—a positive torque 
T produces a positive twist rate d�/dx. We have chosen to let the right-hand rule 

establish the positive sense of each (Figs. 4.4b and 4.4c).

By combining Eqs. 4.4 and 4.10 we get the torsion formula

(4.11)

Note that this formula is valid only if the shear modulus is constant over the cross sec-

tion. In Example 4.1 we will analyze the stress distribution in a composite bar for which

G � G(�); then we will consider torsion of homogeneous linearly elastic members.

Torsion
Formulat �

Tr

Ip

Torque-Twist
Equation

df

dx
�

T
GIp

Ip �
p

2
 (r4

o � r4
i ) �

p

32
 (d4

o � d4
i )

Ip �
pr4

2
�
pd4

32

Ip � �
A

r2
 dA
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Circular Bars

E X A M P L E  4 . 1

A bimetallic torsion bar consists of an aluminum shell (Ga � 4 � 103 ksi)

bonded to the outside of a steel core (Gs � 11 � 103 ksi). The shaft has

the dimensions shown in Fig. 1 and is loaded by end torques of magni-

tude T � 10 kip in. (a) Determine the maximum shear stress in the steel

core and the maximum shear stress in the aluminum shell. (b) Determine

the total twist angle of the composite torsion bar.

Plan the Solution Since the shear modulus varies with radial position,

we must use Eq. 4.4 to express the shear-stress distribution in the compos-

ite shaft; then we can determine the corresponding torque from Eq. 4.5.

�

2Some texts use the symbol J. This sometimes leads to confusion, because J is also used in the discussion

of torsion of noncircular members (e.g., Sections 4.9 and 4.10), where it does not refer to the polar mo-

ment of inertia.

Fig. 1

T = 10 kip • in.

T

50 in.

2 in.

1 in.

c04Torsion.qxd  9/1/10  6:05 PM  Page 243



Solution (a) Determine (�s)max and (�a)max, the two maximum stresses 
indicated in Fig. 2. Since both parts of the shaft twist together, they have

the same twist rate d�/dx. Then, from Eq. 4.4

(1a)

(1b)

These shear-stress distributions are plotted on the sketch in Fig. 2.

Substituting these expressions for � into Eq. 4.5, we get

Then, the torque-twist equation for this composite shaft can be written as

So,

Evaluating Eq. (1a) at � � 0.5 in., we get

Ans. (a) (5a)

and evaluating Eq. (1b) at � � 1.0 in., we get

Ans. (a) (5b)

As is indicated in Fig. 2, the maximum shear stress in the steel core

is larger than the maximum shear stress in the aluminum shell for the

given dimensions of this composite torsion bar.

(b) Determine the total angle of twist of the torsion bar. We cannot use

the torque-twist equation, Eq. 4.10, since it is for a homogeneous shaft.

For this composite shaft we obtained a different equation, Eq. (3), for the

twist rate. Since the twist rate d�/dx is constant along the shaft, we get

Ans. (b) (6) f � 7.17(10�2) rad

 f � �
L

0

df

dx
 dx �

df

dx
 L � (1.4346 � 10�3 rad/in.)(50 in.)

 (ta)max � 5.74 ksi

 (ta)max � (4 � 103 ksi)(1.0 in.)[1.4346(10�3) rad/in.]

(ts)max � 7.89 ksi

 (ts)max � (11 � 103 ksi)(0.5 in.)[1.4346(10�3) rad/in.]

 � 1.4346(10�3) rad/in.

 
df

dx
�

10 kip � in.

[(11�103 ksi)(p/2)(0.5 in.)4 �(4 �104 kis)(p/2)[(1.0 in)4�(0.5 in)4]]

df

dx
�

T
[GsIps � GaIpa ]

 T �
df

dx
 [GsIps � GaIpa ]

 T � �
A

rt dA � Gs 

df

dx �
As

r2
 dA � Ga 

df

dx �
Aa

r2  dA

0.5 in. 6 r � 1.0 in.ta � Gar 

df

dx
,

0 � r � 0.5 in.ts � Gsr 

df

dx
,

τ

(τs)max

(τa)max

ρ

0.5 in.0.5 in.

Fig. 2
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Summary of Torsion Theory for Homogeneous Linearly Elastic Bars.
Let us summarize the theory of torsion as applied to the special case of a homoge-

neous linearly elastic member with circular cross section.While the derivation of the

torsion theory summarized in Eqs. 4.10 and 4.11 was based on deformation of a 

circular cylinder, it can also be applied to approximate the behavior of a torsion

member whose radius varies slowly with x. Figure 4.10 shows such a member with

distributed and concentrated external torques applied to the member. Thus, for 

either cylindrical torsion members or ones whose radius varies slowly, we can write

the torsion formula, Eq. 4.11, in the form

(4.12)

indicating that both T and Ip may vary with x. We are usually most interested in the

maximum shear stress in a torsion member, in which case the torsion formula 

becomes

(4.13)

where �max means the magnitude of the maximum shear stress, Tmax stands for the

maximum absolute value of T(x), and r is the radius of the shaft if it is a solid shaft

or the outer radius if the shaft is tubular.

In Eq. 4.10, the torque-twist equation, T, G, and Ip may each vary with x. This

derivative form of the torque-twist equation may be integrated over the length of

Maximum
Shear-Stress
Formula

tmax �
Tmaxr

Ip

Torsion
Formulat � t(x, r) �

T(x)r

Ip(x)

245

Review the Solution If the torsion bar was homogeneous (either alu-

minum or steel), its maximum shear stress would be at the outer radius,

� � 1.0 in., and would be given by the elastic torsion formula, Eq. 4.11.

Because the steel core is stiffer than the aluminum shell, it is reasonable

that (�a)max is somewhat less than this value.

tmax �
Tr

Ip
�

(10 kip � in.)(1.0 in.)

p/2(1.0 in.)4
� 6.37 ksi

FIGURE 4.10 A torsion member with varying radius and with distributed torsional loading

and concentrated torque.

x

r(x)

Concentrated
torque

Distributed
torque

φ(x)
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the member to give

(4.14)

where � � �(L) — �(0) is the total angle of twist.
The angle of rotation, �(x), at cross section x is given by

(4.15)

where is a dummy variable of integration locating cross sections between 0 and x.

Note the similarity of Eqs. 4.12 and 4.14 to the axial-deformation analogues, Eqs. 3.9

and 3.11, respectively.

Uniform Torsion Member. Figure 4.11 shows a typical uniform torsion member
and defines the sign convention. Let the element have constant G and constant Ip

along its length, and let the member be subjected to equilibrating end torques, T, as

shown. Finally, let

be the twist angle (i.e., the rotation of the end x � L relative to the end x � 0), with

positive sense as shown in Fig. 4.11.

From Eq. 4.14,

Since the torque T is constant and the torsion member is uniform.

(4.16)

The following example illustrates two key equations of the theory of torsion,

the maximum shear-stress formula. Eq. 4.13, and the torque-twist equation, Eq. 4.16.

It also illustrates the strength-to-weight comparison of two torsion members; one is

a solid shaft, the other is a tubular shaft. The strength-to-weight advantage of tubu-

lar shafts relative to solid shafts is the reason that they are frequently used as torsion

members in many applications, such as the drive shafts of sport utility vehicles and

trucks (see Prob. 4.8-9).

Torque-
Twist
Equation

f �
TL
GIp

f � �
L

0

T  dx
GIp

f K f(L) � f(0)

j

f(x) � f(0) � �
x

0

T(j) dj

G(j)Ip(j)

Torque-
Twist
Equation

f � �
L

0

T(x) dx

G(x)Ip(x)
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FIGURE 4.11 A typical end-loaded uniform torsion member.

x

L

T

T

Gip

x
+

φ ≡ φ(L) – φ(0)
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E X A M P L E  4 . 2

A tubular shaft of length L has an outer radius r1 and an inner radius

r1/2, and it is made of material with shear modulus G. It is subjected to

end torques of magnitude T0, as shown in Fig. 1a. (a) Determine an ex-

pression for �max for the shaft in Fig. 1a. (b) Determine an expression for

the twist angle, �, for this shaft. (c) If the same torque T0 is applied to the

solid circular shaft in Fig. 1b producing the same maximum shear stress

�max as in the tubular shaft, what is the radius, r2, of the solid shaft? What

is the ratio of the weight W2 of the solid shaft to the weight W1 of the 

tubular shaft?

Plan the Solution We can use the torsion formula, Eq. 4.13, to deter-

mine an expression for �max, and the torque-twist equation, Eq. 4.16, to

determine the total twist angle, �. Since there are only end torques, from

equilibrium we get Tmax1 � Tmax2 � T0.

Solution (a) Determine an expression for �max for shaft (1). From the

torsion formula, Eq. 4.13,

(1)

From Eq. 4.9, the polar moment of inertia of the tubular shaft is

Therefore,

Ans. (a) (2)

(b) Determine an expression for the twist angle � for shaft (1). From the

torque-twist equation, Eq. 4.16,

Ans. (b) (3)

(c) Determine the radius r2 such that �max2 � �max1 when T2 � T1 � T0.

From the torsion formula, Eq. 4.13,

(4)

Equating �max1 from Eq. (2) with �max2 from Eq. (4) we get

32T0

15pr3
1

�
2T0

pr3
2

tmax2 �
Tmax2r2

Ip2

�
T0r2

p

2
(r2)4

�
2T0

pr3
2

f1 �
T0L
GIp1

�
32T0L

15pGr4
1

tmax1 �
T0r1

15
32(pr4

1)
�

32T0

15pr3
1

Ip1 �
p

2
c r4

1 � ar1

2
b4 d �

15

32
 pr4

1

tmax �
Tmaxr

Ip
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T0

T0

L

2r1

r1

x

(a)

(b)

T0

T0

L

2r2

(2)

(1)
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Simple Torsion is a computer program module for calculating the

maximum shear stress in, and the angle of twist of, a single uniform statically deter-

minate torsion member (shaft or tube). There are four MDS examples.

MDS4.1 – 4.4

E X A M P L E  4 . 3

A uniform shaft of radius r and length L is subjected to a uniform dis-

tributed external torque t0 (moment per unit length). (See Fig. 1.) (a)

Determine an expression for the maximum shear stress �max. (b)

Determine an expression for the total twist angle � K �L.

Plan the Solution We need to determine T(x) from equilibrium so that

we can apply Eqs. 4.13 to determine the maximum shear stress and Eq.

4.14 to determine the twist angle. The maximum internal torque occurs

at the wall at the left end, so the maximum shear stress occurs there also.

Solution (a) Determine �max.

Equilibrium: We need to draw a free-body diagram and write the appro-

priate moment equilibrium equation. An appropriate free-body diagram

is shown in Fig. 2. On the section at x we show the internal torque T(x)

in the positive sense according to the right-hand rule.

(1)

Shear Stress: The maximum shear stress occurs at x � 0, where T(0) �
Tmax � t0L. Then, from the torsion formula, Eq. 4.13,

tmax �
Tmaxr

Ip
�

t0Lr
Ip

�
t0Lr

p/2(r4)

T(x) � t0(L � x)aMx � 0:

So

Ans. (c) (5)

Therefore, the ratio of the weights of the two shafts is

Ans. (c) (6)

Review the Solution The answer to Part (c) seems questionable, since

it says that the radius of the solid shaft must be almost equal to the 

radius of the tubular shaft even though both have the same “strength.”

However, a recheck of Eqs. (2) and (4) shows that both are correct. From

answers (5) and (6) we can conclude that the tubular shaft has a definite

strength-to-weight advantage over the solid shaft, since the solid shaft

weighs 28% more than the tubular shaft, even though both have the

same strength.

W2

W1

�
A2L2

A1L1

�
pr2

2L

p [r2
1 � (r1/2)2]L

�
4

3
 ar2

r1

b2

� 1.277

r2 � a15

16
b1/3

r1 � 0.979r1

Fig.  2. Free-body diagram.
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t0

L

G = const

x r

t0
T(x)

L – x

x
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or

Ans. (a) (2)

(b) Solve for the twist angle � � �L.

Torque-Twist: From the torque-twist relationship, Eq. 4.14,

or

Ans. (b) (3)

Review the Solution In this problem we can check to see that the 

answers are dimensionally correct, that is, F/L2 in Eq. (2) and dimension-

less in Eq. (3). We can also observe that t0, L, r, and G have the proper

effect on the answers (e.g., a longer bar will have a larger twist angle).

 fL �
t0L2

2GIp
�

t0L2

pr4G

 �
t0

GIp
c aLx �

x2

2
b dL

0

 fL � �
L

0

T(x) dx

GIp
� �

L

0

t0(L � x) dx

GIp

tmax �
2t0L

pr3

4.4 STRESS DISTRIBUTION IN CIRCULAR TORSION BARS;
TORSION TESTING

Stress Distribution. In Section 2.9 we found that associated with pure normal

stresses on the cross section of an axial-deformation member there are shear

stresses and normal stresses on inclined cuts. Figure 4.7d shows the shear-stress 

distribution on a cross section due to torque and the corresponding shear stress on

radial planes, and Fig. 4.12 shows that this leads to pure shear on an element be-

tween cross sections. We will now examine the stress distribution on faces that are

inclined to the axis of a torsion bar.

Figure 4.12a shows a torsion bar and indicates the orientation of a “cut” inclined

at angle with respect to the cross section.To determine the stresses on the inclined

cut, we can take a triangular “wedge,” as shown in Fig. 4.13. The stresses are shown

on Fig. 4.13b, while Fig. 4.13c is a free-body diagram of the element; that is, it shows

the forces that act on the respective faces of the element.

u

FIGURE 4.12 (a) A bar in

torsion; (b) a pure-shear 

element.

x

n

θ

θ
τ

τ

τ

τ

A A
T t

T

x

(a) (b)
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To determine expressions for �n and �nt, the normal stress and the shear stress

on an inclined cut, we can write equilibrium equations for the free body in Fig. 4.13c.

The n and t axes are taken normal to the inclined cut and tangential to the inclined

cut, respectively.

The expressions for �n and �nt can be simplified by introducing the trigonometric

identities

Therefore,

(4.17)

From Eqs. 4.17 it is clear that �nt has a maximum magnitude of � for or

On the other hand, �n has a maximum magnitude for � � 	45
. From Eqs.

4.17, �45
 � ��, ��45
 � �, and �nt � 0 for � � 	45
. Figure 4.14 shows the original

pure-shear element and an element rotated at to this element.

Strain Distribution. Hooke’s Law relating shear stress to shear strain, Eq. 2.23,

gives

(4.18)

Thus, the shear stress due to torsion, depicted in Fig. 4.14a, produces the shear de-

formation illustrated in Fig. 4.15a.

Along the 	45
 directions, which are the directions of maximum compression

and maximum tension, respectively, as depicted in Fig. 4.14b, the extensional strains

g �
t

G

45°

u � 90°.

u � 0°

 tnt � �t 
 
cos  (2u)

 sn � �t 
 
sin  (2u)

cos (2u) � cos2
 
 u � sin2

 
 usin (2u) � 2  sin  u  cos  u,

tnt � �t(cos2
 
 u � sin2

 
 u)

tnt An � tAn 
 
cos2  u � tAn  

sin2  u � 0a Fr � 0:

sn � �2t  sin  u  cos  u

snAn � tAn  cos  u (sin  u) � tAn sin  u (cos  u) � 0a Fn � 0:
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FIGURE 4.13 The state of stress for a pure-shear element.
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τ τ

τ
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θ τ
σn

τ
σ
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(a) (b) (c)

An
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τnt

θ

τAn sin θ

θ θ

FIGURE 4.14 A pure-

shear element, and the associ-

ated maximum-normal-stress

element.

FIGURE 4.15 Deforma-

tion of a pure-shear element,

and the associated maximum-

normal-stress element.

(b)

(a)

τ

τ
τ

τ

45°

τ

τ τ

τ

(a)

(b)
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may be obtained by applying Hooke’s Law in the form of Eqs. 2.38, namely

Since E is related to G by Eq. 2.24, the above equations can be written in the form

(4.19)

The deformation of a �45� element is illustrated in Fig. 4.15b.

Torsion Testing. To determine the shear modulus of a material, to determine its

shear strength properties, or to determine other properties associated with torsion,

bars may be tested in a torsion testing machine like the one shown in Fig. 4.16. The

torque and twist angle are recorded as the torsion bar is twisted.

Figure 4.17 shows specimens tested to failure in a torsion testing machine. This

figure illustrates the importance of Eq. 4.17 and the fact that �n and �nt vary with ori-

entation. Both shafts in Fig. 4.17 were tested to failure in pure torsion. The failure of

the mild-steel bar in Fig. 4.17a is quite different from that of the cast-iron bar in 

Fig. 4.17b. By comparing the failure planes in Figs. 4.17 with the stress elements in

Fig. 4.14, we can conclude that the mild steel bar failed due to shear, while the cast

iron fracture occurred on a maximum-tensile-stress surface. This is consistent with

the types of tensile-test failures discussed in Section 2.4, leading to the conclusion

that brittle members are weaker in tension than in shear, while ductile members are
weaker in shear.

 �max.tens. � ��45° �
t

2G

 �max.comp. � �45° � �
t

2G

 ��45° �
1

E
[t � n(�t)] �

t

E
 (1 � n)

 �45° �
1

E
[�t � n(t)] �

�t

E
(1 � n)
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FIGURE 4.17 The failure surfaces of mild-steel

and cast-iron torsion bars. (Courtesy Roy Craig)

FIGURE 4.16 A torsion testing machine. (Photo courtesy

of Tinius Olsen)

(b) Cast iron bar.

(a) Mild steel bar.
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E X A M P L E  4 . 4

The torque tube in Fig. 1, with outer diameter do � 1.25 in. and inner di-

ameter 1.00 in., is subjected to a torque T � 1000 lb � in. A strain gage

oriented at an angle � � �45
 with respect to the axis, which measures

the extensional strain along this direction, gives a reading of ��45
 � 190

�in./in. (a) Determine the value of the maximum shear stress, �max. (b)

Determine the shear modulus of elasticity, G. (c) Determine the angle of

twist in a section of the tube of length L � 30 in.

Fig. 1

T
L = 30 in.

T

di = 1.00 in.

do = 1.25 in.

45°

Plan the Solution The maximum shear stress, which occurs at the outer

surface, can be determined directly from Eq. 4.13. Since the extensional

strain along the direction � � �45
 is given, Eq. 4.19b can be used to

compute G, the shear modulus. Finally, the angle of twist can be calcu-

lated from Eq. 4.16.

Solution (a) Determine �max. The maximum shear stress occurs at the

outer surface and is given by

where

Then,

or, rounding to three significant figures,

Ans. (a)

(b) Determine G. From Eq. 4.19b,

Ans. (b)

(c) Determine �. From Eq. 4.16,

Ans. (c)f �
TL
GIp

�
(1000 lb � in.)(30 in.)

(11.6 � 106 psi)(0.1415 in4)
� 0.0182 rad

G �
tmax

2��45°

�
4417 psi

2(0.000190 in./in.)
� 11.6(106)  psi

tmax � 4420 psi

tmax �
(1000 lb � in.)(0.625 in.)

0.1415 in4
� 4417 psi

Ip �
p(r4

o � r4
i )

2
�
p [(0.625 in.)4 � (0.5 in.)4]

2
� 0.1415 in4

tmax �
Tro

Ip
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Simple Torsion: Stress Distribution and Strain Distribution illustrates

the determination of max and max in a circular bar in simple torsion.�s

MDS4.5 253
Stress Distribution in Circular
Torsion Bars; Torsion Testing

4.5 STATICALLY DETERMINATE ASSEMBLAGES OF UNIFORM
TORSION MEMBERS

In Section 3.2 Eqs. 3.14 and 3.15 were derived to describe the elastic-deformation

behavior of a uniform, linearly elastic, axially loaded element. This led to the defini-

tion of stiffness and flexibility coefficients for relating the axial force to the elonga-

tion of a uniform member. In the present section we examine an analogous theory

for analyzing the linearly elastic behavior of a uniform torsion bar, or torsion ele-
ment, and we analyze statically determinate assemblages of such elements, like the

pulley and shaft assemblage in Fig. 4.18a. In Section 4.6 we will analyze statically in-

determinate assemblages, like the one in Fig. 4.18b.

Torque-Twist Equations. Figure 4.11 (Section 4.3) shows a typical uniform tor-

sion member and defines the sign convention. The element has constant G and con-

stant Ip along its length, and is subjected to equilibrating end torques, T, as shown.

From Eq. 4.16 the torque-twist equation for the uniform element is

(4.16)

repeated

As in Section 3.2, we can express this equation two ways. For a torsion member, or

torsion element, designated as element i, two useful forms of the element torque-
twist equation are

where (4.20)

and

where (4.21)kti � aGIp

L
b

i
Ti � ktifi,

fti � a L
GIp
b

i
fi � fti 

Ti,

Torque-Twist
Equationfi � a TL

GIp
b

i

FIGURE 4.18 Examples of assemblages of torsion bars.

A statically determinate
assemblage.

(a)  A statically indeterminate
assemblage.

(b)  
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where the subscript t stands for torsion and subscript i identifies the particular tor-

sion element. We call ft the torsional flexibility coefficient and kt the torsional stiff-
ness coefficient. Note the similarity between Eqs. 3.14 and 4.20 and between Eqs.

3.15 and 4.21.

Once the torque Ti in an individual member has been determined, the maxi-

mum shear stress for that member can be computed by using Eq. 4.13.

Notation Convention and Sign Convention for Torsion. Figure 4.18a
illustrates a statically determinate torsion-bar assemblage. To solve torsion prob-

lems, we can employ the same problem-solving strategies used for axial deformation

in Chapter 3. To establish a systematic problem-solving procedure, we first define a

notation convention and a sign convention. Then we set up the three fundamental

types of equations: equilibrium, element torque-twist (i.e., force-deformation) behav-
ior, and geometry of deformation. Finally, we combine these equations to determine

twist angles, and use Eq. 4.13 to determine maximum shear-stress values.

Notation Conventions:3

(a) Member-identification subscripts will always be either numbers or the

generic subscript i, as in Eqs. 4.20 and 4.21. For example, Ti is the torque at

every cross section of element i, and specifically at each end of element i; �i

is the relative twist angle between the two ends of element i.
(b) Externally applied torques and nodal (joint) rotation angles will always be

denoted by uppercase letter subscripts or will be given numerical values.

Sign Conventions:

(a) Figure 4.11 establishes the right-hand-rule sign convention for the torque Ti

acting on an element, and the sign convention for the corresponding twist

angle �i.

(b) When several elements form an assemblage, a sign convention is needed for

external torques and nodal rotation angles. This sign convention is illus-

trated in Fig. 4.19. First, a direction for �x is selected: then positive external

torques and positive nodal rotations follow the right-hand rule with respect

to the �x axis.

Statically Determinate Assemblages of Elements. Several statically deter-

minate torsion problems will now be solved.

254
Torsion

FIGURE 4.19 Sign convention for external torques and rotation angles.

3These “notation conventions” are necessitated by the fact that the symbol T is conventionally used for

both externally applied load and reaction torques and also for internal resisting torques. Similarly for the

symbol �.

xB
A

C +

TBTA

TC

φC

φB

φA
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E X A M P L E  4 . 5

A statically determinate two-element torsion bar is shown in Fig. 1. TA

and TB are external torques applied at nodes A and B, respectively, and

�A and �B are the rotation angles at these two nodes. An x axis has been

established, and these T ’s and �’s have been taken to be positive in the

right-hand-rule sense about this x axis. (a) Determine the internal 

(resisting) torques in members (1) and (2). (b) Determine the rotation

angles at A and B.

Plan the Solution To determine the internal torques T1 and T2 in ele-

ments (1) and (2). respectively, we can draw free-body diagrams and

write the corresponding equilibrium equations. Then we can use the ele-

ment torque-twist equation, Eq. 4.20, and deformation compatibility to

determine the two rotation angles.

Solution (a) Determine the internal torques in members (1) and (2).

Equilibrium: Free-body diagrams that expose the unknown element

torques T1 and T2 are shown in Fig. 2.We can write a moment-equilibrium

equation for each of these. (Note that the sense of T1 and of T2 is estab-

lished by the right-hand-rule sign convention in Fig. 4.11.)

For FBD 1:

For FBD 2:

Hence,

Equilibrium Ans. (a) (1)

(b) Determine the rotation angles at A and B.

Element Torque-Twist Behavior: Since we now know T1 and T2, Eq. 4.20

is the appropriate torque-twist equation to use.

(2)

where

fti � a L
GIp
b

i

Torque-Twist
Behaviori � 1, 2fi � fti Ti,

T2 � TA � TB

T1 � TA

TA � TB � T2 � 0aMx � 0:

TA � T1 � 0aMx � 0:

Fig. 1

L1

L2

B
(2)

(1)

C

A

x

TA, φA

TB, φB
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(1)
x

TA

FBD 1 FBD 2

T1

(2)
(1)

x

TA
TB

T2

Fig. 2 Free-body diagrams.
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Geometry of Deformation: We can relate the nodal rotation angles �A

and �B to the element twist angles �i as follows:

or

(3)

Solution: To determine �A and �B we can substitute (1) → (2) → (3).

Finally,

or

Ans. (b) (4)

fA �
TAL1

G1Ip1

�
(TA � TB)L2

G2Ip2

fB �
(TA � TB)L2

G2Ip2

 fB � ft2(TA � TB)

 fA � ft1TA � ft2(TA � TB)

 fB � f2

 fA � f1 � f2

 f2 � fB � fC � fB

 f1 � fA � fB

Geometry 
of
Deformation

v

E X A M P L E  4 . 6

A stepped steel shaft AC is subjected to external torques at sections B
and C, as shown in Fig. 1. The shear modulus of the steel is G � 11.5 �
103 ksi, and the diameter of element (1) is d1 � 2 in. Diameter d2 is to be

determined such that the maximum shear stress in the stepped shaft does

not exceed the allowable shear stress �allow � 8 ksi, and the total angle of

twist does not exceed �allow � 0.06 rad. Express your answer to the nearest

that satisfies both of these criteria.1
8 in.

Fig. 1

d1 = 2 in. 10 kip · in.

2 kip · in.d2

B C

A (1)

40 in.

32 in.

(2)
x

Plan the Solution There are two criteria: one on maximum shear stress

and one on maximum total twist angle. We will first write down the fun-

damental equations. Then we will determine the required diameter d2

based on the maximum-shear-stress criterion, and then on the maximum-

twist-angle criterion.

256
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Solution

Equilibrium: Free-body diagrams that expose the unknown element

torques T1 and T2 are shown in Fig. 2.We can write a moment-equilibrium

equation for each of these. (Note that the sense of T1 and of T2 is estab-

lished by the right-hand-rule sign convention in Fig. 4.11.)

For FBD1:

For FBD2:

Equilibrium (1)

Element Torque-Twist Behavior: Since we know T1 and T2, Eq. 4.20 is the

appropriate torque-twist equation to use.

(2)

where

Geometry of Deformation: The total twist angle is simply the sum of the

element twist angles, so

(3)

Maximum-Shear-Stress Criterion: The maximum torsional shear stress,

must be checked in each element by using Eq. 4.13.

Therefore, based on the maximum-shear-stress criterion,

Maximum-Twist-Angle Criterion: Now we need to determine diameter

d2 based on the maximum-twist-angle criterion. Combining Eqs. (1)

through (3), we get

fallow � a 32L1

pGd4
1

b T1 � a 32L2

pG(d2f)
4
b T2

d2t � a 16�T2 �
ptallow

b1/3

� c 16(2 kip � in.)

p(8 ksi)
d 1/3

� 1.0839  in.

 (tmax)2 �
�T2�(d2/2)

Ip2

�
16�T2�

p(d2t)
3

� tallow

 (tmax)1 �
�T1�(d1/2)

Ip1

�
16�T1�

pd3
1

�
16(12  kip � in.)

p(2.0 in.)3
� 7.6394 ksi (6 8 ksi)

Geometry of
Deformation(fC)allow � fallow � f1 � f2 � 0.06 rad

ft2 � a L
GIp
b

2

�
32L2

pG(d2)4
ft1 � a L

GIp
b

1

�
32L1

pGd4
1

,

f2 � ft2T2

f1 � ft1T1

T2 � 2 kip � in.

T1 � 12 kip � in.

T2 � 2 kip � in.aMx � 0:

� 12 kip � in.

T1 � 10 kip � in. � 2 kip � in.aMx � 0:

Torque-
Twist
Equations

Fig. 2 Free-body diagrams.

(2)
x

C

C
B

(a) FBD 1:  0 < x < 40 in.
2 kip·in.

(b) FBD 2:  40 < x < 72 in.

2 kip·in.

10 kip·in.

T2

(1)
(2)

xx

T1

x
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Multiple Torques combines an equilibrium analysis to determine

segment internal torques Ti with routines for determining the shear stress in a shaft

segment due to simple torsion and for determining the node rotation angles.

MDS4.6 & 4.7

so

We are to determine, to the nearest in., the diameter d2 that is

greater than both d2� and d2�. Therefore,

Ans.(d2)min � 1.250 in.

1
8

� 1.1412 in.

� e cp(11.5 � 103 ksi)(0.06 rad)

32(32 in.)(2 kip � in.)
�

(40 in.)(12 kip � in.)

(32 in.)(2 kip � in.)(2 in.)4
d�1f1/4

d2f � £apGfallow

32L2T2

�
L1T1

L2T2d4
1

b�1

§
1/4

If the number of unknown torques exceeds the number of applicable equilibrium

equations, an assemblage of torsion members is said to be statically indeterminate.
An example of a statically indeterminate shaft is shown in Fig. 4.20. The analysis of

statically indeterminate torsion assemblages is virtually identical to the analysis of

statically indeterminate assemblages of axial-deformation members covered in

Sections 3.5, 3.7, and 3.8. (Thermal strain, the topic of Section 3.6, does not directly

enter into torsion problems.)

Analysis of a Typical Statically Indeterminate Torsion Bar. Consider the

simple two-element torsion bar in Fig. 4.20. Let us first determine the internal

torques, T1 and T2, in the elements; then we will determine the rotation, �B, of the

node (joint) between the two elements.

Equilibrium: The free-body diagram of node B in Fig. 4.21 will enable us to write a

moment equilibrium equation that relates the external torque, TB, at joint B to the

internal torques, T1 and T2, in the elements adjoining B.

Equilibrium (1)

This problem is statically indeterminate, since we are not able to determine the two 

element torques from the single moment equilibrium equation. There is a redundant
torque, that is, a torque that is not absolutely essential to maintain stable equilibrium

of the shaft.

T1 � T2 � TBaMx � 0:

4.6 STATICALLY INDETERMINATE ASSEMBLAGES OF 
UNIFORM TORSION MEMBERS

FIGURE 4.20 A statically indeterminate shaft in torsion.

x
BG, Ip

Ip1 = Ip,   Ip2 = 2Ip,  G1 = G2 = G,  L1 = L2 = L

G, 2Ip

(1)
(2)

C

TC

TB

φB

A

TA L
L
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The reaction torques at ends A and C are related to the element torques by

Element Torque-Twist Behavior: From the element torque-twist equation, Eq. 4.20,

we have

(2a,b)

where, using data from Fig. 4.20, we have and 

Geometry of Deformation; Compatibility Equation: Since the two elements are 

attached end-to-end, and since the ends of the elements are not free to rotate, the

total twist angle is zero. Therefore, the compatibility equation for this problem is

(3)

Solution of the Equations: In Eqs. (1) through (3) there are four equations and four

unknowns. Therefore, it is a matter of solving these four equations simultaneously

to determine the four unknowns. We are first interested in determining the element
torques. Therefore, we can eliminate the �i’s by substituting Eqs. (2) into Eq. (3),

which gives the following compatibility equation written in terms of element torques:

or

(3�)

Finally, the equilibrium equation (1) and the compatibility equation (3�) can be

solved simultaneously to give the following:

Ans. (4a,b)

These element torques, then, are the primary solution of this statically indetermi-

nate problem.

Rotation Angle: In the problem statement we were asked not only to determine the

element torques but also to determine the rotation of node B. From Fig. 4.20 we can

see that �B can be obtained from either of the following two geometry of deforma-
tion equations:

fB � �f2fB � f1,

T2 � �
2TB

3
T1 �

TB

3
,

Compatibility
in Terms of
Element
Torques

T1 a L
GIp
b � T2 a L

2GIp
b � 0

ft1T1 � ft2T2 � 0

Geometry of
Deformationftotal � f1 � f2 � 0

ft2 �
L

2GIp
�ft1 �

L
GIp

Element
Torque-Twist
Behavior

f2 � ft2T2f1 � ft1T1,

TC � T2TA � �T1,

259
Statically Indeterminate
Assemblages of Uniform

Torsion Members

FIGURE 4.21 Free-body 

diagrams of nodes and 

elements.

x

TB

TC

T1A

B

(1)

(2)

C

T1

T2

T2

TA
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Therefore, combining Eqs. (2a) and (4a), or (2b) and (4b), we get

Ans. (5)

The above solution has followed the steps of the Basic Force Method, that is, the

key step in the solution was the simultaneous solution of the equilibrium equation,

Eq. (1), and the compatibility equation written in terms of element torques, Eq. (3�).

Analysis of Results: Note that, because the torsional rigidity of element (1), GIp1, is

half that of element (2), it is twice as flexible (i.e., ft1 � 2ft2). Said another way, ele-

ment (2) is twice as stiff in torsion as is element (1) (i.e., kt2 � 2kt1). Therefore, a

larger part of the external torque TB is transferred by element (2) to the right “wall”

than is transferred to the left “wall” by element (1). Had the two elements been

identical, half of the torque TB would have been transmitted to each “wall.” This 

illustrates the fact that, for statically indeterminate structures, the reactions and the

internal element torques depend on the factors Ipi, Gi, and Li.

Solution Procedure: Basic Force Method—Torsion. The preceding intro-

ductory statically indeterminate torsion problem was solved by the Basic Force
Method, the method used in Section 3.5 to solve statically indeterminate axial-

deformation problems.4 The key steps that are required for analyzing statically 

indeterminate structures are to: (1) write down the equilibrium equations that will

be needed for determining the unknown torques, and (2) write down all of the

torque-twist equations that relate the torques in the equilibrium equations to the ro-

tations that appear in the compatibility equations. The third key step is (3) to use

geometry of deformation in order to write down the compatibility equations that

characterize any geometric constraints on the deformation of the structure (i.e., on

the rotation at various sections of the torsion member).

With the aid of the following Procedure, you should review the steps that were

used to analyze the statically indeterminate torsion assemblage shown in Fig. 4.20.

The flow chart that follows presents a more graphic representation of this Procedure.

fB �
TBL
3GIp

260
Torsion

4The word “Force” in Basic Force Method is used here to denote the “force-like” quantity in torsion

problems, namely torque.

SOLUTION PROCEDURE: BASIC FORCE METHOD—TORSION

� SET UP THE FUNDAMENTAL EQUATIONS:

(1) Let NE be the number of independent equilibrium equa-

tions. Using free-body diagrams, write down NE inde-
pendent equilibrium equations of the form 

(2) Write an element torque-twist equation for each torsion

element. Equation 4.20 is the most convenient form to use.

where 
(4.20)

repeated

is the torsional flexibility of the ith element.

(3) Use geometry of deformation to write down the compat-
ibility equation(s) in terms of the element twist angles, �i.

� SOLVE FOR THE UNKNOWN TORQUES:

(4) Substitute the element torque-twist equations of Step 2

into the geometric-compatibility equations of Step 3.

fti �
Li

IpiGi
fi � ftiTi,

©Mx � 0.

This gives the geometric-compatibility equations in
terms of the unknown element torques.

(5) The final step in determining the unknown torques is to

solve simultaneously the equilibrium equations (Step 1)

and the compatibility equations written in terms of ele-

ment torques (Step 4).

� SOLVE FOR THE ROTATION ANGLES:

(6) To obtain rotation angles at the nodes (joints), if they are

required, substitute the element torques into the torque-

twist equations of Step 2. Finally, use geometry of defor-

mation to relate element twist angles to the required 

rotation angles.

(7) Review the solution to make sure that all answers seem

to be correct.
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The next flow chart gives the corresponding steps in the solution of statically in-

determinate torsion problems, emphasizing the importance of the three fundamen-

tal types of equations: equilibrium, torque-twist behavior of elements, and geometry
of deformation (compatibility).
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Statically Indeterminate Torsional Assemblages: Basic Force Method
combines equilibrium, torque-twist, and compatibility equations to solve for the 

unknown internal torques Ti. In the compatibility equation(s), Eq. (4.20) is used to

express the element twist angles �i in terms of the element torques.

Example Problem 4.7 will now be solved by the Basic Force Method. Note 

that there is only one equilibrium equation, but three unknown internal torques.

Therefore, there are two redundant torques, so we must formulate two compatibil-

ity equations.

MDS4.8

E X A M P L E  4 . 7

A high-strength steel shaft (G � 11.5 � 106 psi) of radius r � 1.0 in. and

length L � 30 in. is sheathed over 20 in, of its length by an aluminum

alloy tube (G � 3.9 � 106 psi) of outer radius ro � 1.5 in., as shown in

Fig. 1. Ends (nodes) A and C are fixed. An external torque TB � 5000 

lb � in. is applied at node B as shown. Determine the maximum shear

stress in the steel and the maximum shear stress in the aluminum.

Fig. 1

x

10 in.
20 in.

Aluminum
Steel

φB
TB = 5000 lb · in.

TA

TC

B

C

A

Equilibrium
Equations

∑ Mx = 0

TORQUES
Compatibility
in Terms of
Unknown Torques

BASIC FORCE METHOD FOR TORSION

Solve
simultaneously

(3)

(2)

(1)

Compatibility
Equation(s)
in Terms of
Twist Angles   iφ

Torque-
Twist
Equations
   i = ftiTiφ
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Plan the Solution This is a statically indeterminate shaft. Since the sec-

tion BC of the shaft is composed of an inner steel core and an outer 

aluminum shell, we can call these portions separate elements, namely 

elements (2) and (3), Figure 2 shows the nodes A, B, and C and elements

(1), (2), and (3). (Note that both external and internal torques act on the

nodes.) Since we are only asked for element shear stresses, we will need

to solve for the three element torques, but we do not need to solve ex-

plicitly for the rotation angle �B. We will use the Basic Force Method to

solve this problem.

Solution

Equilibrium: The torsion-bar assemblage is separated into free-body 

diagrams of nodes and elements in Fig. 2.The nodal equilibrium equations

are:

For Node A:

For Node B:

For Node C:

The equation for node B is the “active” equilibrium equation, that is, the

one for a node that has nonzero rotation. The equilibrium equations for

nodes A and C are not really needed, since they just provide the obvious

equations for the reaction torques TA and TC.

Equilibrium (1)

Note that there is only one independent equilibrium equation, but there

are three unknown torques. Therefore, there are two redundant torques.

Element Torque-Twist Behavior: For a force-method solution, Eq. 4.20 is

the appropriate form of the torque-twist equation to use.

(2)

where fti � a L
GIp
b

i
.

Torque-Twist
Equationsi � 1, 2, 3fi � ftiTi,

�T1 � T2 � T3 � TB

TC � T2 � T3 � 0aMx � 0:

TB � T1 � T2 � T3 � 0aMx � 0:

TA � T1 � 0aMx � 0:

Fig. 2 Free-body diagrams.

TA

x

TB

TC

T1

T1

T1

T1

T3

T3

T3
T2

T2

T3

T2

T2

Node
A

Elem. 1
(steel)

Node
B

Elem. 2 (steel)
Elem. 3 (alum.)

Node
C
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Geometry of Deformation: The element relative twist angles are

We can eliminate �B and write the following two compatibility equations
in terms of twist angles:

Compatibility (3)

Solution for the Element Torques: Using the solution steps of the Basic

Force Method, we substitute the torque-twist equations, Eqs. (2), into the

compatibility equations, Eqs. (3), and we get the following two compati-

bility equations in terms of the unknown torques:

(3�)

which we solve simultaneously with the equilibrium equation, Eq. 1, to

obtain the three element torques:

(4)

T3 �
(ft1 ft2)TB

ft1 ft2 � ft1 ft3 � ft2 ft3

T2 �
(ft1 ft3)TB

ft1 ft2 � ft1 ft3 � ft2 ft3

T1 �
�(ft2 ft3)TB

ft1 ft2 � ft1 ft3 � ft2 ft3

ft3T3 � ft2T2

ft1T1 � �ft2T2

f3 � f2

f1 � �f2

 f3 � fB � fC � fB

 f2 � fB � fC � fB

 f1 � fA � fB � �fB

 ft3 � a L
GIp
b

3

�
(20 in.)

(3.9 � 106 psi)(6.381 in4)
� 8.036(10�7) 

rad

lb � in.

 ft2 � a L
GIp
b

2

�
(20 in.)

(11.5 � 106 psi)(1.571 in4)
� 1.107(10�6) 

rad

lb � in.

 ft1 � a L
GIp
b

1

�
(10 in.)

(11.5 � 106 psi)(1.571 in4)
� 5.536(10�7) 

rad

lb � in.

 Ip3 �
p(1.5 in.)4

2
�
p(1.0 in.)4

2
� 6.381 in4

 Ip1 � Ip2 �
p(1.0 in.)4

2
� 1.571 in4
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Initial Shear Stresses Due to Angular Misfits. In Section 3.7 it was shown

that axial misfits (e.g., members initially made too short or too long) lead to initial

stresses in statically indeterminate assemblages. Likewise, angular misalignments

in statically indeterminate torsional assemblages induce initial shear stresses.

Table 4.2 summarizes the basic three equation sets and indicates that applied

torques enter through the equilibrium equation(s) and that angular misfits enter

When numerical values of TB and the torsional flexibility coefficients are

substituted into these equations, the resulting torques are

(5)

Maximum Shear Stresses: Now we can determine the maximum shear

stress in each part. Since elements (1) and (2) are both steel, and both

have the same radius, and since |T2|  |T1|, the maximum shear stress in

the steel will occur in the outer fibers of element (1), that is, in shaft AB.

The maximum shear stress in the aluminum sleeve is given by

Rounding these answers to the appropriate number of significant figures,

we get the following:

Ans. (6)

Review the Solution One way to check results is to check the overall

equilibrium of the shaft. From the equilibrium equations for nodes A
and C we get the following values for the torque reactions at A and C:

These reactions are shown, along with couple-arrows indicating the

proper sense, in Fig. 3.

Is Yes.

It does seem reasonable that more torque would be transmitted to C
than to A.

Homework Problem 4.7-6 is a Displacement-Method version of

Example 4.7.

(�2280 � 5000 � 2720) � 0?aMx � 0:

TC � �2720 lb � in.TA � �2280 lb � in.,

(tmax)steel � 1454 psi

(tmax)alum � 370 psi
f

(tmax)alum �
T3(r3)o

Ip3

�
(1574 lb � in.)(1.5 in.)

6.381 in4
� 369.9 psi

(tmax)steel �
�T1�r1

Ip1

�
(2284 lb � in.)(1.0 in.)

1.571 in4
� 1454 psi

T3 � 1574 lb � in.

T2 � 1142 lb � in.

T1 � �2284 lb � in.
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Fig. 3 A free-body diagram.

5000 lb · in.

2280 lb · in.

2720 lb · in.
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through the geometry of deformation, that is, through the deformation-compatibility

equation(s).

For simplicity, we will consider an angular misfit of the two-shaft system in Fig.

4.22, and will consider only the formulation of the deformation-geometry equations.

Before the flanges are bolted together at B, the two segments of shaft were welded

to the rigid supports at A and C, respectively. Assume that there is no axial gap be-

tween the two flanges (or only an insignificant axial gap; just enough so that the

flanges can be rotated relative to each other), but that the holes in the two flanges

are initially out of alignment by an angle To complete the assembly, a temporary

external torque can be applied to the flange B1 to make its holes line up with the

holes in flange B2 while bolts are inserted into the four bolt holes and firmly tight-

ened. When the temporary external torque is removed, there will be self-equilibrat-

ing torques in the two segments, resulting in so-called initial shear stresses.

Geometry of Deformation: Let the rotation angle at B be measured from the ini-

tial angular orientation of flange B2. The twist angles of the two shaft segments are,

therefore,

Since �C � �A � 0,

(4.22)

As indicated in Table 4.2, angular alignment “misfits” are accounted for in the 

deformation-geometry equation(s), as in Eq. 4.22.

See Homework Problems 4.6-16 and 4.6-17 for problems involving misaligned

shafts. Similar homework problems to be solved by the Displacement Method may

be found in Problems 4.7-7 and 4.7-8.

f2 � �fB

f1 � f � fB

f2 � fC � fB

f1 � f � fB � fA

f.
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Geometry of
Deformation

FIGURE 4.22 Angular misalignment of shaft segments.

φB

φB

x

View D-D

φ–

Parallel to radial line through holes in flange B2.
Radial line through holes in flange B1.φ–

(1)

A

B

D

D

Flange B2Flange B1

(2)
C

T A B L E  4 . 2 A Summary of Torsion Equations

Fundamental Equation Sets Corresponding “Inputs”

(1) Moment equilibrium External torques

(2) Element torque-twist behavior —

(3) Angular-deformation geometry Angular misfits

c04Torsion.qxd  9/1/10  6:06 PM  Page 265



In Section 4.6 statically indeterminate torsion problems were solved by the Basic

Force Method. In this section two example problems are solved by the Displacement

Method, whose steps are outlined in the following flowchart. It will be apparent that

the procedure used here for solving torsion problems is exactly analogous to the 

procedure used in Section 3.8 for solving axial-deformation problems.

*4.7 DISPLACEMENT-METHOD SOLUTION OF 
TORSION PROBLEMS

DISPLACEMENT METHOD FOR TORSION

(3)

(2)

(1)
Moment
Equilibrium
Equations

Element Twist
in Terms of
Nodal Rotations
(Compatibility)

Torque-Twist Equations
in Terms of
Nodal Rotations

Equilibrium
in Terms of
Nodal Rotations

ROTATION
OF NODES

TORQUES
Torque-Twist
Equations
Ti = kti   iφ

E X A M P L E  4 . 8

A steel shaft (G � 78 GPa) of radius r � 25 mm and length L � 0.5 m is

sheathed by an aluminum alloy tube (G � 28 GPa) of outer radius 

ro � 37.5 mm, as shown in Fig. 1. End B is fixed, and an external torque

TA � 350 N � m is applied at node A as shown. Using the Displacement
Method, (a) determine the angle of rotation at end A, and (b) determine

the maximum shear stress in the steel core and the maximum shear stress

in the aluminum shell.

Fig. 1

B

A
L

(1) steel

Cross section

(2) alum.

ro r TA

φA

Plan the Solution This is a statically indeterminate shaft assemblage.

There is only one unknown nodal displacement, �A. Since the shaft is

composed of an inner steel core and an outer aluminum shell, we can call
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these portions separate elements, namely elements (1) and (2), respec-

tively. For a Displacement-Method solution we will solve an equilibrium

equation that is eventually written in terms of the unknown nodal rota-

tion angle �A. Then we can determine the two element torques and use

them to solve for the maximum shear stresses.

Solution (a) Determine �B.

Equilibrium: The free-body diagram of node A in Fig. 2 will enable us to

relate the two element torques to the applied torque TA.

Equilibrium (1)

Element Torque-Twist Behavior: For a Displacement-Method solution,

Eq. 4.21 is the appropriate form of the torque-twist equation to use.

(2)

where 

Geometry of Deformation: The element relative twist angles are

But, since �B � 0, we get the following compatibility equations:

(3a,b)

Displacement-Method Solution: The Displacement-Method steps for

determining �A consist of substituting Eqs. (3) into (2) into (1), and then

solving the resulting equilibrium equation for the unknown nodal 

displacement.

(2�)

(1�)(kt1 � kt2)fA � TA

T2 � kt2fAT1 � kt1fA,

Geometry of
Deformation

f2 � fAf1 � fA,

f1 � f2 � fA � fB

 kt2 � aGIp

L
b

2

�

a28 � 109 N

m2
b (2493 � 103 mm4)

(0.5 m)
� 139.59(103) 

N � m

rad

 kt1 � aGIp

L
b

1

�

a78 � 109 N

m2
b (613.6 � 103 mm4)

(0.5 m)
� 95.72(103) 

N � m

rad

 Ip2 �
p(37.5 mm)4

2
�
p(25 mm)4

2
� 2493(103) mm4

 Ip1 �
p(25 mm)4

2
� 613.6(103) mm4

kti � aGIp

L
b

i
.

Torque-Twist
Behaviori � 1, 2Ti � ktifi,

T1 � T2 � TA

Fig. 2 Free-body diagram of node A.

TA

T1

A T2
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Therefore, the unknown nodal displacement �A is

Ans. (a) (4)

(b) Determine the maximum shear stress in each part. Combining Eqs.

(2�) and (4), we get

In each case, steel and aluminum, the maximum shear stress occurs at 

the outer radius and is given by Eq. 4.13.

Rounding to three significant figures, we get

Ans. (b) (5)
 (tmax)alum � 3.12  MPa

 (tmax)steel � 5.80  MPa

 (tmax)alum �
T2(r2)o

Ip2

�
(207.63 N � m)(0.0375 m)

2493(10�9) m4
� 3.123 MPa

 (tmax)steel �
T1r1

Ip1

�
(142.37 N � m)(0.25 m)

613.6(10�9) m4
� 5.801 MPa

T2 � 207.63 N � mT1 � 142.37 N � m,

fA �
TA

kt1 � kt2
� 1.487(10�3) rad

E X A M P L E  4 . 9

Shafts AB and CE in Fig. 1 have the same diameter and are made of the

same material. A torque TE is applied to the shaft-gear system at E.

Assume that torque is transmitted from shaft CE to shaft AB by a single

gear-tooth contact force, and neglect the thickness of the gears.

Statically Indeterminate Torsional Assemblages: Displacement Method
combines equilibrium, torque-twist, and compatibility equations to solve for the un-

known nodal rotation angles. Equation 4.21 is used to express the element torques

Ti in terms of the element twist angles �i.

Statically Indeterminate Torsional Assemblages: Initial Stress combines

equilibrium, torque-twist, and compatibility equations to solve for the unknown

nodal rotation angles. Equation 4.21 is used to express the element torques Ti in

terms of the element twist angles �i. Similar to Eqs. 4.22, the angular misfit is incor-

porated in the deformation-geometry equations.

In the previous Example Problems the assembled torsion members have been

collinear. However, torsion members may also be coupled together through gears or

through belts and pulleys. Example Problem 4.9 shows how such problems can be

solved using the fundamental equations of equilibrium, torque-twist behavior, and

deformation compatibility; it will be solved by the Displacement Method.

MDS4.10

MDS4.9
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Using the Displacement Method: (a) determine an expression for the

rotation of gear B; (b) determine an expression for the shaft rotation at

E: and (c) determine the torque transmitted to the base at C.

Plan the Solution We have three uniform elements, which we can

number as shown in Fig. 2. There is a relationship between torques 

applied to the two gears (equilibrium), and also a relationship between

their angles and directions of rotation (deformation compatibility). Let

x and x� axes be designated for the shafts so that we can adopt a consis-

tent sign convention for the various torques and rotation angles that

enter into the solution.

The torque in element (3) can be determined from statics (i.e., equi-

librium) alone, but the problem is statically indeterminate, since there

are restraints at both A and C.

Solution (a) Determine �B, the rotation angle of gear B.

Equilibrium: We can separate the system into shaft elements and nodes,

and we can then write a moment-equilibrium equation for each node.

The gear-tooth force F is assumed to be acting normal to the radius at

the point of contact. Note that all torques in Fig. 3 are shown in the pos-

itive sense according to the sign convention stated in Section 4.4. The

sense assumed for the gear-tooth contact force is arbitrary, so long as

Newton’s third law of “action and reaction” is observed. (Only torques

and gear-tooth forces are shown on the “free-body diagrams.” Other

forces, such as reaction forces at the bearings and at the wall, are omit-

ted to reduce the complexity of the diagrams.) We now write the 

moment-equilibrium equation for each node.

Fig. 3 Free-body diagrams.

Fig. 1

Fig. 2

269

Note:  All torques are shown, but force reactions
           (except for the gear-tooth force) are omitted for clarity.

T3

T3

T3

T3

TE

TC

T2

T2

(2)

(3)

(1)

C

F

F

rD

B
rB

x′

T2

T2

TA A

T1

T1 T1

T1

x

TE

E

DC

A

L

2L

B

rD

rB

TE

E

D(2)

(3)

(1)

Gear-tooth
force

C

A

B

F

F

rD

rB
x

x′
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For Node A:

For Node B:

For Node C:

For Node D:

For Node E:

Summarizing the nodal equilibrium equations, we have

Equilibrium (1)

Equation (1e) enables us to determine T3 from the given torque TE.

Equations (1a) and (1c) allow us to determine the reaction torques TA

and TC once T1 and T2 have been determined. This leaves Eqs. (1b) and

(1d) as the primary equilibrium equations to be used in determining T1,

T2, and F. That is, we have two equations in three unknowns, so this is a

statically indeterminate system.

Element Torque-Twist Behavior: Since we are to use the Displacement

Method, Eq. 4.21 is the appropriate form for the torque-twist behavior.

The sign convention for Ti and �i is shown in Fig. 4.

where

All members have the same GIP, and the length of element (3) is

twice that of the other two elements. Let kt � GIP/L. Then,

(2)

Deformation Geometry: We need two types of displacement information:

(1) the relationships of the element twist angles �i to the nodal rotations,

 T3 � akt

2
bf3

 T2 � ktf2

 T1 � ktf1

kt3 �
GIp

2L
�

kt

2
kt1 � kt2 K kt,

kti � aGIp

L
b

i

i � 1, 2, 3Ti � ktifi,

 T3 � TE

 �T2 � T3 � FrD � 0

 T2 � TC

 �T1 � FrB � 0

 T1 � TA

�T3 � TE � 0aMx � 0:

�T2 � T3 � FrD � 0aMx¿ � 0:

T2 � TC � 0aMx¿ � 0:

�T1 � FrB � 0aMx � 0:

T1 � TA � 0aMx � 0:

Fig. 4 A torsion element.

Element
Torque-Twist
Behavior

(i)

Ti

Ti

φi
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and (2) the relationship of the rotation of gear B to the rotation of gear D.

The sign convention for nodal rotation angles is shown on the deformation

sketch in Fig. 5.

From Fig. 5,

(3)

In Fig. 6 the gear rotation angles �B and �D are shown in the positive

sense. When gear B rotates through a positive angle �B, gear D will 

rotate in a negative sense by an amount such that the circumferential

contact lengths will be equal. Thus,

(4)

Displacement-Method Solution: Since we are to use the Displacement

Method to determine �B, we can use Eq. (4) to eliminate �D and then

substitute (3) → (2) → (1).

(3�)

(2�)

We can eliminate T3 and F from Eqs. (1b), (1d), and (1e) to get

and then we can combine this equation with Eqs. (2�a) and (2�b) to get

(1�)kt(rB/rD)fB � (rD/rB)(ktfB) � �TE

�T2 � (rD/rB)T1 � �TE

T3 � (kt/2)[fE � (rB/rD)fB]

T2 � �kt(rB/rD)fB

T1 � ktfB

f3 � fE � (rB/rD)fB

f2 � �(rB/rD)fB

f1 � fB

Rotational-
Displacement
Compatibility

rBfB � �rDfD

f3 � fE � fD

f2 � fD � fC � fD

f1 � fB � fA � fB

Fig. 5 Deformation diagram.

φE

E

D (3)

(2)

(1)

C

A

B

φB

φA = 0 x

x′

φC = 0

φD

Element
Twist-Angle
Definitions

Fig. 6 Gear compatibility.
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from which we can solve for the required angle of rotation �B

Ans. (a) (5)

(b) Determine the rotation angle �E. We can use Eqs. (1e), (2�c) and (5)

to obtain an expression for �E.

or

Ans. (b) (6)

(c) Determine the reaction torque TC. TC may be obtained by combining

Eqs. (1c), (2�b), and (5) to get

Ans. (c) (7)

Review the Solution Because this is a fairly complex problem, we

should first check each answer to see if it has the proper sign and proper

dimensions. The answers (5) through (7) satisfy these two requirements.

Next, we can observe that the magnitude of the torque transmitted

from TE to the base at C should be less than TE, since part of the reaction

to TE is via the gear at B to the base at A. From Eq. (7) we can verify that

|TC|  TE as expected.

TC � �T2 �
� (rB/rD)TE

(rB/rD) � (rD/rB)

fE � (TE/kt) c2 �
(rB/rD)

(rB/rD) � (rD/rB)
d

fE � (2/kt)TE � (rB/rD)fB

fB �
� TB/kt

(rB/rD) � (rD/rB)

FIGURE 4.23 A power-transmission shaft.

4.8 POWER-TRANSMISSION SHAFTS

Solid circular shafts and tubular circular shafts are frequently employed to transmit

power from one device to another, for example from a turbine to a generator in a

power plant or from the motor to the wheels of a car, truck, or other vehicle. Figure 4.23

shows a motor, a pulley, and the circular shaft connecting them. The motor at A

A

B

Power-
transmission

shaft

C C

DT

T

T

T

φ

ω

Bφ
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supplies power to the pulley at D through the shaft BC, which is rotating at con-

stant speed and which exerts a torque T at C, where the shaft is attached to the

pulley D.

The work that the shaft does on the pulley at D is the torque times the angle (in

radians) through which the shaft rotates, that is,

The power delivered at C is given by

or

(4.23)

where is the rotational speed of the shaft in radians per second. The rotational

speed is frequently expressed in revolutions per second or in revolutions per

minute; the conversions are:

where f is the rotational speed in revolutions per second (rev/s) and n is the speed

in revolutions per minute (rpm).

When U.S. Customary units are used, the power is usually expressed in horse-
power (hp), where

1 hp � 550 lb � ft/s � 6600 lb � in./s

When SI units are used and T is expressed in N � m, the power will be in N � m/s �
J/s, or watts (W). The conversion factor is

1 hp � 745.7 W

Note, from Eq. 4.23, that the torque is related to the power and shaft rotation

speed by T � P/ , so that, for a given power, the slower the speed, the higher the

torque. Once the torque has been determined, the angle of twist of a shaft and the

complete stress distribution in the shaft can be determined. Two examples will now

be given to illustrate how Eq. 4.23 is employed in designing power-transmission

shafts.

	

	(rad/s) � 2pf (rev/s) �
2pn (rpm)

60

	

P � T	

P �
dW
dt

� T
dfC

dt

WonD � TfC
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Power-Transmission Shafts

E X A M P L E  4 . 1 0

An electric motor delivers 10 hp to a pump through a solid circular shaft

that is rotating at 875 rpm. If the shaft has an allowable shear stress of 

�allow � 20 ksi, what is the minimum required diameter of the shaft as a

multiple of 1/16 in.?
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E X A M P L E  4 . 11  

A truck driveshaft is to be a tube with an outer diameter of 46 mm. It is

to be made of steel (�allow � 80 MPa), and it must transmit 120 kW of

power at an angular speed of 40 rev/s. Determine, to the nearest even

millimeter (that satisfies the design allowable), the maximum inner

diameter that the shaft may have.

Solution The key equations are the torque-power equation, Eq. 4.23,

and the torsion formula, Eq. 4.13.

Torque:

(1)

so

(2)T �
P

2pf
�

120 kW

2p(40 rev/s)
� 477.5 N � m

P � T	 � T(2pf)

Solution

Torque: Equation 4.23 relates power to torque.

(1)

To get the torque T in units of lb � in., we will have to introduce consis-

tent units for P and . Thus,

Therefore,

(2)

Allowable-Stress Design: Using the torsion formula for a solid shaft,

Eq. 4.13, we can now determine the required diameter of the shaft.

(4)

So, the required diameter is dmin � 0.568 in., or, to the next greater

1/16 in.,

Ans. (5)dmin �
5

8
 in.

d3
min �

16T
ptallow

 �
16(720.3 lb � in.)

p(20 � 103)psi
tallow � tmax �

Tr
Ip

:

T �
P
	

�
66,000 lb � in./s

91.63 rad/s
� 720.3 lb � in.

 	 � (875 rpm) a2p rad

1 rev
b a 1 min

60 sec
b � 91.63 rad/s

 P � (10 hp) a6600 lb � in./s

1 hp
b � 66,000 lb � in./s

	

P � T	
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Allowable-Stress Design:

(3)

For a circular tube,

(4)

where do is the outer diameter of the shaft, and di is the inner diameter.

Combining Eqs. (3) and (4) we get

(5)

Finally, from Eqs. (2) and (5),

(6)

from which, (di)max � 41.89 mm. Although this value for (di)max is very

close to 42 mm, we must pick an inner diameter of

Ans. (7)

to keep tmax � tallow.

di � 40 mm

d4
i � (46 � 10�3 m)4 �

16(46 � 10�3 m)

p
 a 477.5 N � m

80 � 106 N/m2
b

d4
i � d4

o �
16doT
ptallow

Ip �
p

32
 (d4

o � d4
i )

tallow � tmax �
Tro

Ip

FIGURE 4.24 An airplane

wing with torque box outlined.

Power-Transmission Shafts is a computer program module for

solving torsion problems when the torque in a shaft is related to the power P trans-

mitted by the shaft and to its rotation speed 	 through Eq. 4.23.

MDS4.11–4.13

*4.9 THIN-WALL TORSION MEMBERS

Although power-transmission shafts and many other torsion members are solid

circular cylinders or tubular members with circular cross section, not every important

torsion member has a circular cross section. For example, airplane fuselages,

wings, and tails are all thin-wall members that are subjected to loading that includes

torsion. Figure 4.24 depicts the structure of the wing of a light aircraft. The part

Wing torque box

Control surface
Leading edge
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of the wing structure that resists torsion is referred to as the torque box. The wing

in Fig. 4.24 has a single-cell torque box, which is outlined with dashed lines.4

Under certain conditions, the shear stress distribution on the cross section of a

thin-wall torsion member can be determined easily.These simplifying conditions are:

• The member is cylindrical, that is, the cross section does not vary along the

length of the member.

• The cross section is “closed,” that is, there is no longitudinal slit in the

member.

• The wall thickness is small compared with the cross-sectional dimensions of

the member.

• The member is subjected to end torques only.

• The ends are not restrained from warping.

Shear Flow. Figure 4.25 shows a portion of a typical closed, single-cell thin-wall

torsion member.The thickness, t, may vary with circumferential position.The key as-

sumption that is made in order to simplify the analysis of the stress distribution in

closed, thin-wall members is—the shear stress is constant through the thickness and
is parallel to the median curve defining the cross section. Figures 4.25b and 4.25c il-

lustrate the significance of this assumption, which permits us to define a quantity

called shear flow, q, by the equation

Shear Flow (4.24)

where the wall thickness t can be a function of circumferential location s. The name

shear flow comes from the analogy of shear in thin-wall members and the flow of a

fluid in a closed pipe or channel. Here, the shear “flows” in a closed path around the

cross section, as you will see from the following derivation. Now we can proceed to

determine the shear flow, q, and thus determine the shear stress �.

The small element ABCD in Fig. 4.25a is now removed and shown in Fig. 4.26

as a free body with shear forces acting on its faces. The shear stress on the face

q � t t

276
Torsion

Cm
q

τ

τ

(a) A thin-wall torsion member.

(c) The shear flow q =   t.

(b) The shear stress 
 due to torsion.

sT

t(s)

x
TA

B
C

D

s

L
x

FIGURE 4.25 A closed, thin-wall, single-cell torsion member.

4Analysis of multi-cell thin-wall torsion members is beyond the scope of this book. See, for example,

[Ref. 4-1].

FIGURE 4.26 Free-body

diagram of a thin-tube 

element.

Δ x

tB ≡ t(sB)

V2 = qB

V3

V1

C
D

A
B

Δ x

V4 = qAΔ x
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AB at A is �A. The same shear stress must also be acting on the face AD. Hence, the

shear force on face AD is

Similarly, the shear force on face BC is

Since it was assumed that the member is subjected to torque only (thus, there is no

axial stress �x), the equation of axial equilibrium is

or

(4.25)

Since A and B are arbitrary points in the cross section, Eq. 4.25 implies that q is

independent of location in the cross section: that is, q is independent of s. Hence.

(4.26)

Shear Stress Resultant; Torque. Equilibrium of forces in the x-direction leads

to a shear flow that is constant (Eq. 4.26). Now we need to determine the relation-

ship between the shear flow, q, and the torque, T. The incremental force, dFs, due to

the shear flow, q, on a differential element of area of the cross section is illustrated

in Fig. 4.27a. The force on this element of cross section,

acts tangent to the median curve, Cm, as indicated in Fig. 4.27a, and the moment of

this force dFs about an arbitrary point O in the cross section is

where � is the perpendicular distance from point O to the line of action of dFs. To

get the torque on the cross section, we sum the contributions around the curve Cm,

that is,

q� ds (4.27)

Since q is constant, we are left with evaluating � ds around Cm. This integral is a

purely geometrical quantity. Figure 4.27b illustrates the fact that the origin O and

base ds form a triangle whose area is given by

dAm (4.28)�
1

2
 (rds)

�

T �
CCm

dT � rdFs � qrds

dFs � qds

q � t t � const

qA � qB

(qA � qB)¢x � 0V4 � V2 � 0,a Fx � 0:

a

V2 � tBtB¢x � qB¢x

V4 � tAtA¢x � qA¢x
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Thin-Wall Torsion 

Members

FIGURE 4.27 The torque

due to shear flow.

Am

dAm

dFs

(a)

(b)

(c)

ρ O

O
ρ

T

Cm

ds

ds
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Hence,

�ds � 2 Am (4.29)

where Am is the shaded area enclosed by the median curve Cm, as illustrated in

Fig. 4.27c. (Note: The area Am is not the area of the material cross section!) Finally,

combining Eqs. 4.27 and 4.29, we get

(4.30)

When combined with Eq. 4.24, Eq. 4.30 gives the following expression for the shear

stress acting on the cross section of a closed, single-cell, thin-wall torsion member:

(4.31)

where � � �(s) is the average shear stress at location s in the cross section, and where

t � t(s) is the local thickness at the point where the shear stress is evaluated.

Angle of Twist. To determine the angle of twist of a closed, thin-wall torsion

member, like the one in Fig. 4.25, we can employ basic strain-displacement and

stress-strain relationships, or we can employ energy methods. The latter approach is

discussed in Section 11.4. The result is

(4.32)

where G is the shear modulus, and where the integral is evaluated around the

median curve Cm shown in Fig. 4.27c.

In the discussion of Eqs. 4.7 and 4.10 it was indicated that the relationship

between torque and twist rate for a circular shaft is

(4.10)

repeated

where Ip is the polar moment of inertia. Furthermore, it was indicated in the foot-

note that the relationship between the torque T and the twist rate d�/dx is some-

times written as

(4.33)

where GJ is called the torsional rigidity and where, for noncircular cross sections,

J is not the polar moment of inertia. From Eqs. 4.33 and 4.32 we can see that, for a

closed, single-cell, thin-wall torsion member, the torsional rigidity, GJ, is given by

(4.34)GJ �
4A2

mG

CCm

ds
t(s)

Torque-
Twist
Equation

df

dx
�

T
GJ

df

dx
�

T
GIp

f �
TL

4AmGCCm

ds
t(s)

Shear-Stress
Formula

t �
T

2tAm

q �
T

2 Am

CCm
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E X A M P L E  4 . 1 2

(a) Determine the maximum torque that may be applied to an aluminum-

alloy tube if the allowable shear stress is �allow � 100 MPa. The tube has

the cross section shown in Fig. 1a. (b) When the aluminum tube was ex-

truded, the hole was not perfectly centered and the tube was found to

have the actual dimensions shown in Fig. 1b. If the torque determined in

Part (a) is applied to the imperfect tube, what will the maximum shear

stress be? Where will this maximum shear stress occur?

Plan the Solution Equation 4.31 can be used to determine the allow-

able torque, given the allowable shear stress and the cross-sectional

dimensions.

Solution (a) Determine the allowable torque for the perfect tube.

Equation 4.31 can be written in the form

(1)

Figure 2 shows the median curve used in calculating Aa � Ab.

(2)

The minimum wall thickness is 3 mm. Therefore, from Eqs. (1) and

(2) we get

Ans. (a) (3)

(b) Determine the maximum shear stress in the imperfect tube. In this

case, Eq. 4.31 can be written in the form

(4)

Since Aa � Ab and the two torque tubes are to have the same torque,

Eqs. (3) and (4) can be combined to give

Therefore, the maximum shear stress in the imperfect tube is in the

minimum-thickness section of the tube wall and has the value

Ans. (b)

Note that the shear stresses in the two tubes are inversely proportional

to their minimum wall thicknesses.

(tb)max � 120 MPa

 � 100 MPa a 0.003 m

0.0025 m
b

 (tb)max � tallow c (ta)min

(tb)min

d

Tb � 2Ab(tb)min(tb)max

 (Ta)allow � 1265 N � m

 � 2[2.109(10�3)m2](0.003 m)[100(106) N/m2]

 (Ta)allow � 2Aa(ta)mintallow

Aa � Ab � (37 mm)(57 mm) � 2.109(10�3)m2

Tallow � 2Amtmintallow

Fig. 1

(a) Perfect tube.

(b) Imperfect tube.

54 mm

T

3 mm

3 mm

3 mm

3 mm

34 mm

54 mm
2.5 mm

2.5
mm

3.5
mm

3.5 mm

34 mm T

Fig. 2 Area enclosed by the median

curve for tubes (a) and (b).

57 mm

Aa = Ab 37 mm
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Figure 4.25b indicates how shear stresses “flow” in the thin wall of a torque

tube. Note that the rectangular tubes in Fig. 1 of the preceding example problem

have filleted inner corners to minimize the stress concentration that occurs due to

the 90
 change in direction of the shear stress at each corner of the rectangular cross

section. (See Section 12.2 for a discussion of stress concentrations.)

280
Torsion

E X A M P L E  4 . 1 3

Determine the torsional rigidity, GJ, for the thin-wall tubular member

whose cross section is shown in Fig. 1. The shear modulus is G.

Solution This is a straightforward application of Eq. 4.34, but, since the

thickness of the wall of the torque tube is piecewise-constant, we can

write Eq. 4.34 in the form

(1)

The area Am enclosed by the dashed median curve in Fig. 1 is

(2)

Referring to Fig. 1, we can evaluate the sum in the denominator of

Eq. (1) as

(3)

Combining Eqs. (1) through (3), we get

or, rounded to three significant figures,

Ans.GJ � 3580 Gt40

GJ �
4(209.4 t2

0)2G

48.92
� 3584 Gt4

0

a
i
a¢si

ti
b �
p(6.5t0)

t0
�

2(11t0)

t0
�

13t0
2t0

� 48.92

Am �
p

2
 (6.5t0)2 � (11t0)(13t0) � 209.4t2

0

GJ �
4A 2

mG

a
i
a¢si

ti
b

Fig. 1

10t0

2t0

t0

t0

t0r = 6t0

*4.10 TORSION OF NONCIRCULAR PRISMATIC BARS

In Section 4.2 the deformation of a circular cylinder twisted by equal and opposite

torques applied at its ends was described. That discussion, supported by the photos

in Fig. 4.2, pointed out that, for torsion members with circular cross sections, plane

sections remain plane and simply rotate around the axis of the member. It is clear

from the photo of the deformed square torsion bar in Fig. 4.2b that plane sections

do not remain plane when a member with noncircular cross section is subjected to
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torsional loading. An important feature of the torsional deformation of noncircular

prismatic bars is the warping of the cross sections.

The theory of elasticity may be used to relate the torque applied to such non-

circular prismatic members to the resulting stress distribution and angle of twist.5

Stress Distribution and Angle of Twist. The shear-stress distribution in non-

circular torsion bars is quite different than the shear stress distribution in circular

torsion members. Figure 4.28 compares the stress distribution in a circular bar with

that in a rectangular bar.The shear stress on the circular cross section varies linearly

with distance from the center and reaches its maximum at the outer surface (Eq.

4.11). In contrast, the shear stress at the corners of the rectangular torsion member

in Fig. 4.28b must be zero. (Recall that �xy � �yx.) In fact, the maximum shear stress

on a rectangular cross section occurs at the middle of the longer edge, which is the

point on the periphery of the cross section that is nearest the center!

The maximum shear stress in a rectangular prismatic bar subjected to torsion

may be expressed in the form

(4.35)

where 
 is a dimensionless constant obtained by a theory of elasticity solution and

listed in Table 4.3. and where the dimensions d and t satisfy d/t � 1. The angle of

twist of a bar of length L can be expressed by

, where (4.36)

where � is a dimensionless constant with value as listed in Table 4.3.

J � bdt3f �
TL
GJ

tmax �
T

adt2

281
Torsion of Noncircular

Prismatic Bars

FIGURE 4.28 Torsion of circular and rectangular members.

t d
T

x
yz

τyz = 0

τzx = 0

τxz = 0 τxy = 0

(a) (b) (c)

τmax

T

5Saint-Venant (see Section 2.10) developed the theory of torsion for noncircular bars. He presented his

famous memoir on torsion to the French Academy of Sciences in 1853. See, for example. Chapter 10 of

[Ref. 4-2] for a discussion of Saint-Venant’s theory of torsion.

d/t 1.00 1.50 1.75 2.00 2.50 3.00 4 6 8 10


 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.298 0.307 0.312 0.333

� 0.141 0.196 0.214 0.229 0.249 0.263 0.281 0.298 0.307 0.312 0.333

�

T A B L E  4 . 3 Torsion Constants for Rectangular Bars
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The shear-stress distribution on the cross section of a shaft with elliptical cross

section is illustrated in Fig. 4.29. The maximum shear stress occurs at the boundary

at the two ends of the minor axis of the ellipse and is given by

(4.37)

The angle of twist for an elliptical shaft of length L is given by

where (4.38)

Finally, the area of an ellipse is

It is important to note that the torsional behavior of circular bars is very spe-

cial. If a channel section or a wide-flange section or any other noncircular cross sec-

tion is subjected to torsional loading, its behavior must be analyzed by analytical

methods like the Saint-Venant solution that produced Eqs. 4.35 through 4.38. Finite-

element analysis may also be used to solve specific torsion problems.

A � pab

J �
pa3b2

a2 � b2
f �

TL
GJ

,

tmax �
2T

pab2

282
Torsion

2a

2b

a ≥ b

τmax

τmax

FIGURE 4.29 Torsion of

an elliptical shaft.

E X A M P L E  4 . 1 4

If torsion members having the cross sections shown in Fig. 1 have the

same cross-sectional area and are subjected to torques that produce

the same maximum shear stress, �max, in each, what is the torque carried

by each?

Solution Since the areas are to be the same, that is Aa � Ab � Ac � a2,

the radius of the circular bar is given by

For the circular bar and, from Eq. 4.13,

(1)

Therefore,

(2)

or

(3)Tcircle � Ta � 0.282tmaxa3

Ta �
tmaxJ

c
�
ptmaxc3

2
�
ptmax(0.5642a)2

2

tmax �
Tac

J

J � Ip � 1
2pc4,

c � 0.5642apc2 � a2,

t = a

c

Ta

Tb

d = a

(a)

(b)

(c)

d = 2a

Tc
t = a–

2

Fig. 1
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For rectangular bars, Eq. 4.35 gives

(4)

For the square bar in Fig. 1b, d/t � 1, and Table 4.3 gives 
 � 0.208.

Therefore,

(5)

Finally, for the rectangle in Fig. 1c, d/t � 4, so Table 4.3 gives 
 �
0.282. Therefore, Eq. (2) gives

(6)

Summarizing the above results, we get

Ans. (7a,b)

That is, the circular bar can support 36% more torque than a square bar

of equal area; the circular bar can support 100% higher torque than can

a rectangle with a 4:1 ratio of sides.

Tcircle

T4:1rect

� 2.00
Tcircle

Tsquare

� 1.36,

T4:1rect � Tc � 0.282tmax(2a)(a/2)2 � 0.141tmaxa3

Tsquare � Tb � 0.208tmaxa3

tmax �
T

adt2

E X A M P L E  4 . 1 5

If the two torsion members in Fig. 1 have the same length L and the

same cross-sectional area a2, and if they are subjected to torques Ta and

Tb that produce the same angle of twist, �a �b � �, what is the ratio

of the two torques, Ta/Tb?

�

d = 2a

Ta
2a

2a

(a) (b)

Tb

t = a–
2 t = a–

4

Fig. 1

Solution For rectangular bars, Eq. 4.36 gives

where (1)

For the rectangular cross section in Fig. 1a, d/t � 4, for which Table 4.3

gives � � 0.281.

J � bdt3T � aGJ
L
b f,
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c04Torsion.qxd  9/1/10  6:07 PM  Page 283



For thin, open cross sections, like the equal-leg angle cross section in

Fig. 1b, the dimension d can be taken to be the length of the centerline,

as indicated by the dashed line in Fig. 1b. For this particular cross section,

then, For this d/t ratio, we must extrapolate from the

values given in Table 4.3. A reasonable estimate is � � 0.323.

Ans. (2)

That is, for the same angle of twist the 4:1 rectangular bar can support

248% more torque than an angle cross section with an equivalent 16:1

ratio of sides. Thin-wall, open cross sections do not make good torsion

members. Compared to more compact sections, they will have much

higher maximum shear stress and much larger angle of twist for a given

torque, cross-sectional area, and length.

T4:1rect

T16:1angle

�
Ja

Jb
�

0.281(2a)(a/2)3

0.323(4a)(a/4)3
� 3.48

d
t

�
4a
a/4

� 16.

*4.11 INELASTIC TORSION OF CIRCULAR RODS

In the preceding sections of Chapter 4, we have considered torsion of linearly elas-

tic members, the simplest case being the torsion of rods with circular cross section.

Now we will examine the behavior of circular rods that are subjected to torques that

produce shear stresses beyond the proportional limit. Inelastic torsion is similar in

many respects to the inelastic axial deformation discussed in Section 3.11, with one

very important difference. In the case of axial deformation, the strain and stress are

uniform over the entire cross section of the axial-deformation member, but in the

case of torsion, both shear strain and shear stress vary with distance from the cen-

ter of the torsion rod.

Fundamental Equations. Of the three fundamentals of deformable-body me-

chanics—equilibrium, geometry of deformation, and material behavior—only the

material behavior differs when we consider inelastic torsion rather than the linearly

elastic behavior treated so far in Chapter 4.

Geometry of Deformation: The strain-displacement equation, Eq. 4.1, holds for

inelastic as well as for linearly elastic torsion.

(4.39)

where

� � the shear strain due to torsion.

� � the distance from the center of the rod to the point in the cross section where

the strain is to be determined.

� � the angle of twist at section x; is the twist rate.

This linear strain distribution is sketched in Fig. 4.30 (repeat of Fig. 4.6).

u �
df

dx

g(x, r) � r
df

dx
� ru

FIGURE 4.30 Torsional

shear-strain distribution.

r

γ

γmax = rθ

ρ

ro

γ

γmax = roθ

ρ
ri
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Equilibrium: The shear stress �(x, �) is related to the resultant torque T(x) by the

definition of the resultant torque, Eq. 4.2.

(4.2)

repeated

Figure 4.31 illustrates how this integral can be evaluated for a solid shaft by using

(4.40)

This internal torque T(x) is related to the external load and reaction torques

through free-body diagrams and equations of equilibrium.

Material Behavior: So far in Chapter 4 we have only considered linearly elastic

behavior characterized by Hooke’s Law for shear, � � G�. Now, however, we will

consider stresses beyond the proportional limit for materials that have stress-

strain curves in shear like those in Fig. 4.32. For the general case, therefore, the

stress-strain diagram must be employed to establish the appropriate material behavior
in one of the following two forms:

or (4.41)

(Later, in the discussion of residual stresses, we will discuss how shear stress and

shear strain are related during unloading.)

Elastic-Plastic Torque-Twist Analysis. Equations 4.39 (strain-displacement),

4.40 (equilibrium), and 4.41 (material behavior) permit a complete solution of any

problem of torsion of circular rods. The procedure will be illustrated here with the

analysis of a rod made of elastic-plastic material having a stress-strain curve like

that in Fig. 4.32b. As in the case of inelastic axial deformation (Section 3.11), there

are also three cases to be considered for torsion: Case 1—linearly elastic behavior,

Case 2—partially plastic behavior, and Case 3—fully plastic behavior.

Case 1—Linearly elastic behavior. In the linearly elastic range, that is, up to � � �Y,

the material obeys Hooke’s Law,

(4.42)t � Gg

g � g(t)t � t(g),

tPL

T(x) � 2p�
r

0

tr2
 dr

T(x) � �
A

rtdA

285
Inelastic Torsion of 

Circular Rods

FIGURE 4.32 Typical diagrams of shear stress versus shear strain.

FIGURE 4.31 The relation-

ship of torque to shear stress.

r

ρ dA = 2πρdρ

(a) Shear stress τ on dA ring
at radius ρ.

(b) Resultant internal torque
at section x.

τ(x, ρ)

A

T(x) = τρdA

(a) 

τPL = τYτPL

γPL γ

G

1

G

1

γY γ

ττ

Linearly elastic, nonlinearly plastic material. (b) Linearly elastic, perfectly plastic material.
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In Section 4.3 the following torque-stress (Eq. 4.11) and torque-twist (Eq. 4.16)

equations were derived for a homogeneous, linearly elastic rod.

(4.43)

(4.44)

where Ip is the polar moment of inertia of the cross section, and Linearly

elastic behavior is depicted in Fig. 4.33a.

The maximum elastic torque, or yield torque (Fig. 4.33b), is obtained by setting

� � �Y and � � r in Eq. 4.43. Thus,

(4.45)

Then, from Eq. 4.44

(4.46)

The shear-stress distribution for this maximum elastic torque case is depicted in

Fig. 4.33b.

Case 2—Partially plastic behavior. When the torque exceeds TY, the shear strain

over a portion of the cross section exceeds the yield shear strain �Y. The shear-stress

distribution then exhibits an elastic core of radius rY and a plastic annulus, as de-

picted in Fig. 4.34a. This stress-strain behavior for the partially plastic condition is

given by the equations

(4.47)

The corresponding torque is obtained by substituting Eqs. 4.47 into Eq. 4.40 giving

(4.48)

To determine the twist rate, �, for this value of torque we can set the shear strain at

� � rY equal to �Y. Therefore, from Eq. 4.39,

(4.49)

Selecting a value of rY that satisfies 0  rY  r, we can eliminate rY from Eqs. 4.48

and 4.49 and thereby get a torque-twist relationship.

Case 3—Fully plastic torque. An elastic-plastic material, like mild steel, can experi-

ence very large shear strain while the shear stress remains constant at �Y. Therefore,

u �
tY

GrY

T �
ptY

6
 (4r3 � rY

3)

T � 2p�
rY

0

atYr
rY
b r2 dr � 2p�

r

rY

tYr
2 dr

rY � r � rt � tY

0 � r � rYt � tY a r
rY
b

uY �
TY

GIp
�
tY

Gr

TY �
tYIp

r

u � f/L.

 u �
T

GIp

 t �
Tr

Ip

286
Torsion

τmax < τY

τmax = τY

T < TY

T = TY

(a) Linearly elastic case. 

(b) Maximum elastic torque case.

τY

Elastic
core

rY

r

Plastic
annulus

T = TP

(a) Partially-plastic-torsion stress
distribution.

(b) Fully-plastic-torsion stress
distribution.

τY

FIGURE 4.33 Shear-stress

distribution–elastic behavior.

FIGURE 4.34 Partially

plastic torsion and fully plastic

torsion.
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it is possible to have �max � �(x, r) �Y.Then, rY → 0 and we get the fully plastic stress
distribution depicted in Fig. 4.34b. The material equation for the fully plastic case is

(4.50)

The plastic torque, TP, can be obtained by setting rY � 0 in Eq. 4.48, giving

(4.51)

This value can be approached, but not actually reached, since the strain-displacement

equation. Eq. 4.39, does not permit the shear strain to actually reach �Y at � � 0 for a

finite twist angle. Comparing Eqs. 4.45 and 4.51 we see that, for a solid circular shaft,

(4.52)

The above elastic-plastic torque-twist analysis is summarized in the torque-twist
curve in Fig. 4.35.

Unloading; Residual Stress. If the torque is allowed to exceed TY, say to TB in

Fig. 4.35, and then the torque is removed, the unloading curve will parallel the

initial linearly elastic portion, OY, of the torque-twist curve. When the torque is

completely removed, there will be residual stresses and a residual angle of twist, or

permanent set, left in the rod (See Fig. 4.2).

Suppose that the maximum shear strain (at � � r) at torque TB (Fig. 4.35) is �B,

as indicated in Fig. 4.36. A subsequent decrease in torque would cause unloading at

� � r along the path BC indicated in Fig. 4.36.At all radii, whether in the elastic core

or in the plastic annulus, unloading will occur in a linearly elastic manner along lines

satisfying Hooke’s Law in the form

(4.53)

where the �’s indicate increments of stress and strain.

Since unloading takes place elastically, we can solve for the residual stresses in

a torsion rod by superposing the plastic stress distribution due to torque TB and an

elastic stress distribution due to an equal and opposite torque (�TB). For the fully

plastic case, we get the stress distributions shown in Fig. 4.37. Then, the maximum

¢t � G¢g

TP �
4

3
TY

TP �
2ptYr3

3

0 6 r � rt � tY

W 287
Inelastic Torsion of 

Circular Rods

FIGURE 4.35 The torque-twist curve for an elas-

tic-plastic circular torsion bar.

FIGURE 4.36 A stress-strain dia-

gram illustrating elastic recovery.

Loading
path

Unloading path

Y
B

TP

TY

θPS

θY
O R

T

θ ≡ dφ––
dx

τY

–τY

G

C
Max. elastic strain

recovery = 2γY

R

BY

1

G
1

γY γB γ

τ
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elastic-recovery stress (�er)max in Fig. 4.37b is given by setting T � TP in the elastic-

shear-stress formula, Eq. 4.43. Thus,

(4.54)

The clockwise-acting shear stress at � � r in Fig. 4.37c is the shear stress at point R
on the elastic recovery curve BC in Fig. 4.36. Its magnitude is �Y/3.

(ter)max �
TPr
IP

�
4

3
tY

288
Torsion

FIGURE 4.37 Determination of residual shear stresses in torsion by superposition.

τY

(τer)max

TP

(a) Fully plastic state.

+ =

τY

τR

T = 0

(c) Residual stresses.(b) Elastic-recovery
stress distribution.

TP

E X A M P L E  4 . 1 6

A tubular shaft with an outer diameter of 120 mm and an inner diame-

ter of 100 mm is made of elastic-plastic material whose � vs. � curve is

shown in Fig. 1b. The shear modulus is G � 200 GPa, and the yield stress

in shear is �Y � 100 MPa. (a) Determine the yield torque, TY, for this

tubular shaft. (b) Determine the fully plastic torque, TP. (c) Determine

the distribution of residual shear stress if the torque is completely re-

moved following loading to TP.

τY = 100

G

1

γY = 0.0005 γ(rad)

τ(MPa)

(a) Torque tube.

T

(b) Elastic-plastic material behavior.

ro  = 60 mm

r i =
 50 mm

T

Plan the Solution We can use the results of the above discussion of

elastic-plastic torsion, but it will be necessary to incorporate the correct

expression for IP for a tubular shaft, to integrate only over ri � � � ro,

and to note that the shaft becomes fully plastic when �(ri) � �Y.

Solution (a) Determine the yield torque. TY. The yield torque is the

torque that makes �(ro) � �Y. From Eq. 4.45,

Fig. 1
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(a) Stress distribution for
yield torque TY.

TY

(b) Stress distribution for
fully plastic torque TP.

TP

τY

TY

τY

(a) Elastic recovery stresses.

(b) Residual stress distribution.

T = 0

TP

(τer)o

(τer)i

9.6 MPa

8.5 MPa

Fig. 2

Fig. 3

289

s

(1)

Ans. (a) (2)

The stress distribution produced by the yield torque is shown in Fig. 2a.

(b) Determine the fully plastic torque,TP.The shear stress distribution pro-

duced by the fully plastic torque, TP, is shown in Fig. 2b. The fully plastic

torque may be obtained by setting � � �Y in Eq. 4.40 but integrating from

ri to ro.

(3)

Ans. (b) (4)

(Note that TP � 1.08TY, whereas TP � 1.33TY for a solid shaft.) 

(c) Determine the residual shear-stress distribution.We can use the superpo-

sition of the linearly elastic recovery stress distribution of Fig. 3a and the

fully plastic stress distribution of Fig. 2b to obtain the residual stress distri-

bution in the torque tube when TP is completely removed. Because the re-

covery is linearly elastic, we can set T � TP and use Eq. 4.43 to evaluate (�er)i

and (�er)o, the elastic recovery shear stresses at the ri and ro, respectively.

(5)

Therefore,

(6)

Finally, the maximum residual stresses are:

Ans. (c)

The residual stress distribution is shown in Fig. 3b.

Review the Solution Figures 2 and 3 are very helpful in checking our

solution.The calculations in Eq. (1) should be rechecked to make sure that

TY is correct. Because the tube is relatively thin-walled, the stresses in

the fully plastic state (Fig. 2b) are only a small amount larger than the

stresses produced by the yield torque (Fig. 2a). Therefore, the ratio of

TP/TY � 1.08 is reasonable.

Finally, for Part (c), we know that the resultant torque is zero.

Therefore, some shear stresses must be acting counterclockwise and

some acting clockwise.The stresses nearer to the center of the shaft must

be larger than those near the outer surface, because the latter stresses

have a longer moment arm �. Therefore, the values of (�r)i � 9.6 MPa

(ccw) and (�r)o � 8.5 MPa (cw) seem reasonable.

 (tr)i � tY � (ter)i � 9.6 MPa

 (tr)o � tY � (ter)o � �8.5 MPa

 (ter)o � (ter)r�0.06 m � 108.5 MPa

 (ter)i � (ter)r�0.05 m � 90.4 MPa

(ter) �
TPr

IP
�

(19.06 kN � m)r

(p/2)[(0.06 m)4 � (0.05 m)4]

 TP � 19.06 kN � m

 �
2p [100(106) N/m2]

3
[(0.06 m)3 � (0.05 m)3]

 TP � 2ptY�
ro

ri

r2
 dr

 Ty � 17.57 kN � m

 �
[100(106)N/m2](p/2)[(0.06 m)4 � (0.05 m)4]

(0.06 m)

 TY �
TYIp

ro
�

TY(p/2)(r4
o � ri

4)

ro
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TORSIONAL DEFORMATION

Prob. 4.2-1. The bimetallic shaft in Fig. P4.2-1 consists of a

solid inner core of diameter di surrounded by a tubular

sleeve of inner diameter di and outer diameter do. Let sub-

scripts C and S designate the core material and the sleeve

material, respectively. Assume that this bimetallic shaft sat-

isfies the torsional-deformation assumptions. (a) The maxi-

mum shear strain (due to torque T ) in the core material is

(�c)max � 180 � 10�6 radians. Sketch the shear strain �(�) in

the core and in the sleeve. Indicate on your sketch the value

of (�s)max, the maximum shear strain in the sleeve, (b)

Determine the angle of twist of a bimetallic shaft of length L.

L � 48 in.di � 1.50 in.,do � 2.0 in.,

balky, the mechanic must exert equal forces P � 40 lbs down-

ward at C and upward at D.What is the maximum shear stress

that this creates in arm AB? (b) If the lug wrench is made of

steel with a shear modulus G � 11.2 � 103 ksi, what is the rel-

ative angle of twist (in degrees) in the 6.0-in.-long arm AB?

4.12 PROBLEMS

▼

▼

ρ

di

T

do

P4.2-1 and P4.2-2

Prob. 4.2-2. Repeat Prob. 4.2-1 for a bimetallic shaft with 

do � 80 mm, di � 60 mm, and L � 1 m.

SIMPLE TORSION

Prob. 4.3-1. A bimetallic torsion bar consists of a steel core

(Gs � 75 GPa) of diameter di � 25 mm around which is

bonded a titanium sleeve (Gt � 45 GPa) of inner diameter 

di � 25 mm and outer diameter do � 40 mm. (a) If the max-

imum shear stress in the steel is 50 MPa, what is the total

torque, T, applied to the bimetallic bar? (b) What is the total

twist angle of the composite bar if it is 2 m long?

Prob. 4.3-3. A solid, homogeneous, linearly elastic shaft of

diameter d � 4.0 in. is subjected to a torque T � 120 kip � in.

(Fig. P4.3-3). (a) Determine the maximum shear stress in the

shaft. (b) Determine the percentage of the total torque that

is carried by an inner core of diameter dc � 2.0 in. (shown

darkly shaded in the figure). (c) Determine the percentage

of the total weight of the shaft that lies within this inner core.

Prob. 4.3-4. The solid, homogeneous, linearly elastic shaft in

Fig. P4.3-4 has a diameter of d � 80 mm and a maximum

shear stress of �max � 40 MPa. (a) Determine the torque T
acting on the shaft. (b) Determine the percentage of the

total torque that is carried by an inner core of diameter dc �
40 mm (shown darkly shaded in the figure).
DProb. 4.3-5. The solid shaft in Fig. P4.3-5 is made of brass

that has an allowable shear stress �allow � 100 MPa and a

shear modulus of elasticity G � 39 GPa. The length of the

shaft is L � 2 m, and over this length the allowable angle of

twist is allow � 0.10 rad. If the shaft is to be subjected to a

maximum torque of T � 25 kN � m, what is the required

diameter of the shaft?

f

dc

T

d

T

T do = 40 mm

di = 25 mm

L = 2 m

P4.3-1

Prob. 4.3-2. In Fig. P4.3-2 a mechanic (not shown) is using

an X-style lug wrench to remove an automobile wheel by ex-

erting equal forces P downward at C and upward at D. This

creates a pure torque on arm AB, which is a rod 0.5 in. in

diameter and 6.0 in. in length. (See also Fig. 4.1 at the begin-

ning of this chapter.) The total length between the forces at

C and D is 2b � 15 in. (a) Because the lug nut at A is very

b

A B
P

P
E

D

C b

P4.3-2

P4.3-3 and P4.3-4

T

L

T
d

P4.3-5, P4.3-6, and P4.3-7

MDS 4.1 & 4.4
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DProb. 4.3-6. The solid shaft in Fig. P4.3-6 is made of an alu-

minum alloy that has an allowable shear stress �allow � 10 ksi

and a shear modulus of elasticity G � 3800 ksi. The diame-

ter of the shaft is d � 1.5 in., and its length is L � 32 in. If the

allowable angle of twist over the 32-in length of the shaft is

allow � 0.10 rad, what is the value of the allowable torque,

Tallow?
DProb. 4.3-7. The shaft in Fig. P4.3-7 has a diameter d and 

is made of steel having a shear modulus G. The allowable

shear stress is �allow, and the allowable twist rate is 

(d /dx)allow. (a) Determine an expression for the maximum

torque that can be applied to the shaft without exceeding the

allowable-shear-stress criterion; call this torque T� . (b)

Similarly, determine an expression for the maximum torque

that can be applied to the shaft without exceeding the 

allowable-twist-rate criterion; call this torque .
DProb.4.3-8. The shaft in Fig. P4.3-8 has an outside diameter

do � 60 mm and is made of a steel alloy that has an allowable

shear stress of �allow � 80 MPa. The shaft is to be subjected to

a torque T � 2 kN � m. (a) Relative to the weight of a solid

shaft, by what percentage could the weight of the shaft be re-

duced by drilling out a core of diameter di? (b) Repeat Part

(a) if the allowable shear stress is �allow � 100 MPa.

Tf

f

f

expression for the total angle of twist of the shaft, 0. The

shear modulus of elasticity is G.

f

di

T

do

P4.3-8 and P4.3-9

DProb. 4.3-9. Solve Prob. 4.3-8 with do � 4.0 in. and T � 60

kip � in. for the following values of �allow: (a) �allow � 12 ksi,

and (b) �allow � 20 ksi.

Prob. 4.3-10. The solid circular shaft of diameter d in Fig.

P4.3-10a has a maximum shear stress �max � �a under the action

of a torque Ta. If the solid shaft is replaced by a tubular shaft

with a ratio of outside diameter to inside diameter 

of do/di � 1.2 but weighing the same as the solid shaft 

(Fig. P4.3-10b), by what percentage would the torque have to be

increased in order to produce the same maximum shear stress?

di

TbTa

dod

(a) (b)

P4.3-10

TORSION OF TAPERED SHAFTS

Prob. 4.3-11. The solid shaft in Fig. P4.3-11 has a diameter

that varies linearly from do at x � 0 to 2do at x � L. It is sub-

jected to a torque T0 at x � 0, and is attached to a rigid wall

at x � L. (a) Determine an expression for the maximum

(cross-sectional) shear stress in the tapered shaft as a func-

tion of the distance x from the left end. (b) Determine an

▼

d0
T0

φ0

x

L

d(x)

A

B

2d0

SHAFTS WITH DISTRIBUTED 
EXTERNAL TORQUE

Prob. 4.3-12. The solid circular shaft in Fig. P4.3-12 is sub-

jected to a distributed external torque that varies linearly

from intensity of t0 per unit of length at x � 0 to zero at x �
L. The shaft has a diameter d and shear modulus G and is

fixed to a rigid wall at x � 0. (a) Determine an expression for

the maximum (cross-sectional) shear stress in the shaft as a

function of the distance x from the left end. (b) Determine

an expression for the total angle of twist, B, at the free end.

The shear modulus of elasticity is G.

f

P4.3-11

t0
t(x)

d

φB

x

L

A B

P4.3-12

▼

Prob. 4.3-13. Solve Prob. 4.3-12 if the stated externally ap-

plied torque distribution is replaced by the torque distribu-

tion shown in Fig. P4.3-13.t(x) � t0  cos apx
2L
b,

t0

t(x)

x
x L

t(x) = t0 cos �x––
2L(   )

P4.3-13

Prob. 4.3-14. A uniform shaft of diameter d, length L, and

shear modulus G, is subjected to a uniformly distributed

291
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torque t0 over half of its length, as shown in Fig. P4.3-14. (a)

Determine an expression for �max, and indicate the

location(s) where �max occurs. (b) Determine the angle of ro-

tation at A, A, and the angle of rotation at B, B.ff

(Note that Fig. P4.3-16 shows reaction torques TA and TB

and this external torsional loading t(x) all acting in the posi-

tive right-hand-rule sense with respect to the x axis.)

By using a free-body diagram of the entire shaft, together

with the two fixed-end constraint condition, (0) � (L) � 0,

determine expressions for the reaction torques TA and TB at

the fixed ends. Assume that linearly elastic behavior results

from the torsional loading t(x). (Note that this is a statically

indeterminate torsion member since there are two unknown

reaction torques but only one equilibrium equation.)

ff

x A

B

C

(1)

(2)

d

t0

φA

φB
L––
2

L––
2

P4.3-14

*Prob. 4.3-15. A lunar soil sampler consists of a tubular shaft

that has an inside diameter of 45 mm and an outside diameter

of 60 mm. The shaft is made of stainless steel, with a shear

modulus G � 80 GPa. In Fig. P4.3-15, the sampler is being re-

moved from the sampling hole by two 150-N forces that the

astronaut exerts at right angles to arm DE and parallel to the

lunar surface. Assume that the external torque that is exerted

by the soil from A to B is uniformly distributed, with magni-

tude t0. (a) Determine the maximum shear stress in the shaft

of the sampler tube AC, and indicate the location(s) where it

acts. (b) Determine the angle of twist of end C with respect to

end A, that is, determine C/A � C — A.fff

do = 60 mm

A

B

t0

C

D

E

125 mm

150 N

1.5 m

1 m

150 N

Lunar
soil

125 mm

x

P4.3-15

*Prob. 4.3-16. A uniform shaft of diameter d and length L is

fixed to rigid “walls” at ends A and B and is subjected to a

quadratically varying distributed external torsional loading

t(x) � t0[1 � (x/L)2]

x
x

L

A

TA

t(x)

TB

B

P4.3-16 and P4.3-17

*Prob. 4.3-17. Repeat Prob. 4.3-16 for a distributed tor-

sional loading

t(x) � t0  cos  apx
2L
b

SIMPLE TORSION: STRESS DISTRIBUTION 
AND STRAIN DISTRIBUTION

Prob. 4.4-1. (a) Using Eq. 4.17 and the information in Fig.

4.14, discuss the type of stress that actually caused the failure

of the cast iron bar in Fig. 4.17b. Was it shear stress, or tensile

stress, or compressive stress; or was it possibly some

combination? (b) As illustrated in Fig. P4.4-1, grip the two

ends of a piece of blackboard chalk that is approximately

2.5–3 in. long; then, with your fingers, twist the piece of chalk

(i.e., apply equal and opposite torques to the two ends of the

chalk) until it breaks in two. Sketch the two resulting pieces

of chalk, noting whether the break is more similar to 

Fig. 4.17a or to Fig. 4.17b.

▼

MDS 4.5

P4.4-1
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DProb. 4.4-2. A round wood dowel is made of oak having an

allowable stress in shear,parallel to the grain,of �allow � 1.5 MPa.

(a) If the diameter of the dowel is 50 mm, what is the maxi-

mum permissible torque T that can be applied? (b) Why

would the wood dowel fail in shear, rather than in tension or

compression? Describe the shear failure surface(s).

Prob. 4.4-8. L � 30 in., do � 0.75 in., di � 0 in., � 0.09 rad,

and G � 11 � 103 ksi.

Prob. 4.4-9. L � 1.0 m, do � 20 mm, di � 0 mm, � 0.10 rad,

and G � 80 GPa.

Prob. 4.4-10. L � 2.0 m, do � 40 mm, di � 30 mm, � 0.20

rad, and G � 37 GPa.

Prob. 4.4-11. L � 8.5 ft, do � 3.0 in., di � 2.5 in., � 0.15

rad, and G � 15 � 103 ksi.

Prob. 4.4-12. For the generic torsion member, T � 500 lb in.,

do � 0.625 in., and di � 0 in. The extensional strain for � �
45� is �45� � �1300 �. (a) Determine the value of the maxi-

mum shear stress, �max. (b) Determine the shear modulus of

elasticity, G.

Prob. 4.4-13. For the generic torsion member, T � 600 N m,

G � 28 GPa, do � 50 mm, and di � 40 mm. Determine (a)

the maximum shear strain, �max; and (b) the maximum ten-

sile strain, �maxT.
DProb. 4.4-14. A steel shaft (G � 11.8 � 106 psi) has the

form of the generic torsion member pictured on this page.

The outside diameter of the shaft is do � 1.0 in., and it is

required to carry torques up to Tmax � 1200 lb in. If the

maximum allowable extensional strain for this shaft is 400 �,

what is the minimum wall thickness of the shaft to the near-

est in.1
32

�

�

�

f

f

f

f

T

T

P4.4-2 and P4.4-3

This figure of a generic torsion member applies to all of
the remaining problems for Section 4.4.

DProb. 4.4-3. Solve Prob. 4.4-2 if �allow � 200 psi and the

diameter of the dowel is 2 in.

L

T

T

x

do φ = relative
       twist angle

di

θ
n

x

Problems 4.4-4 through 4.4-7. For these four problems,
use the generic torsion member shown above. For each
problem: (a) determine the maximum tensile stress, the
maximum compressive stress, and the maximum shear
stress; and (b) show the stresses determined in Part (a) on
properly oriented stress elements (e.g., see Fig. 4.14).

In solving these problems, make the sense of the
stresses consistent with the sense of the torque T shown on
the generic torsion member figure.

Prob. 4.4-4. (See the “generic torsion member” figure.) 

T � 15 kip � in., do � 1.5 in., and di � 0 in.

Prob. 4.4-5. (See the “generic torsion member” figure.) 

T � 200 N � m, do � 30 mm, and di � 0 mm.

Prob. 4.4-6. (See the “generic torsion member” figure.) 

T � 500 N � m, do � 40 mm, and di � 30 mm.

Prob. 4.4-7. (See the “generic torsion member” figure.) 

T � 3.0 kip � in., do � 2.0 in., and di � 1.75 in.

Problems 4.4-8 through 4.4-11. For these four problems,
use the generic torsion member and determine (a) the
value of the applied torque, T, and (b) the value of the
maximum tensile stress, .SmaxT

MULTIPLE TORQUES

Prob. 4.5-1. A stepped steel shaft AC (G � 12 � 106 psi) is

subjected to torsional loads at sections B and C as shown in

Fig. P4.5-1. The diameters are: d1 � 1.75 in. and d2 � 1.0 in.

(a) Determine the maximum shear stress in the shaft.

Identify the location(s) where this maximum shear stress

occurs. (b) Determine the angle of rotation at C, C.f

▼

x

d2

400 lb.in.

10 in.
20 in.

3000 lb.in.φC

d1

C B

A(2)
(1)

P4.5-1 and P4.5-11

MDS 4.6

Prob. 4.5-2. A brass shaft AC (G � 5.6 � 103 ksi) is sub-

jected to torsional loads at sections B and C, as shown in

Fig. P4.5-2.The outside diameter of the shaft is d1 � do2 � d �
1.25 in. A central hole of diameter di2 � 0.75 in. has been

drilled from C to B, creating a two-segment shaft with

lengths L1 � L2 � 10 in. If the two applied torques are TB �
400 lb in. and TC � 200 lb � in., respectively, (a) determine

the maximum shear stress in the two-segment shaft, and 

(b) determine the angle of rotation C (in radians) at the

end of the shaft. (Note that both torque TB and TC are pos-

itive, meaning that both torques act in the sense shown in

Fig. P4.5-2.)

f

�
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Prob. 4.5-3. Solve Prob. 4.5-2 using the following values: d �
40 mm, di2 � 30 mm, L1 � 2.0 m and L2 � 1.5 m, G � 37 GPa,

TB � 600 N m, and TC � �200 N m. (Note that torque TC

is negative, meaning that it acts in the opposite sense to that

shown in Fig. P4.5-3.)

Prob. 4.5-4. The aluminum-alloy shaft AC in Fig. P4.5-4 (G �
26 GPa) has an 800-mm-long solid segment AB and a 

400-mm-long tubular segment BC. The shaft is subjected to

the torsional loading shown in the figure. The diameters are

and (di)2 � 20 mm. (a) Determine the

maximum shear stress in the shaft, and identify the loca-

tion(s) where this maximum shear stress occurs. (b)

Determine the angle of rotation at B. B. and the angle of

rotation at C. C.f

f

d1 � (do)2 � 50  mm

��

element (1), (i.e., in segment AB), and the maximum shear

stress in element (2). (b) Determine the relative rotation be-

tween the two ends: that is, determine C/A � C � A.

Prob. 4.5-6. A torque is applied to gear A of a two-shaft sys-

tem and is transmitted through gears at B and C to a fixed

end at D. The shafts are made of steel (G � 80 GPa). Each

shaft has a diameter d � 32 mm, and they are supported by

frictionless bearings as shown in Fig. P4.5-6. If the torque

applied to gear A is 400 N � m, and D is restrained, (a) deter-

mine the maximum shear stress in each shaft, and (b) deter-

mine the angle of rotation of the gear A relative to its 

no-load position.

fff

d

B

C

x

A

(2)

(1)

L1

L2

TB

TC

di2

φC

P4.5-2 and P4.5-3

400 mm

800 mm

C

3 kN·m

B
(2)

(1)

x

d1

(do)2φC

(di)2

A

8 kN·m

φB

P4.5-4 and P4.5-12

Prob. 4.5-5. A uniform 1-in.-diameter steel shaft (G � 12 �
106 psi) is supported by frictionless bearings and is used to

transmit torques from gear B to gears at A and C as shown

in Fig. P4.5-5 (a) Determine the maximum shear stress in

10 in.

C

B

A

x

16 in.

(2)

(1)
2000 lb·in

1200 lb·in

800 lb·in

φC

φA

P4.5-5

0.5 m
rC = 80 mm

rB = 140 mm

1.2 m

(1)

(2)
D

C

B

A

400 N·m

P4.5-6

Prob. 4.5-7. The gears and splined ends apply torques TA

through TD to a steel shaft, as shown in Fig. P4.5-7.

(a) Determine the maximum shear stress in the shaft, and

(b) determine the relative twist angle between ends A and

D, that is, determine D/A � D � A.

 TC � �350  N � m, TD � 500  N � m

 L3 � 400  mm, TA � 250  N � m, TB � �400  N � m,

 G � 75  GPa, d � 25  mm, L1 � 200  mm, L2 � 300  mm,

fff

C D
B

d

A

TA

TB TC

TDL1
L2

L3

x

P4.5-7, P4.5-8, and P4.5-9
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DProb. 4.5-8. Use the following data with Fig. P4.5-8:

G � 11 � 106 psi, L1 � 15 in., L2 � 20 in., L3 � 25 in.,

TA � 200 lb ft, TB � �350 lb ft, TC � �150 lb ft,

TD � 300 lb�ft

(a) To the nearest 1/16 in., what is the required diameter d of a

solid shaft AD if the maximum shear stress in the shaft is 5000

psi? (b) To the nearest 1/16 in., what is the required outside

diameter do of a tubular shaft AD if its inner diameter is di �
1 in. and the maximum shear stress in the shaft is 5000 psi?

Prob. 4.5-9. Use the following data with Fig. P4.5-9:

G � 11 � 106 psi, L1 � 10 in., L2 � 15 in., L3 � 20 in.,

TA � 200 lb ft, TB � �350 lb ft, TC � �150 lb ft,

TD � 300 lb ft

If AD is a solid shaft with diameter d � 1.5 in., determine the

relative twist angle (in radians) between ends A and D, that

is, determine D/A � D — A.

Prob. 4.5-10. The steel shaft AD in Fig. P4.5-4 (G � 80 GPa)

is subjected to torsional loads at sections B and D, as shown

in the figure. The diameters are: d1 � d2 � 40 mm., and d3 �
30 mm. (a) Determine the value of the torque TD added at

D that would make the rotation at C equal to zero, that is,

make C � 0. (b) For the loading as determined in Part 

(a), determine the maximum shear stress in each of the three

rod segments.

f

fff

�

���

���

Prob. 4.5-12. Determine the torsional stiffness. kt, of the

stepped shaft AC in Fig. P4.5-1.

Prob. 4.5-13. Determine the torsional stiffness, kt, of the

shaft AC in Fig. P4.5-4.

Prob. 4.5-14. Determine the torsional stiffness, kt, of the

shaft AD in Fig. P4.5-10.
DProb. 4.5-15. A two-element aluminum shaft AC (G � 27

GPa) is subjected to external torques at sections B and C as

shown in Fig. P4.5-15. The outer diameter of the shaft is d1 �
d2 � 50 mm. The inner diameter of element (2), di2, is to be

determined such that the maximum shear stress in the shaft

does not exceed the allowable shear stress �allow � 35 MPa

and the total angle of twist does not exceed allow � 0.08 rad.

Express your answer, di2, to the nearest even mm that satis-

fies these two criteria.

f

d1 = d2

d3 C

B

A

(2)

(1)

400 mm

400 mm

300 mm

600 N·m

φC

TD

x
D

(3)

P4.5-10 and P4.5-14

Prob. 4.5-11. A plumber is cutting threads on the end of a 

2-ft-long section of 1-in.-diameter* pipe.This section, AB, has

already been attached to a 2-in.-diameter* section, BC, by a

reducing coupler and, in turn, to a 3-in.-diameter* section

CD.The shear modulus of the steel pipe is G � 11.5 � 103 ksi.

Neglecting the dimensions and flexibility of the couplers, (a)

determine the maximum shear stress in the assembly, (b) de-

termine the angle of rotation at end A, A, and (c) determine

the torsional stiffness, kt, of the assembly. That is, determine

the torque that must be applied at A to produce a unit rota-

tion (i.e., one radian rotation) at A. (*The stated diameters

are nominal pipe diameters. See Table D.7 for section prop-

erties of the pipe.)

f

50 lb
50 lb

x
12 in.

(1)

(2)

(3)

A

B

C

D

2 ft

2 ft

2 ft

12 in.

P4.5-11

d1 = 50 mm

B

C

x

A

(2)

(1)

1 m

0.8 m

400 N · m
400 N · m

di2

P4.5-15

DProb. 4.5-16. The aluminum-alloy shaft AD in Fig. P4.5-16

(G � 3.8 � 103 ksi) has a 40-in. long tubular section AC and

do

20 in.A

B

C

D

(1)

(2)

(3)

20 in.

30 in.

x

di

2 kip·in.
φA

TA

P4.5-16
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a 30-in.-long solid section CD. The diameters are (do)1 �
(do)2 � d3 � 2.0 in. and (di)1 � (di)2 � 1.75 in. A 2 kip � in.

torque acts at section B. What is the allowable torque TA �
0 that may be added at end A if the angle of rotation at A
is not to exceed ( A)allow � 0.10 rad, and the magnitude of

the shear stress is not to exceed �allow � 4 ksi anywhere in

the shaft?

STATICALLY INDETERMINATE 
TORSIONAL ASSEMBLAGES:
BASIC FORCE METHOD

Prob. 4.6-1. A stepped steel shaft AC (G � 12 � 106 psi) is

subjected to an external torque TB at B and is fixed to rigid

supports at ends A and C, as shown in Fig. P4.6-1. (a)

Determine. T1 and T2, the internal torques in segments AB
and BC, respectively. (b) Determine the maximum shear

stress in each segment. (c) Finally, determine B, the angle of

rotation of the shaft at joint B.

TB � 4000 lb � in., d1 � 1.0 in., L1 � 8.0 in., d2 � 1.5 in.,

L2 � 16.0 in.

f

f

Prob. 4.6-4. As illustrated in Fig. P4.6-4, a composite shaft of

length L � L1 	 L2 is made by connecting together at joint

B two shafts of the same diameter d. Shaft segment AB has

a shear modulus G1, and segment BC has a shear modulus

G2. The ends A and C are fixed against rotation, and then an

external torque TB is applied to the shaft at joint B. (a)

Determine expressions for T1 and T2, the internal torques in

segments AB and BC, respectively. (b) Determine the maxi-

mum shear stress in each segment. (c) Finally, determine B,

the angle of rotation of the shaft at joint B.

Express all of your answers in terms of the given torque

TB and the physical parameters of the composite shaft: d, G1,

G2, L1, and L2.

f

▼

MDS 4.8

φB
TB

(2)

L1

L2
B

C

d2

d1

A

(1)

P4.6-1, P4.6-2, P4.6-3, and P4.7-1

Prob. 4.6-2. A stepped aluminum-alloy shaft AC (G � 26

GPa) is subjected to an external torque TB at B and is fixed

to rigid supports at ends A and C, as shown in Fig. P4.6-2. (a)

Determine T1 and T2, the internal torques in segments AB
and BC, respectively. (b) Determine the maximum shear

stress in each segment. (c) Finally, determine B, the angle of

rotation of the shaft at joint B.

TB � 500 N m, d1 � 25 mm, L1 � 150 mm, d2 � 40 mm,

L2 � 200 mm

Prob. 4.6-3. A solid circular shaft AC of total length L � L1 	
L2 is fixed against rotation at ends A and C and is loaded by

a torque TB at joint B, as shown in Fig. P4.6-3. If the diame-

ters of the two segments of the shaft are in the ratio d2/d1,

what ratio of lengths, L2/L1, will cause the maximum shear

stress to be the same in the two segments, that is, will make

(�max)1 � (�max)2? In your answer, express L2/L1 in terms 

of d2/d1.

�

f

(1)
(2)

A
B

C

d
TBφB

L2

L1

Prob. 4.6-5. As illustrated in Fig. P4.6-5, a composite shaft is

made by connecting together at joint B two tubular seg-

ments of the same outer diameter do � 75 mm and the same

inner diameter di � 50 mm. Aluminum-alloy segment AB
has a shear modulus G1 � 27 GPa and length L1 � 0.8 m,

and titanium segment BC has a shear modulus G2 � 43 GPa

and length L2 � 1.0 m. Ends A and C are fixed against rotation,

and then an external torque TB � 10 kN m is applied to the

shaft at joint B. (a) Determine T1 and T2, the internal

torques in segments AB and BC, respectively. (b) Determine

the maximum shear stress in each segment. (c) Finally, deter-

mine the maximum tensile stress in the shaft. (Hint: Recall

Section 4.4.)

�

P4.6-4 and P4.7-3

(1)
(2)

A
B

C

dodi

L2

L1

TB

P4.6-5

Prob. 4.6-6. A composite shaft of length L � 6 ft is made by

shrink-fitting a titanium-alloy sleeve (element 1) over an

aluminum-alloy core (element 2), as shown in Fig. P4.6-6.

The two-component shaft is fixed against rotation at end B,

and a torque TA � 20 kip � in. is applied at end A. (a)

Determine the maximum shear stresses (Tmax)1 in the
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titanium sleeve and (Tmax)2 in the aluminum core. (b)

Determine the angle of rotation at A, A.

(di)1 � d2 � 2.0 in.

(do)1 � 2.25 in.,G2 � 4 � 103 ksi,G1 � 6 � 103 ksi,

f

Prob. 4.6-11. Repeat all four parts of Prob. 4.6-10 if both the

rod and the tube are made of steel with shear modulus 

G1 � G2 � 11.0 � 103 ksi.

Prob. 4.6-12. The aluminum-alloy shaft AC in Fig. P4.6-12

(G � 26 GPa) has a 400-mm-long tubular section AB and an

800-mm-long solid segment BC. The shaft is subjected to a

10 kN � m external torque at section B, and it is fixed to rigid

supports at ends A and C. The diameters are (do)1 � d2 �
60 mm and (di)1 � 30 mm. (a) Determine T1 and T2, the

internal torques in the two segments. (b) Determine the

maximum shear stress in each segment. (c) Determine B,

the angle of rotation at joint B.

f

B

A L

sleeve
(1)

core
(2)

(di)1 = d2

(do)1 TA
φA

P4.6-6, P4.6-7, P4.6-8, P4.6-9, P4.7-4, 
and P4.7-5

Prob. 4.6-7. Solve Prob. 4.6-6 if, instead of being a solid core

with outer diameter d2 � 2.0 in., the inner element is tubular

with an outer diameter d2 � 2.0 in. and an inner diameter

(di)2 � 1.0 in.

Prob. 4.6-8. As illustrated in Fig. P4.6-8, a composite shaft of

length L is made by shrink-fitting a sleeve (element 1) over

a solid core (element 2).A torsional load TA is applied to the

shaft at end A, and end B is fixed against rotation. Let G2 

G1, and express your answers in terms of the shear-modulus

ratio G2/G1. Determine expressions for the ratio of diame-

ters (do/di)1: (a) if the torque TA is evenly divided between

the sleeve and the core, and (b) if the maximum shear stress

in the sleeve, (Tmax)1 is the same as the maximum shear stress

in the core, (Tmax)2.
DProb. 4.6-9. A composite shaft is made by shrink-fitting a

brass sleeve (G1 � 39 GPa) over an aluminum-alloy core

(G2 � 26 GPa). and the shaft is subjected to an end torque

TA, as shown in Fig. P4.6-9. The diameter of the aluminum

core is 50 mm. What thickness would be required for the

brass sleeve in order to reduce the angle of twist of the

composite shaft to one-half the angle of twist of the alu-

minum core alone, if the composite shaft and the all-

aluminum shaft are subjected to the same magnitude of

end torque, TA?

Prob. 4.6-10. A solid aluminum-alloy rod of diameter d1 �
1.0 in. is enclosed by a concentric brass tube of inner diame-

ter d2i � 1.5 in. and outer diameter d2o � 1.75 in., and both

are attached to a rigid support at end A and to a rigid flat

plate at end B. The rod and tube form a composite torsion

member of length L � 20 in.The shear moduli are G1 � 4.0 �
103 ksi and G2 � 5.6 � 103 ksi, respectively. A torque TB �
2500 lb in. is applied to the end plate at B. (a) Determine

the torques T1 and T2 in the rod and tube, respectively.

(b) Determine the maximum shear stresses �1 and �2 in the

rod and tube, respectively. (c) Determine the angle of rota-

tion, B, (in radians) of end B. (d) Finally, determine the tor-

sional stiffness kt of the composite torsion member.

f

�

T

A

L

d2i

d1

d2o

Rod (1)

Tube (2)
B

End
plate

P4.6-10 and P4.6-11

800 mm

10 kN · m

(1)
(2)

400 mm

(di)1

A
B

C

(do)1

d2

P4.6-12 and P4.7-2

Prob. 4.6-13. The uniform 1-in.-diameter steel shaft in Fig.

P4.6-13 (G � 12 � 106 psi) is supported by frictionless bear-

ings and is used to transmit torques from the gear at B to the

gears at A and C, as shown. Determine the maximum shear

stress in each of the two segments of the shaft: (a) if the rel-

ative rotation between gears A and C is A/C � A � C �
0, and (b) if the relative rotation between gears A and C is

A/C � A � C � 0.01 rad.fff

fff

(1)

(2) C

B
A

x

TA

TC

16 in.
2000 lb · in.

10 in.

φB

φC

φA

P4.6-13
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Prob. 4.6-14. The aluminum-alloy shaft AD in Fig. P4.6-14

(G � 3.8 � 103 ksi) has a 40-in.-long tubular segment AC
and a 30-in.-long solid segment CD, and it is fixed against ro-

tation at ends A and D. The shaft, whose respective diame-

ters are (do)1 � (do)2 � d3 � 2.5 in. and (di)1 � (di)2 � 2.0 in.,

is subjected to torsional loads at sections B and C, as shown

in the figure, (a) Determine the reaction torques at ends A
and D. (b) Determine the maximum shear stress in the shaft.

(c) Determine the angle of rotation at section C, 0.f

in segment AB and the maximum shear stress (�max)2 in

segment BC.

(TB)i � 820  lb � in., (TB)f � 7500  lb � in.

L2 � 40 in.,L1 � 60 in.,d � 1.5 in.,G � 3.8 � 103 ksi,

φC

30 in.

4 kip · in.
φB

4 kip · in.

(1)
(2)

(3)

20 in.
20 in.

di

A B
C

D

do

P4.6-14 and P4.7-11

Prob. 4.6-15. A uniform shaft with fixed ends at A and D is

subjected to external torques of magnitude T0 and 2T0, as

shown in Fig. P4.6-15. The diameter of the shaft is d, and its

shear modulus is G. (a) Determine expressions for the max-

imum shear stress in each of the three segments of the shaft:

(tmax)1, (tmax)2, and (tmax)3, (b) Determine an expression for

the angle of rotation at B, B.f

x
φB

φC

(1)
(2)

(3)

L/2

L/4
L/4A

B
C

T0
2T0

D

d

P4.6-15 and P4.7-10

STATICALLY INDETERMINATE 
TORSIONAL ASSEMBLAGES:
INITIAL STRESS

*Prob. 4.6-16. The uniform aluminum-alloy shaft in Fig.

P4.6-16 is attached to a rigid wall at end A and is welded to

a rigid flange at end C. (a) The holes in the flange were sup-

posed to align with holes tapped in the wall plate, but actu-

ally an initial external torque (TB)i must be applied in order

to perfectly align the holes in the flange with the holes in the

wall plate. By what angle (in degrees) are the flange and the

wall plate initially misaligned? (b) While the initial torque

(TB)i aligns the holes, bolts are inserted at C and securely

tightened. Subsequently an external torque (TB)f is applied

at B. Determine the resulting maximum shear stress (�max)1

▼

P4.6-16, P4.6-17, P4.7-7, and P4.7-8

(1)

(2)

A

B Cd TB

φB

L2

L1

DProb. 4.6-17. The uniform aluminum-alloy shaft in Fig.

P4.6-17 is attached to a rigid wall at end A and is welded to

a rigid flange at end C. (a) The holes in the flange were sup-

posed to align with holes tapped in the wall plate, but actu-

ally an initial external torque (TB)i must be applied in order

to rotate end C through an angle to per-

fectly align the holes in the flange with the holes in the wall

plate. What initial torque (TB)i (in kN � m) is required? (b)

While the initial torque (TB)i aligns the holes, bolts are in-

serted at C and securely tightened. Subsequently an external

torque (TB)f is applied at B. Determine the maximum torque

(TB)f that may be applied if the resulting maximum allow-

able shear stress in the shaft is �allow � 120 MPa.

G � 26 GPa, d � 50 mm, L1 � 2 m, L2 � 1 m

STATICALLY INDETERMINATE 
TORSIONAL ASSEMBLAGES:
DISPLACEMENT METHOD

Prob. 4.7-1. A stepped steel shaft AC (G � 12 � 106 psi) is

subjected to an external torque TB at B and is fixed to rigid

supports at ends A and C, as shown in Fig. P4.7-1 (see Prob.

4.6-1). (a) Using the Displacement Method, determine B,

the angle of rotation of the shaft at joint B. (b) Determine T1

and T2, the internal torques in segments AB and BC, respec-

tively. (c) Finally, determine the maximum shear stress in

each segment.

TB � 4000 lb in., d1 � 1.0 in., L1 � 10.0 in., d2 � 2.0 in.,

L2 � 20.0 in.

Prob. 4.7-2. The aluminum-alloy shaft AC (G � 26 GPa) in

Fig. P4.7-2 (see Prob. 4.6-12) has a 400-mm-long tubular

section AB and an 800-mm-long solid segment BC.The shaft

�

f

fC � 5 degrees

▼

MDS 4.9
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is subjected to a 10 kN m external torque at section B, and

it is fixed to rigid supports at ends A and C. The diameters

are (do)1 � d2 � 60 mm and (di)1 � 30 mm. (a) Using the

Displacement Method, determine B, the angle of rotation of

the shaft at joint B. (b) Determine T1 and T2, the internal

torques in segments AB and BC, respectively. (c) Finally, de-

termine the maximum shear stress in each segment.

Prob. 4.7-3. As illustrated in Fig. P4.7-3 (see Prob. 4.6-4), a

composite shaft of length L � L1 	 L2 is made by connect-

ing together at joint B two shafts of the same diameter d.

Shaft segment AB has a shear modulus G1, and segment BC
has a shear modulus G2. An external torque TB is applied to

the shaft at joint B, and ends A and C are fixed against rota-

tion. (a) Using the Displacement Method, determine an ex-

pression for B, the angle of rotation of the shaft at joint B.

(b) Determine expressions for T1 and T2, the internal

torques in segments AB and BC, respectively. (c) Finally, de-

termine the maximum shear stress in each segment.

Express all of your answers in terms of the given torque

TB and the physical parameters of the composite shaft: d, G1,

G2, L1, and L2.

Prob. 4.7-4. As illustrated in Fig. P4.7-4 (see Prob. 4.6-6), a

composite shaft of length L � 6 ft is made by shrink-fitting

a titanium-alloy sleeve (element 1) over an aluminum-alloy

core (element 2). The two-component shaft is fixed against

rotation at end B.The shear moduli are G1 � 6 � 103 ksi and

G2 � 4 � 103 ksi, respectively, and the diameters are (do)1 �
2.25 in., and (di)1 � d2 � 2.0 in. (a) Using the Displacement
Method, determine the angle of rotation at A, A, produced

by an applied torque TA � 20 kip � in. (b) Determine the

maximum shear stresses (�max)1 in the titanium sleeve and

(�max)2 in the aluminum core.
DProb. 4.7-5. A composite shaft is made by shrink-fitting a

brass sleeve (G1 � 39 GPa) over an aluminum-alloy core

(G2 � 26 GPa), and the shaft is subjected to an end-torque,

TA, as shown in Fig. P4.7-5 (see Prob. 4.6-6). The diameter of

the aluminum core is 50 mm. Using the Displacement
Method, determine the thickness that would be required for

the brass sleeve in order to reduce the angle of twist of the

composite shaft to one-half the angle of twist of the alu-

minum core alone, if the composite shaft and the all-

aluminum shaft are subjected to the same magnitude of end

torque, TA.

*Prob. 4.7-6. As illustrated in Fig. P4.7-6, a composite shaft

AC is made by shrink-fitting a titanium-alloy sleeve of

length L3 � 4 ft over segment BC of a 6-ft-long aluminum-

alloy rod.This makes a three-component shaft, which is fixed

f

f

f

� against rotation at ends A and C. The shear moduli are G1 �
G2 � 6 � 103 ksi and G3 � 4 � 103 ksi, respectively, and the

diameters and d1 � d2 � (di)3 � 2 in., and (do)3 � 2.5 in. (a)

Using the Displacement Method, determine the angle of ro-

tation at B, B, produced by an applied torque TB � 50 kip in.

(b) Determine the maximum shear stress (�max)1 in the alu-

minum segment AB, (�max)2 in the aluminum core segment

BC, and (�max)3 in the titanium sleeve BC.

STATICALLY INDETERMINATE TORSIONAL
ASSEMBLAGES: INITIAL STRESS

*Prob. 4.7-7. The uniform aluminum-alloy shaft in Fig. P4.7-7

(see Prob. 4.6-16) is attached to a rigid wall at end A and is

welded to a rigid flange at end C. (a) The holes in the flange

were supposed to align with holes tapped in the wall plate,

but actually an initial external torque (TB), must be applied

in order to perfectly align the holes in the flange with the holes

in the wall plate. By what angle (in degrees) are the flange

and the wall plate initially misaligned? (b) While the initial

torque (TB)i aligns the holes, bolts are inserted at C and se-

curely tightened. Subsequently an external torque (TB)f is

applied at B. Using the Displacement Method, determine the

resulting maximum shear stress (�max)1 in segment AB and

be maximum shear stress (�max)2 in segment BC.

G � 3.8 � 103 ksi, d � 1.5 in., L1 � 60 in., L2 � 40 in.

(TB)i � 820 lb in., (TB)f � 7500 lb in.

*Prob. 4.7-8. The uniform aluminum-alloy shaft in Fig. P4.7-8

(see Prob. 4.6-16) is attached to a rigid wall at end A and is

welded to a rigid flange at end C. (a) The holes in the flange

were supposed to align with holes tapped in the wall plate,

but actually an initial external torque (TB)i must be applied

in order to rotate end C through an angle to

perfectly align the holes in the flange with the holes in the

wall plate. What initial torque (TB)i (in kN � m) is required?

(b) While the initial torque (TB)i aligns the holes, bolts are

inserted at C and securely tightened. Subsequently an exter-

nal torque (TB)f is applied at B. Using the Displacement
Method, determine the maximum torque (TB)f that may be

applied if the resulting maximum allowable shear stress in

the shaft is �allow � 120 MPa.

G � 26 GPa, d � 50 mm, L � 2 m, L2 � 1 m

*Prob. 4.7-9. A torque TA is applied to gear A of the two-

shaft system in Fig. P4.7-9, producing a rotation A � 0.05 rad.

The shafts are made of steel (G � 80 GPa), and each has a di-

ameter of d � 32 mm.The shafts are supported by frictionless

bearings, and end D of shaft CD is restrained. (a) Using the

Displacement Method, determine the angle of rotation of gear

C and the angle of rotation at gear B. (b) Determine the inter-

nal torques in shafts (1) and (2). (c) Determine the maximum

shear stress in the two-shaft system.

f

fC � 5 degrees

��

�f

MDS 4.10

L1

L2 = L3
B

C

d2

d1

TB

(3)

A

(1)

P4.7-6

▼
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Prob. 4.7-10. A uniform shaft with fixed ends at A and D is

subjected to external torques of magnitude T0 and 2T0, as

shown in Fig. P4.7-10 (see Prob. 4.6-15). The diameter of the

shaft is d, and its shear modulus is G. (a) Using the

Displacement Method, determine expressions for the rota-

tion angles B at section B and C at section C. (b)

Determine expressions for the maximum shear stress in each

of the three segments of the shaft: (�max)1, (�max)2, and (�max)3.

Express all of your answers in terms of T0, L, d, and G.

*Prob. 4.7-11. The aluminum-alloy shaft AD in Fig. P4.7-11

(see Prob. 4.6-14) (G � 3.8 � 103 ksi) has a 40-in.-long tubu-

lar segment AC and a 30-in.-long solid segment CD, and it is

fixed against rotation at ends A and D. The shaft, whose re-

spective diameters are (do)1 � (do)2 � d3 � 2.5 in. and 

(di)1 � (di)2 � 2.0 in., is subjected to torsional loads at sec-

tions B and C, as shown in the figure. (a) Using the

Displacement Method, determine the rotation angles B at

section B and C at section C. (b) Determine the maximum

shear stress in the shaft.

POWER-TRANSMISSION SHAFTS

Prob. 4.8-1. A solid turbine shaft delivers 1000 hp at 60 rpm.

The diameter of the shaft is 8 in., its length is 4 ft, and it is

made of steel with a shear modulus of elasticity G � 11.2 �
103 ksi. (a) What is the value of the maximum shear stress

under the above operating conditions? (b) What is the angle

of twist between the two ends of the shaft?

Prob. 4.8-2. A solid circular shaft having a diameter d � 1.5

in. rotates at an angular speed of 100 rpm. If the shaft is

made of steel with an allowable shear stress of �allow � 8 ksi,

what is the maximum power, (hp), that can be delivered by

the shaft?

Prob. 4.8-3. A hollow bronze shaft (�allow � 100 MPa) has an

outside diameter of do � 60 mm and an inside diameter of di

� 50 mm. How much power, (kW), can be delivered by

this shaft rotating at a speed of 5 rev/s?

Prob. 4.8-4. A hollow drive shaft delivers 150 kW of power

to a rock crusher at a rotating speed of 5 rev/s. The shaft has

P

P

f

f

ff

an outer diameter of do � 120 mm and an inside diameter of

di � 100 mm, and it is made of steel with a shear modulus of

elasticity G � 80 GPa. (a) Determine the maximum shear

stress in the shaft under the above operating conditions. (b)

If the shaft is 3 m long, what is the angle of twist of the shaft?

Prob. 4.8-5. The rotary mower in Fig. P4.8-5 attaches at the

rear of a tractor and receives its power through a drive shaft

that connects the power take off (PTO) of the tractor to the

transmission at the center of the deck of the mower. The

drive shaft rotates at 540 rpm inside a tubular safety shield

and delivers 50 hp to the mower. If the drive shaft is a tubu-

lar steel shaft with outer diameter do � 2.00 in. and inner di-

ameter di � 1.675 in., what is the maximum shear stress in

the shaft at these operating conditions?

(1)

(2) D

B

A

TA

C

rC = 80 mm

rB = 140 mm 0.5 m

1.2 m

φA

φC

φB

P4.7-9

MDS 4.11–4.13
▼

U-joint
attaches to

tractor’s power
take off (PTO)

Drive shaft
(inside tubular
safety shield)

P4.8-5

DProb. 4.8-6. Power is delivered through a tubular steel

shaft of outer diameter do � 2.50 in. and inner diameter di �
2.25 in. What is the slowest angular speed (in rpm) at which

the shaft can be allowed to rotate if the allowable shear

stress in the shaft is 24 ksi and it is to deliver 200 kW of

power?
DProb. 4.8-7. A shaft is required to deliver 500 kW of power

at a rotational speed of 30 . (a) If the shaft is to be solid,

and made of bronze with an allowable shear stress of �allow �
50 MPa, what is the required diameter of the shaft (to the

nearest mm)? (b) What is the weight of a 1-m length of the

solid bronze shaft from Part (a)? The specific weight 

of the bronze is 80 kN/m3. (c) Determine (to the nearest

mm) the required outer diameter, do, of a tubular shaft made

of the same bronze material if the tubular shaft is to have an

inner diameter to outer diameter ratio of di /do � 0.6. (d)

Compare the weight of a 1-m length of this tubular shaft

with the weight of the 1-m length of solid shaft as deter-

mined in Part (b).
DProb. 4.8-8. A solid circular drive shaft 2 m long transmits

560 kW of power from the turbine engine of a helicopter 

to its rotor at 15 . If the shaft is steel, with shear modulus

G � 80 GPa and allowable shear stress �allow � 60 MPa, and

if the allowable angle of twist of the shaft is 0.03 rad,

determine the minimum permissible diameter of the drive

shaft.

rev
s

rev
sec
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Prob. 4.8-15. The solid steel shaft AD in Fig. P4.8-15 deliv-

ers 6 hp to the gear at B and 4 hp to the gear at D. The shaft

is supported by a frictionless bearing at C, and it rotates at

an angular speed of 1725 rpm. (a) If the maximum allowable

DProb. 4.8-9. The electric motor A in Fig. P4.8-9 provides

power to a pump through a belt drive from the pulley at B.

The shaft between the motor and the pulley delivers 2 hp to

the pulley and rotates at 1750 rpm. If the allowable shear

stress in the solid steel shaft is �allow � 10 ksi, what is the re-

quired diameter of the shaft (to the nearest 1/16 in.)?

DProb. 4.8-11. A tubular shaft of outer diameter do � 50

mm and inner diameter di � 40 mm drives a wind turbine

that is producing 7 kW of power. (Assume 100% efficiency

of the turbine.) If the allowable shear stress in the steel

shaft is �allow � 50 MPa, what is the slowest speed, �min, at

which the blades may be allowed to rotate? (Neglect

stresses in the shaft other than ones that are directly due to

torsion.)

P4.8-9

DProb. 4.8-10. The drive shaft of an inboard motor boat

(Fig. P4.8-10) is required to deliver 100 hp at 300 rpm. A

shaft is to be selected from the following group of available

shafts: A(doA � 1.900 in., diA � 1.610 in.), B(doB � 1.900 in.,

diB � 1.500 in.), C(doC � 1.900 in., diC � 1.202 in.). Select the

lightest shaft that meets an allowable shear stress require-

ment of �allow � 20 ksi.

Drive shaft

P4.8-10

DProb. 4.8-12. A hollow circular shaft is to be designed to

deliver 120 kW of power at a rotational speed of 60 The

allowable shear stress is 50 MPa, and the shaft is to be de-

signed so that the outside diameter and the inside diameter

have the ratio do/di � 1.25. Calculate the minimum allowable

outside diameter, and express your answer to the nearest

millimeter.
DProb. 4.8-13. A solid circular drive shaft 20 in. long trans-

mits 60 hp from a motorcycle’s transmission to its rear wheel

at 4600 rpm. If the shaft is made of steel with shear modulus

G � 11 � 103 ksi and allowable shear stress �allow � 10 ksi,

and if the allowable angle of twist of the drive shaft is 0.04

rad, determine the minimum permissible diameter of the

drive shaft. Express your answer to the nearest in.

Prob. 4.8-14. The solid steel shaft AD in Fig. P4.8-14 delivers

5.5 kW of power to the gear at B and 4.0 kW of power to the

gear at D. The shaft has a diameter of 7/8 in., is supported by a

frictionless bearing at C, and rotates at an angular speed of 

1725 rpm. Determine the maximum shear stress (�max), in the

shaft between the motor at A and the gear at B, and the 

maximum shear stress (�max)2 in the shaft BD between the two

drive gears.

1
16

rev
s .

A

L1

L2B

d
C

D

P4.8-14 and P4.8-15
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ωShaftTurbine

P4.8-11 and P9.4-12
A

B
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Prob. 4.9-4. See the problem statement preceding Prob. 4.9-1,

and use T � 800 kip in.�

Problems 4.9-1 through 4.9-7. For the thin-wall tubular
sections shown in Figs. P4.9-1 through P4.9-7; (a) deter-
mine the maximum shear stress in the cross section, and
(b) determine the value of the torsion constant, J.

▼

Prob. 4.9-1. See the problem statement above, and use T �
500 kip in.�

t = 0.25 in.

10 in.

20 in.

T

P4.9-1

Prob. 4.9-2. See the problem statement preceding Prob.

4.9-1, and use T � 5 kN m.�

t = 6 mm 120 mm

160 mm

T

P4.9-2

Prob. 4.9-3. See the problem statement preceding Prob. 4.9-1,

and use T � 5 kN m.� 

T

t = 9.5 mm

120 mm

r = 30 mm

r = 30 mm

P4.9-3

T

t = 0.5 in.

18 in.

r = 6 in.

P4.9-4

Prob. 4.9-5. See the problem statement preceding Prob.

4.9-1 and use T � 4 kN � m, a � 90 mm, b � 120 mm, c �
150 mm, t1 � 3 mm, and t2 � 5 mm.

b

T

c

a

a t1

t2

t2

t2

t1

Prob. 4.9-6. Repeat Prob. 4.9-5 using T � 500 kip � in., a �
9 in., b � 12 in., c � 15 in., t1 � 0.375 in., and t2 � 0.625 in.

Prob. 4.9-7. The “nose” of the cross section in Fig. P4.9-7 is

semielliptical. See the problem statement preceding Prob.

4.9-1 and use T � 800 N m.�

P4.9-5 and P4.9-6

t = 4 mm

T

72 mm36 mm

40 mm

P4.9-7

DProb. 4.9-8. A diamond-shaped torsion member has the

midline dimensions shown in Fig. P4.9-8 and is subjected to a

shear stress in the shaft is �allow � 40 MPa, what is the mini-

mum diameter of shaft that may be used? Give your answer

to the nearest millimeter that satisfies �allow. (b) For the shaft

determined in Part (a), determine the maximum shear stress

(�max)2 in the shaft BD between the two drive gears. (c)

Determine the angle of rotation (in degrees) between the

two gears if L2 � 0.5 m and the shear modulus of the steel

shaft is G � 76 GPa.

TORSION OF CLOSED, THIN-WALL MEMBERS
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Prob. 4.9-12. A 4-in.-square steel tube has a wall thickness 

t � 0.25 in. You are to compare the torsion behavior of the

square tube to that of a tube with circular cross section hav-

ing the same median-curve length (Lm � 16 in.). Use thin-

wall torsion theory to (a) determine the shear-stress ratio

�c/�s, where �c and �s are the maximum shear stresses in the

circular tube and the square tube, respectively, when both

members are subjected to a torque T � 80 kip in. (b)

Determine the ratio Jc /Js, where Jc and Js are the respective

circle and square area properties defined by the torsional

rigidity equation, Eq. 4.34.

�

t

2a

2b T

di

t

T

P4.9-9

torque T � 75 kip in. If the maximum allowable shear stress

in the cross section is �allow � 8 ksi, what is the minimum wall

thickness? Express your answer to the nearest in.1
16

�

P4.9-10 and P4.9-11

Prob. 4.9-10. A tubular shaft having an inside diameter of 

di � 2.0 in. and a wall thickness of t � 0.20 in., is subjected to

a torque T � 5 kip in. (Note: The wall thickness is one-

tenth of the inner diameter so that you can examine the

range of validity of thin-wall torsion theory.) Determine the

maximum shear stress in the tube: (a) using the exact theory

for torsion of circular shafts, and (b) using the (approximate)

thin-wall torsion theory of this section.

� t

Th

b

P4.9-13 and P4.9-14

*Prob. 4.9-13. A thin-wall tube has uniform thickness t and

cross-sectional dimensions b and h, measured to the median

line of the cross section, Let the length of the median curve,

Lm � 2b 	 2h, and the thickness t be constant (hence, the

weight will be constant), but let the ratio vary.

(a) Determine an expression that relates the maximum

shear stress in a rectangular tube to the ratio �. (b) From

your result in (a), show that the maximum shear stress will be

smallest when the tube is square (i.e., when � � 1).

a � b
h 
(b � h)

▼

303

4 in.4 in.

3 in.

3 in.

T

t

P4.9-8

Prob. 4.9-11. For the same tubular shaft of Prob. 4.9-10,

determine the angle of twist per unit length: (a) using the

exact theory for torsion of circular shafts, and (b) using the

(approximate) thin-wall torsion theory of this section. Let 

T � 5 kip in., as before, and let G � 4 � 103 ksi.�

4 in.

4 in. T

T

t = 0.25 in. t = 0.25 in.

d

P4.9-12

*Prob. 4.9-14. Repeat Prob. 4.9-13, but consider the angle of

twist, rather than maximum shear stress. That is, (a) deter-

mine an expression that relates the angle of twist in a rectan-

gular tube to the ratio �, and (b) show that the angle of twist

per unit length is smallest for a square tube.

TORSION OF NONCIRCULAR PRISMATIC BARS

Prob. 4.10-1. A torsion member with square cross section is

subjected to end torques, as shown in Fig. P4.10-1. Let 

d � 1.0 in., L � 20 in., G � 11 � 103 ksi, and T � 50 lb in.

(a) Determine the maximum shear stress in the shaft. (b)

�

Prob. 4.9-9. The torque tube in Fig. P4.9-9 has an elliptical

cross section. Express the shear stress on the cross section in

terms of the following parameters: T, a, b, and t. (See the Table

of Geometric Properties of Plane Areas inside the back cover.)
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Determine the angle of twist of the shaft. (c) Determine the

cross-sectional area of a circular shaft that would carry the

same torque as this square shaft without any increase in

maximum shear stress.

with width/thickness ratios d/t � 2.00 and d/t � 4.00, respec-

tively, where d and t are defined in Fig. P4.10-4.
DProb. 4.10-5. A torsion member with elliptical cross sec-

tion is subjected to end torques, as illustrated in Fig. P4.10-5.

Let a � 1.0 in., b � 0.5 in., L � 24 in., G � 11 � 103 ksi, and

T � 3000 lb � in. (a) Determine the maximum shear stress in

the shaft. (b) Determine the angle of twist of the shaft. (c)

Determine the cross-sectional area of the elliptical cross sec-

tion of this shaft. If the same torque T were to be applied to

a shaft with circular cross section having the same cross-

sectional area as this elliptical shaft, by what percent would

the maximum shear stress decrease?

L

d

t

T

T

P4.10-3 and P4.10-4

Prob. 4.10-2. Repeat Prob. 4.10-1 using d � 50 mm, L � 2 m,

G � 80 GPa, and T � 500 N m.

Prob. 4.10-3. A torsion member with solid rectangular cross

section is subjected to end torques T, as depicted in Fig.

P4.10-3. Let the cross-sectional area of the torsion member

be 5000 mm2, and let T � 2.0 kN � m, L � 2.0 m, and G �
25 GPa. (a) Determine the maximum shear stress in torsion

members having the two width/thickness ratios d/t �
2.00 and d/t � 4.00, respectively, where d and t are defined in

Fig. P4.10-3. (b) Determine the angle of twist for torsion

members having these two d/t ratios.

�

▼

Problems 4.10-8 through 4.10-10. The torsion of open,
thin-wall prismatic members, like angle sections and
channel sections, can be analyzed by using Eqs. 4.35 and
4.36, taking the dashed centerline length, as in Example
4.15, as the dimension d in the formulas.

DProb. 4.10-6. Repeat Prob. 4.10-5 using a � 40 mm, b �
30 mm, L � 2 m, G � 80 GPa, and T � 2.5 kN m.

Prob. 4.10-7. (a) Determine the ratio of the maximum shear

stress in a rectangular cross section to the maximum shear

stress in an elliptical cross section,

if

and if both torsion bars have the same cross-sectional area

and are subjected to the same torque. (b) Determine the ratio

of twist rates, ( /L)r/( /L)e for the same two torsion bars.

TORSION OF OPEN, THIN-WALL MEMBERS

ff

ad
t
b

rect

� aa
b
b

ell

� 2

(tmax)rect

(tmax)ell

�

L

d

d

T

T

P4.10-1 and P4.10-2

DProb. 4.10-4. A torsion member with solid rectangular

cross section is subjected to end torques T, as depicted in

Fig. P4.10-4. Let the cross-sectional area of the torsion mem-

ber be 4 in2, let L � 8 ft, and let G � 11 � 103 ksi. If the

allowable shear stress is �allow � 6 ksi, what is the maximum

allowable torque that can be applied to torsion members

L2b

2a

T

T

P4.10-5 and P4.10-6

Prob. 4.10-8. For the open, thin-wall angle section in Fig.

P4.10-8, (a) determine the maximum shear stress due to tor-

sion, and (b) determine the angle of twist of a torsion bar of

length L. Use G � 11 � 103 ksi. (You will have to use the
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values given in Table 4.3 to estimate � and 	 for the d/t ratio

of this cross section.)

INELASTIC TORSION OF CIRCULAR RODS

Prob. 4.11-1. A 3-in.-diameter solid circular shaft made of

elastic, perfectly plastic material is subjected to a torque T,

that produces partially plastic deformation with an elastic

core of radius rY � 0.5 in. (a) Sketch the shear-stress distri-

bution in the shaft. (b) Determine the torque required to

produce this partially plastic stress distribution. (c)

Determine the angle of twist of the shaft, which is 4 ft. long.

di

t

T di

t

T

(a) (b)

P4.10-10

Prob. 4.10-9. Repeat Prob. 4.10-8 for a channel-shaped tor-

sion member whose cross section is shown in Fig. P4.10-9.

Use G � 80 GPa.

L = 2 m

T

T

d = 50 mm

τ(MPa)

γ(rad)γY = 0.0016

τY = 124

(a) (b)

P4.11-3, P4.11-4, and P4.11-10

Prob. 4.11-2. For the shaft in Fig. P4.11-2. (a) determine the

value of the yield torque TY. (b) Determine the angle of twist,

, for the following values of torque, T: TY, 1.1 TY, 1.2 TY, and

1.3 TY. Sketch the T versus curve for 0 � T � 1.3TY.

(c) Determine the fully plastic torque, TP, for this shaft.

Prob. 4.11-3. A 50-mm-diameter shaft is made of elastic,

perfectly plastic material and is subjected to a torque 

T � 4 kN m. (a) Verify that this torque produces a partially-

plastic stress distribution, that is, show that TY �
4 kN m � TP. (b) Determine the radius, rY, of the elastic

core produced by the 4 kN m torque. (c) Determine the

angle of twist of this 2-m-long shaft.

�
�

�

f

f

Prob. 4.11-4. For the shaft in Fig. P4.11-4, (a) determine the

value of the yield torque, TY. (b) Determine the angle of twist,

, for the following values of torque, T: TY, 1.1 TY, 1.2 TY, and

1.3 TY. Sketch the T versus curve for 0 � T � 1.3TY. (c)

Determine the fully-plastic torque, TP, for this shaft.

*Prob. 4.11-5. A tubular shaft is made of elastic, perfectly

plastic material with shear modulus G � 6 � 103 ksi and

yield stress TY � 4 ksi. The dimensions of the shaft are: do �
1 in., di � 0.6 in., and L � 30 in. (a) Determine the yield

torque, TY, and the fully plastic torque. TP, for this shaft. (b)

f

f

305

Prob. 4.10-10. (a) A closed tubular shaft having an inside

diameter of di � 2.0 in. and a wall thickness of t � 0.125 in.

is subjected to a torque T � 5 kip � in. Using the (approxi-

mate) thin-wall torsion theory of Section 4.9, determine the

maximum shear stress in this closed, thin-wall tube. (b) If the

tubular shaft in Part (a) is slit longitudinally, it becomes an

open, thin-wall torsion member. Determine the maximum

shear stress in this torsion member.

0.5 in.

0.5 in.

7.5 in.

3.5 in.

T = 4000 lb · in.
L = 100 in.

T

P4.10-8

8 mm

8 mm

8 mm

68 mm

32 mm

T = 60 N · m
L = 4 m

T

P4.10-9

4 ft

T

T

d = 3 in.

τ(ksi)

γ(rad)γY = 0.0016

τY = 18

(a) (b)

P4.11-1 and P4.11-2

▼
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What percent of the cross-sectional area of the shaft has

yielded when T � 1.1 TY? (c) Determine the angle of twist

of the shaft when the torque is just enough to cause yielding

at the inner surface of the tubular shaft.

*Prob. 4.11-10. The solid circular shaft in Fig. P4.11-10 (see

Prob. 4.11-3) is subjected to a torque T that produces a twist

angle � 10� between the two ends of the shaft. (a) Determine

the torque required to produce this twist angle. (b) If the torque

determined in Part (a) is completely removed, what is the per-

manent angle of twist left in the shaft? (c) What is the residual

stress distribution in the shaft after the torque is removed?

*Prob. 4.11-11. A tubular shaft with dimensions do � 1 in., di

� 0.6 in., and L � 30 in. (see Prob. 4.11-5) is made of elastic,

perfectly plastic material with shear modulus G � 6 � 103 ksi

and yield stress �Y � 4 ksi,The shaft is subjected to a torque T
that is sufficient to cause yielding from rY � 0.4 in. to the outer

surface. (a) Determine the value of the torque T required to

produce this state of stress in the shaft. (b) What is the shear

strain at the outer surface for this loading? (c) If the torque

determined in Part (a) completely removed, what is the per-

manent angle of twist of the shaft? (d) Sketch the residual

stress distribution after removal of the original torque.

Indicate the value of the shear stress at the outer surface of

the tubular shaft and the shear stress at the inner surface.

*Prob. 4.11-12. A tubular shaft with dimensions do �
40 mm, di � 20 mm, and L � 1 m (see Prob. 4.11-5) is made

of elastic, perfectly plastic material with shear modulus G �
40 GPa and yield stress � 30 MPa. The shaft is subjected

to a torque T that is sufficient to cause yielding from rY �
15 mm to the outer surface. (a) Determine the value of the

torque. T, required to produce this state of stress in the shaft.

(b) What is the shear strain at the outer surface for this load-

ing? (c) If the torque determined in Part (a) is completely

removed, what is the permanent angle of twist of the shaft?

(d) Sketch the residual stress distribution after removal of

the original torque. Indicate the value of the shear stress 

at the outer surface of the tubular shaft and the shear stress

at the inner surface.

tY

f

rY

ri

ro

T

Elastic annulus

Yielded annulus

P4.11-7

*Prob. 4.11-6. A tubular shaft is made of elastic, perfectly-

plastic material with shear modulus G � 40 GPa and yield

stress �Y � 30 MPa. The dimensions of the shaft are: do �
40 mm, di � 25 mm, and L � 1 m. (a) Determine the yield

torque, TY, and the fully plastic torque, TP, for this shaft. (b)

What percent of the cross-sectional area of the shaft has

yielded when T � 1.1 TY? (c) Determine the angle of the

twist of the shaft when the torque is just enough to cause

yielding at the inner surface of the tubular shaft.

Prob. 4.11-7. Derive the formula, similar to Eq. 4.48, that re-

lates the partially plastic torque. T, to the outer radius, rY, of

the elastic core of an elastic, perfectly plastic tubular shaft

(Fig. P4.11-7) having outer radius ro, inner radius ri, and yield

stress in shear, rY.

γ (rad)
γY = 0.002

τY = 12

τ (ksi)

T

T

L = 18 in.d = 7/8 in.

P4.11-8 and P4.11-9

do
di

L

T

T

P4.11-5, P4.11-6, P4.11-11, and P4.11-12

Prob. 4.11-8. The two ends of a solid circular shaft of diam-

eter d � and length L � 18 in. are rotated with respect to

each other by exactly one revolution (i.e., � 2
 rad). The

shaft is made of elastic, perfectly plastic material with � ver-

sus curve as shown in Fig. P4.11-8b, (a) Determine the max-

imum shear strain for this loading condition. (b) Determine

the radius of the elastic core for this loading condition.

*Prob. 4.11-9. The two ends of the solid circular shaft in 

Fig. P4.11-9a are rotated relative to each other by an angle

of � 6�. The shaft is made of elastic, perfectly-plastic ma-

terial with versus � curve as shown in Fig. P4.11-9b. (a)

Determine the torque required to produce this twist angle.

(b) If the torque determined in Part (a) is completely

removed, what is the permanent angle of twist left in the

t

f

g

f

7
8  in

shaft? (c) What is the residual stress distribution in the shaft

after the torque is removed?
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Review
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Torsion of a circular member (rod, bar) has

three characteristics:

(1) the axis of the member remains

straight,

(2) plane cross sections remain plane and

remain perpendicular to the axis, and 

(3) radial lines remain straight and radial as

cross sections rotate about the axis.

The total angle of twist of a member un-

dergoing torsional deformation is given by

f

C H A P T E R  4  R E V I E W — T O R S I O N

4.2

Geometry of torsional deformation and 

Sign Conventions for torsion (Fig. 4.4)

f � �
L

0

 

df(x)

dx
  dx

t � Gg4.3

The shear stress—shear strain equation for

linearly elastic behavior is Hooke’s Law for
Shear.

The shear stress on the cross section at x of

a linearly elastic member undergoing tor-

sional deformation is given by the torsion
formula

4.3-3

4.3-7

4.3-17

In torsion, the shear strain � is related to

the rotation (x) of cross section x by the

strain-displacement equation
f

(4.1)g(x, r) � r 

df(x)

dx
γ

γmax = r

ρ
r

(a)

d  __
dx
φ

Torsional shear-strain distributions (Fig. 4.6)

Derive

Eq. 4.1

where is the

polar moment of inertia.

Ip � �
A

r2 dA

t(x, r) �
T(x)r

Ip(x)

The torque-twist equation for a linearly

elastic member un dergoing torsional de-

formation is given by

df

dx
�

T(x)

GIp(x)

(a) An example of torsional deformation.

TL
A

C

D*

F* r

D
B

F
E

φ(x)

φ(L) ≡ φL

x

L

Δxx

(b) Sign convention for internal (resisting) torque T(x).

x

+T(x)
+T(x)

+φ(x)

(c) Sign convention for angle of rotation φ(x).

x

+φ(x)

+φ(L)

x

γ

γmax = ro

ρ
ro

ri

(b)

d  __
dx
φ

The maximum normal stresses (tension and

compression) occur on planes at 45� to

the cross section, on which there is pure

shear due to torsion (Section 4.4):

x

n

θ

θ
τ

τ

A
T t

T

x

Maximum normal stresses due to torsion 

(Fig. 4.14b)

4.4-5

Pure shear due to torsion (Fig. 4.12a) 

τ

τ
τ

τ

45°4.4
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where

is the torsional stiffness coefficient

where

ft is the torsional flexibility coefficient

ft �
L

GIp
f � ftT

kt

kt �
GIp

L
T � ktf4.5

The torque-twist equation for linearly elas-

tic behavior of a uniform member undergo-

ing torsional deformation due to end

torques T can be stated in the form 

or in the form

A statically determinate system is one for

which all reactions and all internal torques

can be determined by the use of equilib-
rium equations (i.e., statics) alone.

A statically determinate assemblage of torsion

members (Fig. 4.18a)

An end-loaded uniform torsion member 

(Fig. 4.11)

x

L

T

T

GIp

x
+

φ ≡ φ(L) – φ(0)

4.5-1

4.5-15

T�P �

4.6

The power transmitted by a shaft that is

rotating at an angular speed � (rad/sec) is

given by

4.8-3

4.8-7

4.8-15

Analysis of a statically in determinate
system requires the use of (1) equilibrium
equations, (2) member torque-twist equa-
tions, and (3) geometry of deformation
equations.

Methods that may be used to analyze stati-

cally indeterminate torsion assemblages

are: the Basic Force Method (Section 4.6)

and the Displacement Method (Optional

Section 4.7).

A statically indeterminate assemblage 

of torsion members (Fig. 4.18b)

4.6-1

4.6-9

4.6-17

A shaft delivering power (Fig. 4.23)

A

B

Power-
transmission

shaft

C C

DT

T

T

T

φ

ω

Bφ

Sections 4.7 and 4.9–4.11 are all “optional” sections.
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EQUILIBRIUM OF BEAMS 5

5.1 INTRODUCTION

The behavior of slender members subjected to axial loading and to torsional loading

was discussed in Chapter 3 and Chapter 4, respectively. Now we turn our attention to

the problem of determining the stress distribution in, and the deflection of, beams.

A beam is a structural member that is designed to support transverse loads, that is, loads
that act perpendicular to the longitudinal axis of the beam.A beam resists applied loads
by a combination of internal transverse shear force and bending moment.

Figure 5.1 shows steel beams (lower right) and prestressed concrete beams (center) that

will support the bridge decks (roadways) and the vehicles that pass over the bridges.

FIGURE 5.1 Several
bridge beams during bridge

construction. (Courtesy Roy

Craig)

309
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Types of Beams; Loads and Reactions. Figure 5.2 illustrates beams with

several types of support and several types of loading. The force and moment com-

ponents at a support are called reactions since they react to the applied loads. As in

Fig. 5.2, beam reactions will be indicated by slashes across their arrow symbols to

distinguish reactions from applied loads.

Supports: Three types of support are shown in Fig. 5.2:

• Roller Support—prevents displacement in the transverse (i.e., y) direction,

but permits z-rotation and displacement in the axial direction; the reaction is

a force in the �y or �y direction. The support at end A in Fig. 5.2a is a roller

support.

• Pin Support—prevents displacement in the axial direction and in the trans-

verse direction, but permits z-rotation; the reaction is a force with both axial

and transverse components. The support at end B in Fig. 5.2a is a pin support.

• Cantilever Support (or Fixed End)—prevents displacement in the axial direc-

tion and in the transverse direction, and also prevents z-rotation; the reaction

consists of a force with both axial and transverse components, plus a couple.

The support at end C in Fig. 5.2b is a cantilever support.

Beams are normally classified by the manner in which they are supported.

• Simply Supported Beam—a beam with a pin support at one end and a roller

support at the other end. The beam in Fig. 5.2a is a simply supported beam.

Simply supported beams are statically determinate.

• Cantilever Beam—a beam with a cantilever support (i.e., fixed end) at one

end and free at the other end. The beam in Fig. 5.2b is a cantilever beam.

Cantilever beams are statically determinate.

310
Equilibrium of Beams

FIGURE 5.2 Examples of several types of beams with various types of loads.

A AB

p0

w0

w0PC

Ay

PB

MA

D BC

A

y

B
BA CC

(c) A two-span continuous beam. (d) A propped cantilever beam.

(a) A simply supported beam with
     distributed load.

(b) A cantilever beam with a couple at A
     and a concentrated force at B.

x

By

Cy
MC

Ay By Dy By

Bx

Ax

Cx

MA
Ay

Ax
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• Continuous Beam—a beam with a pin support at one end, a roller support

at the other end, and one or more intermediate roller supports. The beam

in Fig. 5.2c is a continuous beam. Continuous beams are statically indeter-

minate.

• Propped Cantilever Beam—a beam with a cantilever support (i.e., fixed end)

at one end and a roller at the other end. The beam in Fig. 5.2d is a propped

cantilever beam. Propped cantilever beams are statically indeterminate.

• Overhanging Beam—a beam that extends beyond the support at one end (or

at both ends). The beam in Fig. 5.2a would be an overhanging beam if the

roller support at end A were to be moved to the right, leaving a part of the

beam to the left of the roller as an overhang.

External Loads: The loads that are applied to beams may be classified as: distrib-
uted transverse loads, concentrated transverse forces, or couples. Figure 5.2a illus-

trates a simply supported beam with distributed loading; a cantilever beam with

a concentrated force at B and a concentrated couple at A is shown in Fig. 5.2b.

Since axial forces produce axial displacement (Chapter 3), not bending, axial

forces will not be included among the types of loads applied to beams in the pres-

ent chapter. Chapters 9 and 10 consider cases of combined axial loading and

bending.

Stress Resultants—Bending Moment and Transverse Shear. How does

a beam respond to these external loads, and how does it transmit these loads to its

supports? Let us consider a simple example, the handle of the shovel in Fig. 5.3a,

and let us perform three equilibrium “experiments.” The two hands of a worker

are holding the shovel in a horizontal position. To simplify the discussion, let us as-

sume that the weight of the shovel handle is negligible in comparison with the

weight W of the shovel blade and its contents, and that the forces RA and RB of the

hands on the shovel handle are vertical concentrated forces, as shown in the free-

body diagram in Fig. 5.3b. From this free-body diagram, F � 0 and ( M)A � 0,

we get

The three experiments are labeled E1, E2, and E3.

E1. For the first experiment move the hand at B (i.e., reaction force RB) toward

end C of the shovel handle, that is, let a S L. Then,

RA S 0, RB S W, with RBa � WL � const

In this experiment, we would eventually need no force at A, and the hand

at B would be directly under the load W.

E2. For the second experiment move the hand at B (i.e., reaction force RB)

toward end A of the shovel handle, that is, let a S 0. Then,

RA S , RB S , with RBa � WL � const

In this experiment, both RA and RB would get quite large, much larger than

W, but the moment RBa would still remain the same.

��

RB � W aL
a
bRA � W aL

a
� 1b,

©©
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E3. Finally, for the third experiment consider the free-body diagrams in Fig.

5.3c, so we can determine what internal stress resultants on a cross section

are required for equilibrium. (Recall that this procedure is called the

method of sections.) Imagine that the shovel handle is cut just to the right

of B. From the two free-body diagrams in Fig. 5.3c we see that:

• A transverse shear force V, of magnitude W, is required to satisfy equi-

librium in the vertical direction.

• There can be no net horizontal force on the cross section, since there are

no horizontal external loads on either free body in Fig. 5.3c. Therefore,

C � T.

• Finally, the cross section itself must supply a couple of magnitude

W(L � a). This couple is called the bending moment M. To form this

couple there must be equal-and-opposite horizontal forces C � T that

act on the cross section, with a moment arm b L, such that

Therefore, within the depth of the cross section there must be both com-

pressive normal stresses and tensile normal stresses, with the magnitude

C � T � W aL � a
b
b

V

312
Equilibrium of Beams

FIGURE 5.3 A shovel handle used to illustrate a beam.

RA

RB = RA + W

RB = RA + W

  A free-body diagram of the entire shovel.(b)

  A shovel supported by a worker’s hands.(a)

a

L

A

A
b

B C

W

  Free-body diagrams showing stress resultants
  at a cross section of the handle.

(c)

RA

C

C

TB

a

W

V = W

L – a
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Consider now the simply supported beam in Fig. 5.2a. The downward distrib-

uted load gives rise to upward reactions at the supports at A and B. The roller sym-

bol at A implies that the reaction force can have no horizontal component. If we

pass an imaginary cutting plane at C, as indicated in Fig. 5.2a, and we draw separate

free-body diagrams of AC and CB (Fig. 5.4), we see that a transverse shear force VC

and a bending moment MC must act on the cross section at C to maintain the force

equilibrium and moment equilibrium of these two adjoining free bodies. Newton’s
Law of action and reaction determines the relationship of the directions of VC and

MC on the two free-body diagrams.

The internal stress resultants that are associated with bending of beams are

shown in Fig. 5.5 and are defined by the following equations:

(5.1)

 M(x) � ��
A

ysx(x, y)dA

 V(x) � ��
A

txy(x, y)dA

313
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A

Ay By

B

w0 MCMC

VCVC

C C

Bx = 0

xC L – xC

FIGURE 5.4 The transverse shear force VC and bending moment MC at cross section C.

Stress
Resultants

FIGURE 5.5 Definition of stress resultants—transverse shear force V(x) and bending
moment M(x).

y

z

x
V

M

y

z

dA σx

τxy

x

y

of the resultant compressive force C and the resultant tensile force T
being much greater than the external load W.

Let’s estimate the magnitude of RA, RB, and C � T for the shovel in

Fig. 5.3a. Let W � 12 lb, L � 50 in., a � 10 in., and b � 1 in. Then, RA �
48 lb, RB � 60 lb, and C � T � 480 lb. If a were to be reduced to 5 in.,

then RB would be 120 lb and C � T would be 540 lb. As you can imagine,

few workers would hold the shovel with a � 10 in..!

In Chapter 6 we will determine the distribution of normal stress,

whose resultant is the bending moment M, and the distribution of shear

stress, whose resultant is the transverse shear force V.
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The sign conventions for the internal stress resultants in beams are illustrated in

Fig. 5.6. The sign conventions may be stated in words as follows:

• A positive shear force, V, acts in the �y direction on a �x face.1

• A positive bending moment, M, makes the �y face of the beam concave.

Figures 5.6b and 5.6c illustrate the physical meaning of positive shear force and

positive bending moment, while Fig. 5.6d summarizes the sign conventions for the in-

ternal stress resultants in beams. It is very important to observe these sign conventions
for V and M, because equations will be developed to relate the stress distribution in

beams and the deflection of beams to these two stress resultants.

The discussion of beams is divided into three chapters. In the present chapter we

concentrate on equilibrium of beams, and we solve for the shear force and bending mo-

ment in various types of beams subjected to various loading conditions. In Chapter 6

we introduce displacement assumptions that permit us to determine the normal-stress
distribution associated with the bending moment M; then we determine the shear-stress
distribution associated with the transverse shear force V. Finally, in Chapter 7 we solve

for the deflection of beams, including statically indeterminate beams.

314
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FIGURE 5.6 The sign
convention for internal stress

resultants V(x) and M(x).

y

M(x)

V V

V

V(x)

V M M M M

V(x)

M(x)

x

x

y

x

x

(a) Positive V and M on section "x."

(d) Positive V and M.(b) Positive shear. (c) Positive moment.

+x face +y face

+ + +

1Note that positive V acts in the �y direction. Although it might seem to be more consistent to define pos-

itive shear force in the same direction as positive shear stress, �xy, the sign convention adopted here is used

almost universally, not only in texts on mechanics of deformable bodies but also in texts on statics and texts

on structures. The justification for this shear-force sign convention is not only its widespread adoption, but

also the simplification that it introduces in the drawing of shear and moment diagrams (Section 5.4).

5.2 EQUILIBRIUM OF BEAMS USING FINITE 
FREE-BODY DIAGRAMS

To determine the stress distribution in a beam or to determine the deflected shape

of a beam under load, we need to consider equilibrium, material behavior, and

geometry of deformation. In the remainder of Chapter 5 we will concentrate on

equilibrium of beams. Using the method of sections, we will draw free-body

diagrams and write equilibrium equations in order to relate the shear-force and
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bending-moment stress resultants on beam cross sections to the external loads

acting on the beam. Several examples that illustrate the use of finite-length free-

body diagrams are given in this section. In Section 5.3 we will employ infinitesimal

free-body diagrams, and in Sections 5.4 and 5.5 shear and moment diagrams are

discussed. Finally, in Section 5.6 discontinuity functions are used to represent loads,

shear, and moment.

315
Equilibrium of Beams Using
Finite Free-Body Diagrams

E X A M P L E  5 . 1

The cantilever beam AD in Fig. 1 is subjected to a concentrated force of

5 kN at C and a couple of 4 kN � m at D. Determine the shear VB and

bending moment MB at a section 2 m to the right of the support A.

Plan the Solution We can use either a free-body diagram of AB or a

free-body diagram of BD. Since the former would require us to compute

the support reactions at A, we will, instead, use a free-body diagram of

BD.

Solution Figure 2 is a free-body diagram of BD.The shear force VB and

bending moment MB are shown in the positive sense according to the

sign convention in Fig. 5.6.

Ans.

Ans.

Review the Solution To satisfy force and moment equilibrium of the

cantilever beam, there are internal stress resultants at B as shown in 

Fig. 3. As a check, we should be able to satisfy M � 0 about any point,

for example point C.

YesIs aaMb
C

� 1 kN � m � (5 kN)(1 m) � 4 kN � m � 0?

©

MB � 1 kN � m

MB � (5 kN)(1 m) � 4 kN � m � 0aaMb
B

� 0:

VB � �5 kN

VB � 5 kN � 0�ca Fy � 0:

Fig. 2 A free-body diagram.

Fig. 1

Fig. 3 A free-body diagram.

A B C

4 kN·m

5 kN

D

2 m

3 m 3 m

x

y

B C
VB

MB

4 kN·m

5 kN

D

1 m 3 m

B C
4 kN·m1 kN·m

5 kN

5 kN

D

1 m 3 m
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In the preceding example, the shear force and bending moment were required

at a specific cross section. Using a finite free body permits these values to be deter-

mined directly from the corresponding equilibrium equations. The finite-free-body

approach is also useful when expressions for V(x) and M(x) are required over some

portion of the beam. Example 5.2 illustrates this type of problem and also illustrates

a way to handle relatively simple distributed loads.

316
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E X A M P L E  5 . 2

The simply supported beam AC in Fig. 1 is subjected to a distributed

downward loading as shown. The load varies linearly between B and C.

(a) Determine the reactions at A and C, (b) determine expressions for

V(x) and M(x) for 0 � x � 6 ft, and (c) determine expressions for V(x)

and M(x) for 6 ft � x � 12 ft.

Plan the Solution By using a free-body diagram of the entire beam AC,

we can determine the reactions at A and C.We will need to make a “cut”

between A and B to determine the shear force and bending moment re-

quired in Part (b), and we will need to make a “cut” between B and C to

answer Part (c).The distributed loads can be replaced, on each free-body

diagram, by their resultants.

Solution (a) Determine the reactions. On the free-body diagram in Fig.

2, the resultants of the uniform distributed load on AB and the linearly

varying distributed load on BC are shown with dashed-arrow symbols.

The reactions at A and C can now be determined from three equilibrium

equations.

Ans. (a)

Ans. (a)

Ans. (a)

(Note: From now on we will ignore axial reactions and internal axial

forces on beams that have no axial applied loads.)

Before going on to Parts (b) and (c), we should check the above

answers.

Is 220 � 140 � 240 � 120 � 0? Yes.

(b) Determine expressions for V(x) and M(x) for 0 � x � 6 ft. To do

this, we can make a cut between A and B and designate this portion

“Interval 1,” giving the free-body diagram in Fig. 3. Let us use the

�ca Fy � 0:

Cx � 0�S a Fx � 0:

Ay � 220 lb

Ay(12 ft) � (240 lb)(9 ft) � (120 lb)(4 ft) � 0aaMb
C

� 0:

Cy � 140 lb

(240 lb)(3 ft) � (120 lb)(8 ft) � Cy(12 ft) � 0aaMb
A

� 0:

Fig. 3 A free-body diagram for
Interval 1.

Fig. 2 A free-body diagram 
of beam AC.

40 lb/ft

6 ft 6 ft

A

x

C
B

40 lb/ft

6 ft

2 ft3 ft

6 ft

A
x

y

C Cx

Ay Cy

B

1–
2
(40)(6) = 120 lb

40(6) = 240 lb

220 lb

x

x

y

M1

V1

40x

a
x/2

Fig. 1
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symbols V1 and M1 for expressions that are valid in this interval. The

resultant of the uniform distributed load is shown as a dashed arrow.The

shear and moment are shown in the positive sense according to the sign

conventions of Fig. 5.6.

Ans. (b)

Ans. (b)

(c) Determine expressions for V(x) and M(x) for 6 ft � x � 12 ft. To do

this, we can take either a free-body diagram from A to a cut between B
and C, or a free-body diagram from the cut to the right end, C. The lat-

ter, which is shown in Fig. 4, will be easier because we will then only have

to deal with a single triangular load.

Ans. (c)

Ans. (c)

Review the Solution We have already, in Part (a), performed an equi-

librium check on the reactions. Since there is no concentrated transverse

load or couple at B, we should have V1(x � 6 ft) � V2(6 ft) and M1(6 ft) �
M2(6 ft).

 M2(6 ft) � 140(6) �
10

9
 (6)3 � 600 lb � ft � M1(6 ft)

 M1(6 ft) � 220(6) � 20(6)2 � 600 lb � ft

 V2(6 ft) � �140 �
10

3
 (6)2 � �20 lb � V1(6 ft)

 V1(6 ft) � 220 � 40(6) � �20 lb

6 ft � x 6 12 ftM2 � c140 (12 � x) �
10

9
 (12 � x)3 d  lb � ft,

M2 � c 40

12
 (12 � x)2 lb d ca12 � x

3
b ft d � (140 lb)[(12 � x)ft] � 0

aaMb
b

� 0:

6 ft � x 6 12 ftV2 � c�140 �
10

3
 (12 � x)2 d lb,

V2 �
40

12
 (12 � x)2 lb � 140 lb � 0�ca Fy � 0:

0 6 x � 6 ftM1 � (220x � 20x2) lb � ft,

(220 lb)(x ft) � (40x lb)(x
2 ft) � M1 � 0aaMb

a
� 0:

0 6 x � 6 ftV1 � (220 � 40x)lb,

220 lb � (40x)lb � V1 � 0�ca Fy � 0:

Fig. 4 A free-body diagram for

Interval 2.

x (12 – x)

x

y

M2

V2

b

1–
2
(12 – x)[40(         )]

12 – x–––––
6

12 – x–––––
6

12 – x–––––
3

40(        )

(        )

140 lb
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In Sections 5.4 and 5.5 shear and moment diagrams will be used to graphically

represent V(x) and M(x).

In both Example 5.1 and Example 5.2 it was possible for us to solve the equilib-

rium equations and to determine values of (or expressions for) shear and moment,

since in each case the beam is statically determinate. The next example illustrates

the type of equilibrium results that are obtained for statically indeterminate beams.

318
Equilibrium of Beams

E X A M P L E  5 . 3

The propped cantilever beam AC in Fig. 1 has a couple applied at its

center B. Determine expressions for the reactions (i.e., the shear force

and bending moment) at C in terms of the applied couple M0 and the re-

action at A.

Plan the Solution A free-body diagram of the whole beam will permit

us to relate the reactions at C to the reaction at A.

Solution

Ans.

Ans.

Review the Solution The results above are typical of statically indeter-
minate problems, that is, problems where the equations of statics (i.e.,

equilibrium) are not sufficient to determine all of the unknowns. Here

we have three unknowns, but only two equilibrium equations, other than

the trivial one for horizontal equilibrium. Therefore, two reactions can

be written in terms of the third reaction (here Ay). This one is called a

redundant. That is, the support at A is not essential to prevent collapse of

the beam.

 MC � AyL � M0

 AyL � M0 � MC � 0aaMb
C

� 0:

 Cy � �Ay

 Ay � Cy � 0�ca Fy � 0:
Fig. 1

Fig. 2 A free-body diagram 
of beam AC.

M0
A

CB

L /2 L /2

Ay CyL /2 L /2

x

y

MCM0
A C

B

Just as for statically indeterminate axial deformation and torsion problems,

in order to solve statically indeterminate beam problems we must consider the de-

formation of the beam. Statically indeterminate beam problems are examined in

Chapter 7, Deflection of Beams.

5.3 EQUILIBRIUM RELATIONSHIPS AMONG LOADS, 
SHEAR FORCE, AND BENDING MOMENT

In the previous section we used finite free-body diagrams to determine values of

shear force and bending moment at specific cross sections, and to determine expres-

sions for V(x) and M(x) over specified ranges of x. Here we use infinitesimal free-
body diagrams to obtain equations that relate the external loading to the internal

shear force and bending moment. These expressions will be especially helpful in
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Section 5.5, where we discuss shear and moment diagrams. In addition to the sign

conventions for shear force and bending moment, given in Fig. 5.6, we need to adopt

a sign convention for external loads (Fig. 5.7).

• Positive distributed loads and positive concentrated loads act in the �y direc-

tion (e.g., loads p(x) and P0 in Fig. 5.7).

• A positive external couple acts in a right-hand-rule sense with respect to the

z axis, that is, counterclockwise as viewed in the xy plane (e.g., the external

couple M0 in Fig. 5.7b).

First, let us consider a portion of the beam where there are no concentrated

external loads, and let us establish equilibrium equations for an infinitesimal free-

body diagram. Take the segment of beam from x to (x � �x) in Fig. 5.7a, as redrawn

in Fig. 5.8a. For equilibrium of the free body in Fig. 5.8a.

V(x) � p(x) �x � O (�x2) � V(x � �x) � 0

where O(	 	 	) means “of the order of,” and Collecting terms and dividing

by �x we get

By taking the limit as �x S 0, we get

(5.2)
dV
dx

� p(x)

V(x � ¢x) � V(x)

¢x
� p(x) � O(¢x)

¢p � ¢x.

a Fy � 0:�c

319
Equilibrium Relationships

Among Loads, Shear Force,
and Bending Moment

FIGURE 5.8 Infinitesimal
free-body diagrams.

P0 M0

(a) General FBD. (b) Shear-jump “FBD.” (c) Moment-jump “FBD.”

Δ x

VA–

xA

VA– + ΔVA

M(x)

p(x)

x

Δ p

V(x) V(x + Δ x)

M(x + Δ x)

A B

xB

MB– + ΔMBMB–

C

FIGURE 5.7 The sign convention for external loads on a beam.

y
P0

x

p(x) = force per unit length

(a)  Distributed load. (b)  Concentrated force and couple.

x
Δx

x

xA

xB

A B

M0
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since the limit of the O(�) term is zero. To satisfy moment equilibrium for the free

body in Fig. 5.8a, we can take moments about point C at (x � �x).

Dividing through by �x and taking the limit as �x S 0, we obtain

(5.3)

Wherever there is an external concentrated force, such as P0 in Fig. 5.7b, or a

concentrated couple, such as M0 in Fig. 5.7b, there will be a step change in shear or

moment, respectively. From the partial free-body diagram in Fig. 5.8b (moments

have been omitted for clarity),

(5.4)

where is the (internal) shear force just to the left of the point xA where P0 is 

applied. That is, a concentrated force P0 at coordinate xA will cause a step change 

VA in shear having the same sign as P0.

An external couple M0 at coordinate xB causes a step change in the moment at

xB. From Fig. 5.8c (shear forces have been omitted for clarity),

or

(5.5)

Equations 5.2 and 5.3 are differential equations relating the distributed load

p(x) to the shear force V(x), and the shear force V(x) to the bending moment M(x).

Let x1 � x � x2 be a portion of the beam that is free of concentrated forces or

couples (Fig. 5.9). We can integrate Eq. 5.2 over this portion of the beam to get

�
x2

x1

dV
dx

dx � V2 � V1 � �
x2

x1

p(x)dx

¢MB � �MB

MB� � (MB� � ¢MB) � M0 � 0aaMb
B

� 0:

¢

VA�

¢VA � P0

VA� � (VA� � ¢VA) � P0 � 0a Fy � 0:�c

dM
dx

� V(x)

M(x) � M(x � ¢x) � p(x)
(¢x)2

2
� O(¢p � ¢x2) � V(x)¢x � 0

aaMb
C

� 0:

320
Equilibrium of Beams

FIGURE 5.9 A free-body
diagram of a finite portion of

a beam.

y

x

p(x)

x
x1

x2

M2M1

V2
V1
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or

(5.6)

Similarly, from Eq. 5.3,

(5.7)

Equations 5.6 and 5.7 can be stated in words as follows:

• The change in shear from Section 1 to Section 2 is equal to the area under
the load curve from 1 to 2. (The “area” that results from negative p(x) is

negative.)

• The change in moment from Section 1 to Section 2 is equal to the area under
the shear curve from 1 to 2. (The “area” that results from negative V(x) is

negative.)

Equations 5.2 through 5.7 will be very useful to us in Sections 5.4 and 5.5, where

we draw shear and moment diagrams. And we can employ modifications of Eqs. 5.6

and 5.7 to determine expressions for V(x) and M(x). Thus,

(5.8)

and

(5.9)

Equations 5.2 through 5.9 will be used extensively in Section 5.5 in construct-

ing shear and moment diagrams (Examples 5.7 through 5.9). Also, whenever shear

and moment expressions must be obtained for a beam with a distributed load other

than a simple uniform load or a triangular distributed load, it is much easier to use

Eqs. 5.2 through 5.9 than to use a finite free-body diagram, as is illustrated in

Example 5.6.

M(x) � M1 � �
x

x1

V(j) dj

V(x) � V1 � �
x

x1

p(j) dj

M2 � M1 � �
x2

x1

V(x) dx

V2 � V1 � �
x2

x1

p(x) dx

321
Shear-Force and Bending-

Moment Diagrams:
Equilibrium Method

In Example 5.2 we obtained expressions for V(x) and M(x) for a simply sup-

ported beam with distributed loading. However, to design a beam (i.e., to select a

beam of appropriate material and cross section) we need to ask questions like

“What is the maximum value of the shear force, and where does it occur?” and

“What is the maximum value of the bending moment, and where does it occur?”

These questions are much more readily answered if we have a plot of V(x) and a

plot of M(x). These plots are called the shear diagram and the moment diagram,
respectively.

5.4 SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS:
EQUILIBRIUM METHOD
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In Sections 5.4 and 5.5, two methods for constructing shear and moment dia-

grams are described:

• Method 1—Equilibrium Method - (Section 5.4): Use finite free-body dia-

grams or Eqs. 5.8 and 5.9 to obtain shear and moment functions, V(x) and

M(x); then plot these expressions.

• Method 2—Graphical Method - (Section 5.5): Make use of Eqs. 5.2 through

5.7 to sketch V(x) and M(x) diagrams (see Table 5.1).

As you study the example problems in these two sections, observe that maxi-
mum positive and negative bending moments can occur at any of the following cross
sections of a beam: (1) a cross section where the shear force is zero (Examples 5.4

and 5.9); (2) a cross section where a concentrated couple is applied (Examples 5.5,

5.6, and 5.8); (3) a cross section where a concentrated load is applied and where the

shear force changes sign (Example 5.7); and (4) a point of support where there is a

reaction force and where the shear force changes sign (Example 5.9).

The following examples illustrate the two procedures. Examples 5.4 through 5.6 

illustrate the Equilibrium Method; Examples 5.7 through 5.9 illustrate the Graphical
Method.A third method, the Discontinuity-Function Method, is presented in Section 5.6.

Shear-Force and Bending-Moment Diagrams: Equilibrium Method.
Examples 5.4 through 5.6 illustrate the Equilibrium Method for constructing shear

and moment diagrams.

322
Equilibrium of Beams

E X A M P L E  5 . 4

Figure 1 shows the simply supported beam of Example 5.2, including the

reactions.The expressions for V(x) and M(x) obtained in Example 5.2 are

(a) Using the above expressions for V(x) and M(x), plot shear and

moment diagrams for this simply supported beam. (b) Determine the

location of the section of maximum bending moment, and calculate the

value of the maximum moment.

6 � x 6 12 ftM2 � [140(12 � x) � 10
9 (12 � x)3] lb � ft,

0 6 x � 6 ftM1 � (220x � 20x2) lb � ft,

6 � x 6 12 ftV2 � [�140 � 10
3 (12 � x)2] lb,

0 6 x � 6 ftV1 � (220 � 40x)lb,

Plan the Solution It is straightforward to plot the shear and moment

diagrams from the given expressions (e.g., using a computer). From the

Fig. 1

40 lb/ft

6 ft

220 lb 140 lb

6 ft

A

x

C
B

x
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shear diagram, the location of the section where V(x) � 0 can be deter-

mined.Then the appropriate moment equation can be used to determine

the value of the moment at this critical section. Since there is more load

over the left half of the beam than over the right half, the maximum mo-

ment should occur to the left of x � 6 ft.

Solution (a) Plot the shear diagram and the moment diagram. Figure 2

shows the plots of shear and bending moment.

Fig. 2 Shear and moment diagrams.

V(lb)

M(lb·ft)
Mmax = 605 lb·ft

x(ft)

x(ft)

220

–140

126

5.5

126

The shear
diagram.

(a) 

The moment
diagram.

(b) 

(b) Determine the maximum bending moment. The maximum moment

occurs where the shear vanishes. From the shear diagram and the equa-

tion for V1(x), it can be observed that V(x) � 0 in the interval 0 � x � 6 ft.

Therefore,

V1(xm) � 220 � 40xm � 0 S xm � 5.50 ft

Then, the maximum moment is

Mmax � M1(5.50 ft) � 605 lb � ft Ans. (b)

Review the Solution The downward load on this simply supported

beam bends it downward, so it is concave upward everywhere. This is

consistent with the fact that the bending moment is positive for the en-

tire length of the beam. As expected, since there is more load over the

left half of the beam than over the right half, the maximum moment does

occur to the left of x � 6 ft. This is an example of a maximum moment

that occurs where V � dM/dx � 0.

Note how much easier it is to get a “feel” for the distribution of shear force and

bending moment in a beam from shear-force and bending-moment diagrams than it

is from the shear and moment functions alone.

323

c05EquilibriumOfBeams.qxd  9/8/10  9:33 PM  Page 323



Fig. 3 The shear diagram and the
moment diagram.

Fig. 2 A free-body diagram.

E X A M P L E  5 . 5

Derive expressions for V(x) and M(x) for the cantilever beam with lin-

early varying load shown in Fig. 1. Use these expressions to plot shear

and moment diagrams for this beam.

Fig. 1

y

A B
x

p(x) p0

L

x

Plan the Solution We can use a finite free-body diagram to determine

the required expressions for V(x) and M(x).

Solution The triangle in the free-body diagram in Fig. 2 is similar to the

triangle in the problem statement; so, by similar triangles,

Ans.

Ans.

To plot these expressions for the shear force V(x) and bending mo-

ment M(x), we first calculate V(L) and M(L). Figure 3 shows the plots

of V(x) and M(x).

Review the Solution The shear is positive everywhere, as we expect

from the free-body diagram.The maximum shear occurs at the cantilever

support at B and is equal to the total area under the load curve in Fig. 1.

The upward load will bend the beam upward, so it will be concave

upward everywhere. This is consistent with the fact that the bending

moment is positive for the entire length of the beam. The maximum

bending moment occurs at B. Finally, the shear and moment have the

proper dimensions, (F) and (F � L), respectively.

M(L) �
p0L2

6
V(L) �

p0L

2
,

M(x) �
p0x3

6L

[p(x)]ax
2
b ax

3
b � M(x) � 0aaMb

a
� 0:

V(x) �
p0x2

2L

ax
2
b p(x) � V(x) � 0a Fy � 0:

p(x)

x
�

p0

L
S p(x) � a x

L
b p0
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0.25

0.50

0.75
Cubic
curve

(b) The moment diagram.

1.00

0.00
0.2 0.80.4 1.00.6

x/L

6M(x)–––––
p0L2

0.25

0.50

0.75 Quadratic
curve

(a) The shear diagram.

1.00

0.00
0.2 0.80.4 1.00.6

x/L

2V(x)–––––
p0L

y

x

p(x)
p(x)

M(x)

V(x)
x

2x––
3

x–
2

a
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Fig. 1 An airplane wing.

Fig. 2 A free-body diagram.

E X A M P L E  5 . 6

A cantilever airplane wing (represented as a beam in Fig. 1) has a distrib-

uted load given by

p(x) � p0 c1 � a x
L
b3 d

Derive expressions for V(x) and M(x) for the cantilever wing. Use these

expressions to plot shear and moment diagrams for this wing.

Plan the Solution It would be difficult to use a finite free-body diagram

to determine the required expressions for V(x) and M(x), as was done in

Example 5.4, since the load is not represented by a simple expression.

Therefore, we will make use of Eqs. 5.8 and 5.9 to obtain expressions for

V(x) and M(x). First, however, it is a good idea to draw a free-body diagram

to define terms.

Solution Figure 2 shows a free-body diagram of the wing from cross-

section x to the tip of the wing. All important terms are labeled on this

free-body diagram. At the wingtip, x � L, there is no shear or bending

moment, so V(L) � M(L) � 0. From Eq. 5.8, we can write the following

expression for V(x):

where p( ) is just the given load function with dummy variable substi-

tuted for x. Since V(L) � 0,

So,

Ans.V(x) � p0L c�3

4
�

x
L

�
1

4
 a x

L
b4 d

 � p0L c 1
4

 a j
L
b4

�
j

L
dL

x

 � �p0�
L

x

c1 � a j
L
b3 ddj

 V(x) � ��
L

x

p(j)dj

jj

V(L) � V(x) � �
L

x

p(j)dj
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x

x

y p(ξ)

V(x)
M(x)

L

ξ

x

x

p0 p(x)

L

c05EquilibriumOfBeams.qxd  9/8/10  9:33 PM  Page 325



In the previous section, Examples 5.4 through 5.6 illustrated how the equilibrium
method can be used to construct shear-force and bending-moment diagrams. In this

section, you will see how the graphical method facilitates the drawing of shear and

moment diagrams.

Shear-Force and Bending-Moment Diagrams: Graphical Method.
Examples 5.7 through 5.9 illustrate the graphical method for constructing shear and

moment diagrams. Table 5.1 illustrates how Eqs. 5.2 through 5.7 are used in con-

structing (i.e., sketching) the diagrams, proceeding from the left end to the right end

of the beam. If you study carefully the numbered steps that are given in the follow-

ing examples and relate them to the entries in Table 5.1, you should be able to

5.5 SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS:
GRAPHICAL METHOD

Similarly, from Eq. 5.9,

Since M(L) � 0,

So,

Ans.

The shear and moment at the wing root, V(0) and M(0), are:

Finally, a computer was used to plot the above expressions for V(x)

and M(x) that are shown in Fig. 3.

Review the Solution The shear is negative everywhere, as we expect from

the free-body diagram.The maximum shear (magnitude) occurs at the wing

root A and is equal to the total area under the load curve in the problem

statement.The magnitude, (3/4)p0L, is reasonable compared with the value

p0L for a uniform load. The upward load will bend the wing upward, so it

will be concave upward everywhere.This is consistent with the fact that the

bending moment is positive for the entire length of the wing.The maximum

bending moment occurs at the wing root A. Finally, the shear and moment

have the proper dimensions, (F ) and (F � L), respectively.

M(0) �
3

10
p0L2V(0) � �

3

4
p0L,

M(x) � p0L2 c 3

10
�

3

4
 a x

L
b �

1

2
 a x

L
b2

�
1

20
 a x

L
b5 d

 � r0L2 c 3
4

 a j
L
b �

1

2
 a j

L
b2

�
1

20
 a j

L
b5 dL

x

 � �p0L�
L

x

c�3

4
�
j

L
�

1

4
 a j

L
b4 ddj

 M(x) � ��
L

x

V(j)dj

M(L) � M(x) � �
L

x

V(j)dj
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Fig. 3 Shear and moment diagrams.

0.4

(b) The moment diagram

x/L

M(x)
–––––
p0L2

–1.0

–0.5

0

(a) The shear diagram

0.5 1.0

0.5 1.0

x/L

0.2

0

V(x)
––––
p0L
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T A B L E  5 . 1 Shear and Moment Diagram Features

Load Shear Moment 
Diagram Diagram Diagram 

Equation p V M

1. Slope of shear diagram equals value of load

(Eq. 5.2)
dV
dx

� p(x)

p2

p1

V1 V2M1 M2

M1

M2V1

V2

Slope = p1

2. Jump in shear equals value of concentrated load

(Eq. 5.4)¢V � P0

V1 V2M1 M2

P0

M1

M2V1

V2
P0

Positive V-jump

3. Change in shear equals area under distributed-load diagram

(Eq. 5.6)V2 � V1 � �
x2

x1

p(x)dx

V1 V2M1 M2

(Area)p

M1

M2V1

V2

V2 – V1 =  (Area)p

4. Slope of moment diagram equals value of shear

(Eq. 5.3)
dM
dx

� V(x)
V1 V2M1 M2

M1

M2

Slope = V1

V1 V2

5. Jump in moment equals – (value of concentrated couple)

(Eq. 5.5)¢M � �M0

M1

M2

Negative M-jump

M0

V1 V2

6. Change in moment equals area under shear diagram

(Eq. 5.7)M2 � M1 � �
x2

x1

V(x)dx
V1 V2M1 M2

M1

M2

M2 – M1 =  (Area)V

V1 V2

(Area)V

V1 V2M1 M2

M0
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construct shear and moment diagrams for any beam with simple loading, once you

have determined the loads and reactions acting on the beam.2 There are also several

MDSolids examples that employ the graphical method.

328
Equilibrium of Beams

E X A M P L E  5 . 7

Use Eqs. 5.2 through 5.7 to sketch shear and moment diagrams for the

simply-supported beam shown in Fig. 1.

Plan the Solution We can use a free-body diagram of the beam AC to

determine the reactions at A and C. Since there is no distributed load on

the beam, p(x) � 0 everywhere. Because of the concentrated load at B.
we need to consider two spans, 0 � x � a and a � x � L.

Solution

Equilibrium—Reactions: To determine the reactions Ay and Cy, we first

draw the free-body diagram of the entire beam AC (Fig. 2).

Fig. 2 A free-body diagram.

Shear Diagram: Equations 5.2, 5.4, and 5.6 involve the shear. Using

these equations, we can sketch V(x) progressively from x � 0 to x � L.

It is convenient to sketch the shear and moment diagrams directly below

the load diagram (Fig. 3a). Each step involved in sketching V(x) is 

numbered in Fig. 3b.

1. The shear at x � 0� is zero.

2. The shear at x � 0� is determined from Eq. 5.4, that is, �VA �

Ay � . Note that, because of the sign convention for shear,

an upward concentrated force causes an upward jump in the shear 
diagram.

3. For 0 � x � a, p(x) � 0. Therefore, from Eq. 5.2, dV/dx � 0.

P(L � a)

L

Ay �
P(L � a)

L
AyL � P(L � a) � 0,aaMb

C
� 0:

Cy � P a a
L
bPa � CyL � 0,aaMb

A
� 0:

Fig. 3 Shear and moment diagrams.

2The graphical method is most useful when the “areas” in Eqs. 5.6 and 5.7 are simple rectangles or

triangles, that is, when the loads on the beam are either concentrated loads or uniform distributed loads.

The graphical method is also useful in interpreting the results of an equilibrium-method solution.

L

A

a

CB

P

x

y

V(x)

(a) Load diagram.

(b) Shear diagram.

(c) Moment diagram.

M(x)

Pa(L – a)––––––––
L

P(L – a)–––––––
L

–Pa–––
L

P(L – a)–––––––
L

Pa–––
L

x

L – a

A

a

C

B

P

P

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

(5)

(5)

(6)

x

L – a

A

a

C

CyAy

B

P

x

y

Fig. 1
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V & M Diagrams—Determinate Beams is a computer program

module that may be used to plot shear-force and bending-moment diagrams for

statically determinate beams. The solutions of MDS Examples 5.1–5.6 illustrate the

graphical method for constructing V and M diagrams.

MDS5.1 – 5.6

4. At x � a there is a downward force P, so �VB � �P.

5. For a � x � L, p(x) � 0, so � 0.

6. The reaction at C causes which closes the shear diagram

back to zero at x � L�.

Moment Diagram: Equations 5.3, 5.5, and 5.7 relate to M(x) and can be

used to sketch the moment diagram in Fig. 3c. Steps in the construction

of the moment diagram are explained and numbered.

1. The moment at x � 0 is zero [simply supported beam].

2. For 0 � x � a, Eq. 5.3 gives 

3. At x � a, M(a) can be determined from Eq. 5.7 as the area of the 

rectangle under the shear curve from x � 0 to x � a. Therefore

is the

maximum bending moment.

4. For a � x � L, Eq. 5.3 gives 

5. Equation 5.7 gives M(L) � M(a) � �
L

a

V(x)dx � �
Pa
L

(L � a),

dM
dx

� V(x) �
�Pa

L
� constant.

M(a) �
Pa(L � a)

L
M(a) � 0 � �

a

0

V(x)dx �
P(L � a)

L
(a).

dM
dx

� V(x) �
P(L � a)

L
� constant.

¢VC �
Pa
L

,

dV
dx

which closes the moment diagram back to zero at x � L, as it should 

[simple support at C].

Review the Solution The dimensions on the shear diagram (F) and the

moment diagram (F � L) are correct. If we draw finite free-body diagrams

of the ends of the beam, we get Fig. 4. Therefore, the shear diagram in Fig.

3b has the correct signs according to the free-body sketches in Fig. 4 and the

sign convention in Fig. 5.6. The downward force will bend the beam as

shown in Fig. 5, which is consistent with the fact that the bending moment

is positive everywhere. The maximum bending moment occurs at the cross

section where the force P is applied and where the shear force changes sign.

E X A M P L E  5 . 8

Use Eqs. 5.2 through 5.7 to sketch shear and moment diagrams for

simply supported beam shown in Fig. 1.

Plan the Solution We can use a free-body diagram of the beam AC in
Fig. 2 to determine the reactions at A and C. Since there is no distributed

329

Fig. 5

Fig. 4

A

P(L – a)–––––––
L

Pa–––
L

C

+  Shear

–  Shear

A CB

P
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load on the beam, p(x) � 0 everywhere. Because of the concentrated

couple at B, we need to consider two spans, 0 � x � a and a � x � L.

Solution

Equilibrium—Reactions: We first determine the reactions Ay and Cy.

Shear Diagram: Equations 5.2, 5.4, and 5.6 involve the shear. Using

these equations and the load diagram in Fig. 3a, we can sketch V(x) pro-

gressively from x � 0 to x � L. It is convenient to sketch the shear and

moment diagrams directly below the load diagram. Each step involved in

sketching V(x) is numbered in Fig. 3b.

1. The shear at x � 0� is zero.

2. The shear at x � 0� is determined from Eq. 5.4, that is, �VA �
Ay � M0/L. Note that, because of the sign convention for shear,

an upward concentrated force causes an upward jump in the shear
diagram.

3. For 0 � x � L, p(x) � 0. Therefore, from Eq. 5.2, dV/dx � 0, V(x) �
M0/L � constant.

4. The reaction at C causes �VC � �M0/L, which closes the shear

diagram back to zero at x � L�.

Moment Diagram: Equations 5.3, 5.5, and 5.7 relate to M(x) and can be

used to sketch the moment diagram in Fig. 3c. Steps in the construction

of the moment diagram are explained and numbered.

1. The moment at x � 0 is zero (simply supported beam).

2. For 0 � x � a, Eq. 5.3 gives dM/dx � V(x) � M0/L � constant.

3. At x � a�, M(a�) can be determined from Eq. 5.7 as the area of the

rectangle under the shear curve from x � 0 to x � a. Therefore

4. At x � a there is a negative jump in moment given by Eq. 5.5. So

.

5. For a � x � L, Eq. 5.3 gives dM/dx � V(x) � M0/L � constant.

6. Equation 5.7 gives 

which closes the moment diagram back to zero at x L, as it should

[simple support at C].

Review the Solution The dimensions on the shear diagram (F) and the

moment diagram (F � L) are correct. Note that both the maximum

moment, M0a/L, and the minimum bending moment, �M0(L � a)/L,

occur at the cross section where the concentrated couple acts. Compare

this example with the previous one, where there was a concentrated

force.

�
M(L) � M(a�) � �L

a V(x) dx � (M0/L)(L � a),

M(a�) �
M0a

L
� M0 � �

M0(L � a)

L

M(a) � 0 � �a
0

V(x)dx � M0a/L.

AyL � M0 � 0 S Ay �
M0

L
aaMb

C
� 0:

�M0 � CyL � 0 S Cy �
�M0

L
aaMb

A
� 0:Fig. 1

Fig. 2 A free-body diagram.

L

A

a

CB
x

y
M0

L – a

A

a

C

Cy

M0

Ay

B
x

y

V(x)

(a) Load diagram.

(b) Shear diagram.

(c) Moment diagram.

M(x)

x

L – aa
B

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(6)

(5)

(4)

x

A C
M0

–M0(L – a)________
L

M0 a____
L

M0___
L

M0___
L

M0___
L
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Fig. 3 Load, shear, and moment 

diagrams.
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E X A M P L E  5 . 9

Determine the reactions and sketch the shear and moment diagrams for

the beam shown in Fig. 1. (This beam is said to have an overhang BC.)
Show all significant values (that is, maxima, minima, positions of maxima

and minima, etc.) on the diagrams.

Fig. 1

Fig. 2 A free-body diagram.

Plan the Solution We can use a free-body diagram of the whole beam

to compute the reactions. Then we can use Eqs. 5.2 through 5.7 to sketch

the V(x) and M(x) diagrams, as we did in Examples 5.7 and 5.8.

Solution

Equilibrium—Reactions: The reactions must be determined first. Figure 2

shows the appropriate free-body diagram.

Ans.

Ans.

Check: Is Yes8 � 32 � 40 � 16 � 0?a Fy � 0?

Ay � 8 kN

Ay(4 m) � (8 kN/m)(4 m)(2 m) � (16 kN)(2 m) � 0

aaMb
B

� 0:

By � 40 kN

(8 kN/m)(4 m)(2 m) � (16 kN)(6 m) � By(4 m) � 0

aaMb
A

� 0:

A

4 m

16 kN8 kN/m

2 m

CB

A C

Ay By

B

y

x

16 kN

8(4) = 32 kN
2 m

4 m 2 m

331
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It is convenient to sketch the V (Fig. 3b) and M (Fig. 3c) diagrams

directly below a sketch of the beam that has all of the loads and reactions

shown (Fig. 3a).

Shear Diagram: The following steps are used in sketching the shear

diagram (Fig. 3b).

1. V(0�) � 0 [no shear at end of beam].

2. V(0�) � 8 kN [Eq. 5.4].

3. dV/dx � �8 kN/m [Eq. 5.2].

4. V(4�) � V(0�) � (�8 kN/m)(4 m) � 8 � 32 � �24 kN [Eq. 5.6].

5. V(4�) � V(4�) � 40 kN [Eq. 5.4].

6. dV/dx � 0 [Eq. 5.2].

7. V(6�) � V(6�) � 16 � 0.

8. Since dV/dx � �8 for 0 � x � 4 m, and since V(0�) � 8 kN, V � 0

at xm � 1 m [Eq. 5.6].

Moment Diagram: The steps employed in constructing the moment dia-

gram (Fig. 3c) using Eqs. 5.2 through 5.7 will now be described:

1. M(0) � 0 [no moment at end of beam].

2. From dM/dx � V(x) we have the slope of M(x) going from �8 

kN � m/m at x � 0� to zero at x � xm � 1 m. Therefore, the mo-

ment diagram for 0 � x � 1 m must have the general shape 

[Eq. 5.3].

3. M(x) is maximum where V(x) � 0 [Eq. 5.3].

4. [Eq. 5.7; area

of triangle].

5. From x � 1 m to x � 4 m, V(x) gets progressively more negative.

Therefore, M(x) must have the general shape [Eq. 5.3].

6.
[Eq. 5.7; net of areas of triangles]

7. dM/dx � V(x) � 16 kN [Eq. 5.3].

8. [Eq.

5.7; no moment at end of beam].

The maximum shear occurs just to the left of the support at B and

has a magnitude of 24 kN. The maximum positive moment occurs where

V � 0 at x � 1 m and has a magnitude of 4 kN � m; and the maximum

negative moment occurs at the support B, and it has a magnitude of 

32 kN � m.

Review the Solution By imagining cuts just to the right of A (Fig. 4a),

just to the left of B (Fig. 4b), and just to the right of B (Fig. 4c), we can

check the sign of the shear at these points.

The moment diagram is best checked by seeing if the sign of the

moment diagram corresponds to a reasonable deflected shape, that is,

concave upward where M(x) is positive and concave downward where

M(6) � M(4) � �6
4
 V(x)dx � �32 kN � m � (16 kN)(2 m) � 0

�32 kN � m

M(4) � M(0) � �4
0
 V(x)dx � 0 � 1

2(8 kN)(1 m) � 1
2 (�24 kN)(3 m) �

M(1) � M(0) � �1
0
 V(x)dx � 1

2(8 kN)(1 m) � 4 kN � m

332

Fig. 3 Shear and moment diagrams.

Fig. 4

V(kN)

(a) Load diagram.

(b) Shear diagram.

(c) Moment diagram.

M(kN·m)

x(m)

xm

x(m)

(1)

1

8

4

8

–24

–32

(1)

1 m

(2)

(8)

(2) (3) & (4)

(4)
(3)

(5)
(6)

(5)

(6)

(7)

16
1

(8)

(7)

A CB

16 kN

16

40 kN8 kN

8 kN/m

4 m 2 m

A

(a) (c)(b)

B C

+  Shear

8 kN

8 kN

16 kN

16 kN
–  Shear

+  Shear

B C

24 kN

40 kN

16 kN
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M(x) is negative, according to the sign convention that is given Fig. 5.6c.

Where M(x) � 0, the beam is locally straight, that is, it is neither concave

upward nor concave downward. We are able to sketch (Fig. 5) a plausi-

ble deflection curve that passes over the supports at A and B and that is

concave upward where M(x) is positive and concave downward where M
is negative. The distributed load between A and B and the concentrated

load at C could, indeed, cause the beam to deflect as sketched.

333

Fig. 5 A sketch showing the deflection of beam AC.

M positive M negative

Deflection
exaggerated

The idea that a positive bending moment makes a beam concave toward the �y
side, whereas a negative bending moment causes the beam to be concave toward the

�y side, is in accord with the definition of positive bending moment in Fig. 5.6c.This

fact was used in Examples 5.7 and 5.9 above to check the bending moment dia-

grams. In the next chapter we derive a mathematical relationship between bending

moment and curvature, and in Chapter 7 we use this relationship to obtain expres-

sions for the deflection of beams.

Wherever there is a discontinuity in the loading on a beam or where there is a sup-

port, there will be a discontinuity in integrals that involve the loads and reactions.

Between these discontinuities the integrals will be continuous. For example, the

beam in Fig. 5.10 has four intervals—AB, BC, CD, and DE. Consequently, four sep-

arate expressions Vi(x) and four expressions Mi(x) would be required to specify

V(x) and M(x) for this beam. The introduction of discontinuity functions simplifies

the process of determining expressions for shear and bending moment (Section 5.6),

and it greatly simplifies the process of solving for the slope and deflection of a beam

(Section 7.5). For example, for the beam in Fig. 5.10, the shear V(x) can be written

as a single compact expression, valid for 0 � x � L, rather than as four separate

expressions. Similarly, the load p(x) and the moment M(x) can each be written as a

single expression that is valid for 0 � x � L.

*5.6 DISCONTINUITY FUNCTIONS TO REPRESENT 
LOADS, SHEAR, AND MOMENT
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Macaulay functions will be used to represent distributed loads on beams, and

singularity functions will be used to represent concentrated external forces and

concentrated couples. Together, they are referred to as discontinuity functions,
and are symbolized by angle brackets, called Macaulay brackets,3 that have the

form: x � a n.

Macaulay Functions. Macaulay functions are useful in expressing functions

that are zero up to some particular value of the independent variable and nonzero

for larger values of the independent variable. For integer values of n 
 0, the

Macaulay functions x � a n are defined by the following expressions:

n � 0, 1, 2, . . . (5.10)

For example, Fig. 5.11 shows the unit step function x � a 0 and the unit ramp func-
tion x � a 1, where a is the value of the independent variable x at which the discon-

tinuity occurs. As illustrated by the unit ramp function in Fig. 5.11b, these functions

have the value zero for x � a and the value (x � a)n for x 
 a. The units of x � a n

are the units of xn (e.g., ftn, mn, etc.).

Singularity Functions. The two singularity functions of interest here are the

unit doublet function, x � a �2, which can be used to represent a concentrated

couple, and the unit impulse function, x � a �1, which can be used to represent aIH
IH

IH
IH

IH

Hx � aIn � e0  for x 6 a
(x � a)n for x 
 a

IH

IH

334
Equilibrium of Beams

FIGURE 5.10 A beam with several applied loads.

w1
w2 M0

L
B

C

A

P

D E

x

3The English mathematician W. H. Macaulay (1857–1936) introduced the use of special brackets to rep-

resent these discontinuity functions. It has been common practice to use angle brackets for this purpose

and to refer to them as Macaulay brackets.

FIGURE 5.11 Examples of Macaulay functions.

(b) Unit ramp function

x

1
1

 x – a 1

a
x

(a) Unit step function

a

1

 x – a 0
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concentrated force. These are illustrated in Fig. 5.12. Singularity functions are simi-

lar in some respects to the Macaulay functions, but they are defined for negative

values of n. They become singular (i.e., infinite) at x � a, and they are zero for x � a.

The units of singularity functions are the same as the units of xn, even though n is

negative.

Integrals of Discontinuity Functions. The rules of integration for disconti-

nuity functions are given in Eq. 5.11.

(5.11)

Since we will use discontinuity functions in conjunction with beams of finite

length with their origin at x � 0, as illustrated in Figs. 5.10 and 5.13, we need not be

concerned with values of x less than x � 0. The origin, x � 0, will therefore be as-

sumed to be located such that, for x � 0, x � a n � 0 for all n.

Use of Discontinuity Functions to Represent Loads, Shear, and Moment.
Figure 5.13 illustrates how Macaulay functions can be used to represent distributed

loads on beams. It must be remembered that Macaulay functions continue indefi-

nitely for x � a. Therefore, when a particular load pattern terminates at some value

of x, a new Macaulay function must be introduced to cancel out the effect of that

previous Macaulay function. Note how the dimensions of each term in p(x) are pre-

served even though the term x � a 0 is dimensionless whereas the term x � a 1 has

the dimensions of length.

IHIH

IH

� Hx � aIn dx � •
Hx � aIn�1  for n � 0

1

n � 1
 Hx � aIn�1 for n 7 0

335
Discontinuity Functions to

Represent Loads, Shear, and
Moment

FIGURE 5.12 Examples of singularity functions.

a0 x a0 x

(a) Unit doublet function. (b) Unit impulse function.

x – a –2 x – a –1

FIGURE 5.13 Distributed loads represented by Macaulay functions.

a4

a3

a2

x

a1

p2
p(x)

p1

x

p(x) = p1                 
0 + (p1 + p2) x – a1                 

1 –x – a2                 
0 x – a4                

1 –x – a3

p2______
a3 – a2

(             ) p2______
a3 – a2

(             )
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The sign conventions for external loads and for internal shear force and bend-

ing moment are given in Figs. 5.6, and in Section 5.3 relationships among loads, shear

force, and bending moment were presented. By way of review,

(5.4)

repeated

(5.5)

repeated

(5.8)

repeated

(5.9)

repeated

To apply the latter two when p(x) and V(x) are represented by discontinuity func-

tions, we let x1 � 0� and let V1(0�) � M1(0�) � 0. Therefore, Eqs. 5.8 and 5.9 can be

written as

(5.12)

The load function for the beam in Fig. 5.14 can be written in terms of disconti-

nuity functions by referring to Table 5.2; and we can use Eqs. 5.11 to integrate these

M(x) � �
x

0

V(j) djV(x) � �
x

0

p(j) dj,

 M(x) � M1 � �
x

x1

V(j)dj

 V(x) � V1 � �
x

x1

p(j)dj

 ¢M � �M0

 ¢V � P0
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1
P0

P0

(a) Load diagram.

(b) Shear diagram.

(c) Moment diagram.

a3

a2

x

a1

p0

M0

M0

V(x)

x

M(x)

P0

x

x

–M0

1
p0

FIGURE 5.14 Examples of the use of discontinuity functions to represent load, shear, and
moment.
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Case Load Shear Moment

1

2

3

4

5

6

T A B L E  5 . 2 A Summary of Loads, Shear, and Moment Represented by Discontinuity Functions

x

V

a

–M0

–M0

x – a –1

a

x

–M0 x – a –2

M0

x

a

P0

P0

x – a –1

p0

a

p0 x – a 0

p1

a b

x

x – a 1 p1––
b(    )

x
p2

a b

x – a 2 p2––
b2(    )

x

a b

pn

x – a n pn––
bn(    )

x
a

(n + 1)

V

  

bn
x – a n + 1 pn––––––––(              )

a
x

M

(n + 1)(n + 2)

  

bn
x – a n + 2 pn––––––––––––(                      )

x
a

V

x – a 3 p2–––
3b2(     )

a
x

M

x – a 4 p2––––
12b2(       )

x
a

V

x – a 2 p1––
2b(    )

a
x

M

x – a 3 p1––
6b(    )

xx
a

p0 x – a 1

V

a
x

M

x – a 2 p0––
2

x
a

P0

P0 x – a 0

V

a
x

P0 x – a 1

M

M

a
x

–M0

–M0 x – a 0
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discontinuity functions to get

(5.13)

Note that the beam in Fig. 5.14 is shown to extend on the left to x � 0�. Singularity

functions are underscored in the above equations for p(x) and V(x).

Table 5.2 summarizes load, shear, and moment relationships represented by

discontinuity functions. The terms in this table that represent singularity functions

are underscored to emphasize the fact that, strictly speaking, singularities have in-

finite values at the point x � ai and zero values everywhere else. Whereas it is com-

mon practice to represent concentrated couples and forces in the manner indicated

in Case 1 and Case 2 of the “Load” column of Table 5.2, the moment M0 in the

“Shear” column of Case 1 is not a true concentrated shear force. Its effect is to

cause the jump in moment at x � a in the “Moment” column of Case 1, but other-

wise it can be ignored. Therefore, it is shown dashed in Table 5.2, Case 1. Note how

the amplitude of the load function is defined in Cases 4 through 6 to assure proper

dimensionality.

In this section, only statically determinate problems are considered. Therefore,

the reactions are treated as known quantities that have been obtained by the use of

equilibrium equations. In Section 7.5, both statically determinate problems and stat-

ically indeterminate problems are examined.

 M(x) � �
x

0�

V(j)dj � �M0Hx � a1I0 � P0 Ha � a2I1 �
p0

2
 Hx � a3I2

 V(x) � �
x

0�

p(j) dj � �M0 Hx � a1I�1 � P0 Hx � a2I0 � p0 Hx � a3I1
 p(x) � �M0 Hx � a1I�2 � P0 Hx � a2I�1 � p0 Hx � a3I0
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E X A M P L E  5 . 1 0

For the beam in Fig. 1 of Example Problem 5.9, (a) use discontinuity

functions to obtain expressions for p(x), V(x), and M(x), and (b) use the

discontinuity functions from Part (a) to construct shear and moment

diagrams for the beam, indicating the contribution of each term in the

discontinuity-function expressions.

The loads and reactions from Example Problem 5.9 are given in 

Fig. 1.

Plan the Solution We can refer to Cases 2 and 3 of Table 5.2 to construct

the load function p(x) and then to perform the required integrations to

get V(x) and M(x).

Solution (a) By referring to the Load column for Cases 2 and 3 in Table

5.2, we can write

Ans. (1)� (40 kN) Hx � 4 mI�1 � (16 kN) Hx � 6 mI�1

p(x) � (8 kN)Hx � 0 mI�1 � (8 kN/m)[ Hx � 0 mI0 � Hx � 4 mI0]

Fig. 1

8 kN

A

40 kN

16 kN

B

8 kN/m

4 m 2 m
C
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Observe that it is a very straightforward procedure to obtain the discontinuity-

function expressions for V(x) and M(x). Each term in p(x), V(x) and M(x) can be

evaluated separately, and the results summed to get the final discontinuity-function

expressions. Likewise, graphs of p(x), V(x), and M(x) can be easily constructed from

the discontinuity-function expressions. This makes the discontinuity-function method

an ideal one to serve as a basis for a computer program to evaluate and plot shear

diagrams and moment diagrams. In Section 7.5 discontinuity functions will be used to

solve beam deflection problems, including analysis of statically indeterminate beams.

V & M Diagrams—Determinate Beams is a computer program

module that may be used to plot shear-force and bending-moment diagrams for

statically determinate beams. The discontinuity-function method, described in

Section 5.6, was used in the development of the computer program module that

solves the key equations and plots the shear and moment diagrams. The solutions of

MDS Examples 5.7–5.9 illustrate this method.

MDS5.7– 5.9

Integrating Eq. 1 by referring to Eqs. 5.11 or to the Shear column of

Table 5.2, we get

(a) (b) (c)

(d) (e)

Ans. (2)

and, from the Moment column of Table 5.2, we get

(a) (b) (c)

(d) (e)

Ans. (3)

(b) In Fig. 2, Eqs. (2) and (3) are plotted term-by-term, starting at

the left end of the beam; the separate terms are then summed so the

results can be compared with the shear diagram and the moment

diagram obtained in Example Problem 5.9.

Review the Solution Since the shear diagram in Fig. 2b and the

moment diagram in Fig. 2c both close to zero at the right end, our

results are probably correct. For this problem we could use Eqs. 5.2

through 5.7 to check the shear and moment diagrams above. That

is, the procedure used to construct the shear diagram and the moment

diagram in Example Problem 5.9 can be used to check the results

obtained by the discontinuity-function method.

� (40 kN) Hx � 4 mI1 � (16 kN) Hx � 6 mI1
M(x) � (8 kN) HxI1 � (8 kN/m)[1

2 HxI2 � 1
2 Hx � 4 mI2]

M(x) � �
x

0�

V(j)dj:

� (40 kN) Hx � 4 mI0 � (16 kN) Hx � 6 mI0
V(x) � (8 kN) HxI0 � (8 kN/m)[HxI1 � Hx � 4 mI1]

V(x) � �
x

0�

P(j)dj: B

8 kN/m 16 kN

A

V(kN)

1 m

M (kN · m)

(a)

(a)

(b)

(c)

(e′)

(d)

(c)

x (m)

x (m)

(b)

(b′)

(a′)
(c′)

(d′)

(e)

40

16
8

80

16

48

4

–16
–32

–16

–24

–144

–48

40 kN8 kN
4 m 2 m

C

Fig. 2 Load, shear, and moment diagrams.

339

c05EquilibriumOfBeams.qxd  9/8/10  9:34 PM  Page 339



Prob. 5.2-4. The shaft in Fig. P5.2-4 is supported by bearings

at B and D that can only exert forces normal to the shaft.

Belts that pass over pulleys at A and E exert parallel forces

of 150 N and 300 N, respectively, as shown. Determine the

transverse shear force VC and the bending moment MC at

section C, midway between the two supports.

Prob. 5.2-1. For the simply supported beam AE in Fig.

P5.2-1, (a) determine and , the internal resultants

just to the left of the 20-kN load at C, and (b) determine 

and , the internal resultants just to the left of the 20-kN

load at D.

MD�

VD�

MC�VC�

SHEAR AND MOMENT IN BEAMS: EQUILIBRIUM
METHOD (METHOD OF SECTIONS)

5.7 PROBLEMS

In Problems 5.2-1 through 5.2.11 you are to determine the
internal resultants (transverse shear force V and bending
moment M) at specific cross sections of beams. Use the
sign conventions for V and M given in Fig. 5.6, p. 314,
and always draw complete and correct free-body dia-
grams. The minus-sign superscript signifies “just to the
left of” the referenced point; the plus-sign superscript
means “just to the right of” the referenced point.

▼

BA C D E

10 kN 20 kN 20 kN

1 m 2 m1 m 1 m

P5.2-1, P5.4-5, P5.5-5, and P5.6-1

Prob. 5.2-2. For the beam AD in Fig. P5.2-2, (a) determine

the transverse shear force and the bending moment 

at a section just to the left of the support at B, and (b)

determine VE and ME at section E.

MB�

VB�

Prob. 5.2-3. Transverse loads are applied to the beam in

Fig. P5.2-3 at A, C, and E, and a concentrated couple 3Pa is

applied to the beam at E. Determine expressions for (a) the

transverse shear force and bending moment at a

section just to the left of the load at C, and (b) shear 

and moment just to the left of the support at D.

Express your answers in terms of P and a.

MD�

VD�

MC�VC�

2 kips1 kip

B

A D

CE

2 ft 2 ft 2 ft 2 ft

P5.2-2, P5.4-3, P5.5-3, and P5.6-2

B D

EA

C

3a 3a2a

P 2P 2P

3 Pa

2a

x

P5.2-3, P5.4-2, P5.5-2, and P5.6-3

BA DC E

100 mm100 mm100 mm 150 mm

150 N

300 N

Prob. 5.2-5. Two transverse forces and a couple are applied

as external loads to the cantilever beam AC in Fig. P5.2-5.

Determine the transverse shear force VC and the bending

moment MC at the fixed end C.

P5.2-4, P5.4-4, and P5.5-4

A B C12 kip . ft

6 kips

4 kips 4 ft 4 ft

P5.2-5, P5.4-8, P5.5-8, and P5.6-4

Prob. 5.2-6. For the cantilever beam AD in Fig. P5.2-6, de-

termine the reactions at D; that is determine VD and MD.

Express your answers in terms of P and a.

a

2P

A B C D

aa

2P P

P5.2-6, P5.4-7, and P5.5-7
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Prob. 5.2-7. A drilling engineer wishes to support pipes of

length L on blocks so that the magnitude of the bending mo-

ment in the pipes directly over the supports is equal to the

magnitude of the bending moment at the center of the pipes

(see Fig. P5.2-7). Let w be the weight of the pipes per unit

length, and neglect the width of the support blocks. (a)

Determine the distance from each end, aL, at which the

engineer should place the supports. (b) Determine the cor-

responding magnitude of the bending moments at the sup-

ports and at the center.

B, and (b) the transverse shear force and bending mo-

ment just to the right of B.MB�

VB�

L/2 L/2

aL aL

A B E C PipeD

P5.2-7

Prob. 5.2-8. A uniformly distributed load of 1 kip/ft and a

concentrated transverse load of 8 kips are applied to the

simply supported beam in Fig. P5.2-8. Determine the trans-

verse shear force VD and the bending moment MD at section

D, midway between the supports.

9 ft3 ft

3 kips 2 kip/ft

6 ft

BA CD

x

P5.2-8, P5.2-15, P5.4-9, P5.5-9, and P5.6-5

Prob. 5.2-9. A concentrated couple of 4 kN � m und a uni-

formly distributed load of 1 kN/m are applied to beam AE,

as shown in Fig. P5.2-9. Determine the transverse shear force

VC and the bending moment MC at section C, the middle of

the beam.

A B

x

C

4 kN·m

2 m 1 m 1 m 2 m

1 kN/m

D E

P5.2-9

Prob. 5.2-10. An L-shaped frame BD is welded to the beam

AC in Fig. P5.2-10. A downward vertical load P is applied at

D as shown. Neglecting the width of the connection at B,

determine expressions for the following: (a) the transverse

shear force and bending moment just to the left ofMB�VB�

P

D

A

B

C

2a

a

3a

P5.2-10 and P5.4-6

Prob. 5.2-11. Two beam segments, AC and CD, are connected

together at C by a frictionless pin as shown in Fig. P5.2-11.

Segment CD is cantilevered from a rigid support at D, and

segment AC has a roller support at A. (a) Determine the re-

actions at A and D. (b) Determine VE and ME, the internal re-

sultants at section E. which is 5 ft to the left of the support D.

6 kips

2 kips/ft

4 ft

DE
B C

A

4 ft 5 ft 5 ft

P5.2-11

In Problems 5.2-12 through 5.2-25, you are to determine
expressions for the internal resultants as functions of po-
sition x. That is, expressions for shear force V(x), bending
moment M(x), and, occasionally, axial force F(x) are to
be determined. Always draw correct free-body diagrams.
Use the sign conventions for V and M given in Fig. 5.6 on
p. 303, and let F be assumed positive in tension.

Prob. 5.2-12. For the beam in Fig. P5.2-12, determine the fol-

lowing: (a) VA and MA, the reactions at the cantilever end A:

(b) V1(x) and M1(x), the internal resultants at an arbitrary

section between A and B, that is, for (0 � x � 3L/4); and (c)

V2(x) and M2(x), the internal resultants at an arbitrary sec-

tion between B and C, that is, for (3L/4 � x � L).

x

B

p0

CA

3L––
4

L––
4

P5.2-12, P5.4-13, and P5.6-9

341

 c05EquilibriumOfBeams.qxd  9/8/10  9:36 PM  Page 341



Prob. 5.2-13. For the cantilever beam AC in Fig. P5.2-13, (a)

determine V1(x) and M1(x), the internal resultants at an ar-

bitrary section between A and B, that is, for (0 � x � 2 m);

(b) determine V2(x) and M2(x), the internal resultants at an

arbitrary section between B and C; and (c) evaluate the

shear force VC and the bending moment MC and the can-

tilever end C.

Determine the following: (a) V1(x) and M1(x), the internal

resultants at an arbitrary section between A and B, that is,

for (0 � x � 150 mm); and (b) V2(x) and M2(x), the internal

resultants at an arbitrary section between B and C.

50 kN/m

40 kN

2 m

x

BA C

3 m

P5.2-13 and P5.4-18

Prob. 5.2-14. A linearly varying load of maximum intensity

w0 is applied to the simply supported beam AB in Fig. P5.2-14.

Determine expressions for the transverse shear force V(x)

and the bending moment M(x) at an arbitrary section x.

x

A B

L

w0

P5.2-14, P5.5-14, and P5.6-10

Prob. 5.2-15. For the beam in Fig. P5.2-8, determine the fol-

lowing: (a) V1(x) and M1(x), the internal resultants at an ar-

bitrary section in “Interval 1” between A and B, that is, for

(0 � x � 6 ft), and (b) V2(x) and M2(x), the internal result-

ants at an arbitrary section in “Interval 2” between B and C.

Prob. 5.2-16. The beam AB in Fig. P5.2-16 has a distributed

load that varies linearly from w0 at x � 0 to 2w0 at x � L.

(a) Determine the reactions at A and B, and (b) determine

V(x) and M(x), the internal resultants at an arbitrary section

between A and B.

x
L

BA

2w0
w0

P5.2-16, P5.5-15, and P5.6-11

Prob. 5.2-17. The simply supported beam AD supports a

concentrated load of 200N and a linearly varying load of

maximum intensity 2 N/mm, as shown in Fig. P5.2-17.

A

x

B

2 N/mm

200 N

C D

150 mm 50 mm 50 mm

P5.2-17 and P5.4-15

Prob. 5.2-18. A hanger bar supports a load of 450 N and is,

in turn, supported by a pin AF that passes through the

hanger bar and a support bracket, as shown in Fig. P5.2-18a.

Assume that the pin is a beam subjected to distributed load-

ing from the bracket and the hanger rod as indicated in 

Fig. P5.2-18b. (a) Determine the maximum distributed-load

intensities, pt and pb, on the top and bottom of the pin, re-

spectively, (b) Determine expressions for V3(x) and M3(x),

the shear and moment in the pin in the span between C and

D, that is, for (25 mm � x � 45 mm).

A F A
B C D E

F

pt

pb

x

pb

40 mm 15
mm

15
mm

10
mm

10
mm

20
mm

15
mm

15
mm450 N

(a) (b)

450 N

P5.2-18

Prob. 5.2-19. A boy and girl position themselves as shown in

Fig. P5.2-19, so that their canoe remains level. Assume that

the canoe behaves like a beam, and assume that the buoyant

force of the water is uniformly distributed over the 16-ft

waterline length, (a) If the weight of the boy is Wb � 200 lb,

determine the weight, Wg, of the girl, (b) Determine the

buoyant force per unit length, p0. (c) Determine expressions

for V(x) and M(x) at an arbitrary cross section of the canoe

between B and D, that is, for (�3 ft � x � 5 ft).
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Prob. 5.2-20. The boom of the shop crane shown in Fig.

P5.2-20 is supported by a frictionless pin at A, and its eleva-

tion angle is controlled by the hydraulic cylinder between

pins at B and D. (a) Determine the reactions at A and B
when the boom is horizontal and supports a load of 900 N at

C. (b) For the same boom angle and loading, determine ex-

pressions for internal resultants F1(x), V1(x), and M1(x) at an

arbitrary cross section of the boom between A and B, that is,

for (0 � x � 0.75 m).

*Prob. 5.2-22. A frame in Fig. P5.2-22 is supported by a fric-

tionless pin at A and a smooth roller at D. (a) Determine the

reactions at A and D. (b) Determine expressions for internal

resultants F2(x), V2(x), and M2(x), at an arbitrary cross sec-

tion of the frame between B and C, that is, for (24 in. � x �
64 in.). Note carefully the dimensions in this problem. (The

diameter of the pulley at E is not negligible.)

Wb = 200 lb

3 ft

Wg

5 ft

8 ft 8 ft

C

x

DBA E

p0

P5.2-19 and P5.5-13

1.0 m Boom

900 N

B C

D

x

A

0.75 m

3.25 m

P5.2-20

P5.2-21

Prob. 5.2-21. An engine that weighs 3.5 kN is suspended

from point A of the engine hoist shown in Fig. P5.2-21. The

hydraulic lift is positioned so that the hoist boom AC is hor-

izontal. (a) Determine expressions for the transverse shear

force V1(x) and the bending moment M1(x) at an arbitrary

section that is x distance to the right of the support point A,

that is, for 0 � x � 1.6 m. (b) What is the axial force F2 in the

section BC of the hoist boom? Neglect the weight and bend-

ing of the members of the hoist frame.

P5.2-22 and P5.5-6

3

4
5

24 in. 40 in.

B

y

x
C

E

D
A

48 in.

50 in.

500 lb

Problems 5.2-23 through 5.2-25 are statically indetermi-
nate problems. In each case, draw a correct free-body
diagram and write the equilibrium equations for the
internal resultants V(x) and M(x) in terms of the speci-
fied redundant reaction.

Prob. 5.2-23. For the propped-cantilever beam AB in Fig.

P5.2-23, determine expressions for the internal resultants

V(x) and M(x) in terms of the reaction force at A.

L

B
x

y

w0

A

P5.2-23 and P5.2-24

Prob. 5.2-24. For the propped-cantilever beam AB in Fig.

P5.2-24, determine expressions for the internal resultants

V(x) and M(x) in terms of the moment at B.

Prob. 5.2-25. For the continuous beam ABC shown in Fig.

P5.2-25, determine expressions for the internal resultants in

each span in terms of the reaction force at A.

B
A

x

C

w0

L/32L/3

P5.2-25
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SHEAR-FORCE AND BENDING-MOMENT
DIAGRAMS: EQUILIBRIUM METHOD

Prob. 5.4-11. Plot the shear diagram and the moment dia-

gram for the beam AE in Fig. P5.4-11.

Problems 5.4-1 through 5.4-20. Use the Equilibrium
Equation Method to obtain and plot expressions for V(x)
and M(x), as illustrated in Examples 5.4 and 5.5. Most of
the problems require several expressions Vi(x) for shear
and Mi(x) for moment. Therefore, you will need to draw
several free-body diagrams and form the necessary equi-
librium equations to obtain these expressions. Draw the
requested shear-force and bending-moment diagrams
approximately to scale. Label all critical ordinates,
including the maximum and minimum values, and indi-
cate the sections at which these occur.

▼

Prob. 5.4-1. The shaft AD in Fig. P5.4-1 is supported by

bearings at A and C. Assume that these bearings produce

concentrated reaction forces that are normal to the shaft.

Plot the shear diagram V(x) and the moment diagram M(x)

for this shaft.

8 in.

A B C D

8 in.12 in.

100 lb

60 lb

x

P5.4-1 and P5.5-1

Prob. 5.4-2. Plot the shear diagram and the moment diagram

for the beam AE as shown in Fig. P5.4-2 (see Prob. 5.2-3).

Prob. 5.4-3. Plot the shear diagram and the moment diagram

for the beam AD as shown in Fig. P5.4-3 (see Prob. 5.2-2).

Prob. 5.4-4. Plot the shear diagram and the moment diagram

for the beam AE as shown in Fig. P5.4-4 (see Prob. 5.2-4).

Prob. 5.4-5. Plot the shear diagram and the moment diagram

for the beam AE as shown in Fig. P5.4-5 (see Prob. 5.2-1).

Prob. 5.4-6. An L-shaped frame BD is welded to the beam

ABC in Fig. P5.4-6 (see Prob. 5.2-10). A downward vertical

load of P � 5 kips is applied to the frame at D as shown. Let

dimension a � 2 ft, and neglect the width of the connection

at B. Plot the shear diagram and the moment diagram for

beam ABC.

Prob. 5.4-7. Plot the shear diagram and the moment diagram

for the beam AD as shown in Fig. P5.4-7 (see Prob. 5.2-6).

Prob. 5.4-8. Plot the shear diagram and the moment diagram

for the beam AC as shown in Fig. P5.4-8 (see Prob. 5.2-5).

Prob. 5.4-9. Plot the shear diagram and the moment diagram

for the beam AC as shown in Fig. P5.4-9 (see Prob. 5.2-8).

Prob. 5.4-10. Plot the shear diagram and the moment dia-

gram for the beam AC as shown in Fig. P5.4-10.

4 m 2 m

A
CB

2 kN/m

2 kN

x

P5.4-10, P5.5-10, and P5.6-6

A B

x

C

4 kN·m

2 m 1 m 1 m 2 m

1 kN/m

D E

P5.4-11, P5.5-11, and P5.6-7

Prob. 5.4-12. Plot the shear diagram and the moment dia-

gram for the beam AC in Fig. P5.4-12.

1.5 kips/ft

20 kips

8 ft

x

BA C

12 ft

P5.4-12, P5.5-12, and P5.6-8

Prob. 5.4-13. Plot the shear diagram and the moment dia-

gram for the beam AC in Fig. P5.4-13 (see Prob. 5.2-12).

Prob. 5.4-14. Plot the shear diagram and the moment dia-

gram for the beam AD in Fig. P5.4-14.

A

E

x

B

20 lb/in.

50 lb

C D

3 in. 3 in. 2 in. 2 in.

P5.4-14 and P5.6-12

Prob. 5.4-15. Plot the shear diagram and the moment dia-

gram for the beam AD in Fig. P5.4-15 (see Prob. 5.2-17).

Prob. 5.4-16. Plot the shear diagram and the moment dia-

gram for the beam AC in Fig. P5.4-16.
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Prob. 5.4-17. Plot the shear diagram and the moment dia-

gram for the beam AB in Fig. P5.4-17.

Prob. 5.5-4. Sketch the shear diagram and the moment

diagram for the shaft AE in Prob. 5.2-4.

Prob. 5.5-5. Sketch the shear diagram and the moment

diagram for the beam AE in Prob. 5.2-1.

*Prob. 5.5-6. Sketch the shear diagram and the moment

diagram for the frame member AD in Prob. 5.2-22.

Prob. 5.5-7. Sketch the shear diagram and the moment

diagram for the beam AD in Prob. 5.2-6.

Prob. 5.5-8. Sketch the shear diagram and the moment

diagram for the beam AC in Prob. 5.2-5.

Prob. 5.5-9. Sketch the shear diagram and the moment

diagram for the beam AC in Prob. 5.2-8.

Prob. 5.5-10. Sketch the shear diagram and the moment

diagram for the beam AC in Prob. 5.4-10.

Prob. 5.5-11. Sketch the shear diagram and the moment

diagram for the beam AE in Prob. 5.4-11.

Prob. 5.5-12. Sketch the shear diagram and the moment

diagram for the beam AC in Prob. 5.4-12.

Prob. 5.5-13. Sketch the shear diagram and the moment

diagram for the canoe (beam AE) in Prob. 5.2-19.

Prob. 5.5-14. Sketch the shear diagram and the moment

diagram for the simply supported beam AB in Prob. 5.2-14.

Prob. 5.5-15. Sketch the shear diagram and the moment

diagram for the simply supported beam AB in Prob. 5.2-16.

*Prob. 5.5-16. The distribution of the force between the

bottom of a ski and the snow is approximated by the piecewise-

linear distribution (force per unit length) depicted in Fig.

P5.5-16. The skier’s boot exerts a downward force RC and a

couple MC that result in the load distribution shown.

(Neglect the fact that RC and MC are actually distributed

over the length of the boot and the bindings that attach the

boot to the ski.) Sketch the shear diagram and the moment

diagram for the ski, treating it as a straight beam AE.

C
A

B

3 m 3 m

2 kN/m3 kN/m

6 ft

40 lb/ft

200 lb

A B

P5.4-16 and P5.6-13

P5.4-17 and P5.6-14

Prob. 5.4-18. Plot the shear diagram and the moment dia-

gram for the beam AC in Fig. P5.4-18 (see Prob. 5.2-13).

Prob. 5.4-19. Solve Example Problem 5.6 replacing the

given load p(x) with

*Prob. 5.4-20. Solve Example Problem 5.6 replacing the

given load p(x) with

SHEAR-FORCE AND BENDING-MOMENT
DIAGRAMS: GRAPHICAL METHOD

p(x) � p0 cos apx
2L
b

p(x) � p0 c1 � a x
L
b2 d

MDS 5.1–5.6

Problems 5.5-1 through 5.5-20. Use the Graphical Method
to sketch V(x) and M(x), as illustrated in Examples 5.7
through 5.9. That is, use the information in Table 5.1 in
sketching the shear diagram and the moment diagram.
Draw the requested shear-force and bending-moment
diagrams approximately to scale. Label all critical ordi-
nates, including the maximum and minimum values, and
indicate the sections at which these occur.

▼

Prob. 5.5-1. Sketch the shear diagram and the moment

diagram for the shaft AD in Prob. 5.4-1.

Prob. 5.5-2. Sketch the shear diagram and the moment

diagram for the beam AE in Prob. 5.2-3.

Prob. 5.5-3. Sketch the shear diagram and the moment

diagram for the beam AD in Prob. 5.2-2.

24 in. 20 in.
7 lb/in.

2 lb/in.2 lb/in.

12 in. 12 in.

RC

MC

A B D

C

E

P5.5-16

Prob. 5.5-17. The railroad tracks in Fig. P5.5-17a rest on tie

plates that are assumed to uniformly distribute the load from

each wheel to the cross tie, which in turn distributes the load

uniformly to the ballast below, as indicated in Fig. P5.5-17b.

Sketch the shear and moment diagrams for the cross tie sub-

jected to the indicated wheel loading of 32 kips per wheel.

Prob. 5.5-18. The frame in Fig. P5.5-18 has a roller-type

support at A and a frictionless pin support at E. The roller at

A can provide either an upward reaction or a downward re-

action. Using the sign conventions shown in Fig. P5.5-18.

sketch the shear diagrams and the moment diagrams for the

frame members AB, BD, and DE.
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A

1 m 1.5 m

D
CB

24 kN/m
36 kN

1 m

P5.6-16

Prob. 5.6-16. Use Fig. P5.6-16. Ay � 46 kN and Dy � 38 kN.

SHEAR-FORCE AND BENDING-MOMENT
DIAGRAMS: DISCONTINUITY-FUNCTION METHOD

pw pw

pb

4 ft
1 ft1 ft1 ft1 ft

x

32 kips 32 kips

Ballast

Cross tie
Rail

Tie plate
(a)

(b)

P5.5-17

A

B D

E

C

5 ft

5 kips/ft

1 kip

x1

M1

M2

M3

V1

V2

V3F1

F2

F3

2.5 ft2.5 ft
x2

x3

P5.5-18

Prob. 5.5-19. Sketch the shear diagrams and the moment

diagrams for the two frame members AB and BC in Fig.

P5.5-19 (see Prob. 1.4-19).

Prob. 5.5-20. Sketch the shear diagrams and the moment

diagrams for the two frame members AB and BC in Fig.

P5.5-20 (see Prob. 1.4-20).

Problems 5.6-1 through 5.6-8. A beam and its loading are
shown in the referenced figure. For each of these problems:

(a) Use equilibrium to verify the reactions.
(b) Using discontinuity functions from the Load column

of Table 5.2, write an expression for the intensity p(x)
of the equivalent distributed load. Include the reac-
tions in your expression for the equivalent load.

MDS 5.7–5.9

Prob. 5.6-1. Use Fig. P5.2-1. Ay � 28 kN and Ey � 22 kN.

Prob. 5.6-2. Use Fig. P5.2-2. By � 1/2 kip and Cy � 5/2 kips.

Prob. 5.6-3. Use Fig. P5.2-3. By � 2P and Dy � 3P.

Prob. 5.6-4. Use Fig. P5.2-5. VC � �2 kips and MC � �4 kip ft.

Prob. 5.6-5. Use Fig. P5.2-8. Ay � 20 kips and Cy � 19 kips.

Prob. 5.6-6. Use Fig. P5.4-10. Ay � 3 kN and By � 7 kN.

Prob. 5.6-7. Use Fig. P5.4-11. Ay � 0.5 kN and Dy � 1.5 kN.

Prob. 5.6-8. Use Fig. P5.4-12. VC � 8 kips and MC � 48 kip ft.�

�

Problems 5.6-9 through 5.6-18. Carry out the same steps
outlined above for Problems 5.5-1 through 5.5-8, with
the exception of omitting Part (d).

Prob. 5.6-9. Use Fig. P5.2-12. VA � �7p0L/8 and MA �
37p0L

2/96.

Prob. 5.6-10. Use Fig. P5.2-14. Ay � w0L/3 and By � 5w0L/6.

Prob. 5.6-11. Use Fig. P5.2-16. Ay � 2w0L/3 and By � 5w0L/6.

Prob. 5.6-12. Use Fig. P5.4-14. Ay � 46 lb and Dy � 64 lb.

Prob. 5.6-13. Use Fig. P5.4-16. Ay � 5.75 kN and Cy � 1.75 kN.

Prob. 5.6-14. Use Fig. P5.4-17. VB � �320 lb and RB �
�1440 lb � ft.

Prob. 5.6-15. Use Fig. P5.6-15. Ay � By � 6.75 kips.

C

BA
6 ft 3 ft

3 kips/ft

P5.6-15▼

346

(c) Perform a term-by-term integration of the load
expression to obtain a discontinuity-function expres-
sion for the shear force V(x), and sketch a shear
diagram like the one in Fig. 2b of Example Problem
5.10. Refer to the Shear column of Table 5.2.

(d) Perform a term-by-term integration of the shear
expression obtained in Part (c) to obtain a discontinuity-
function expression for the moment M(x). Sketch a
moment diagram like the one in Fig. 2c of Example
Problem 5.10. Refer to the Moment column of 
Table 5.2.
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Prob. 5.6-18. Use Fig. P5.6-18. Ay � 4 kN and Cy � 8 kN.

6 ft4 ft

1 kip
5 kip . ft

2 kip/ft

CBA

P5.6-17

Prob. 5.6-17. Use Fig. P5.6-17. VC � �7 kips and MC �
�17 kip � ft.

A

2 m

D

C
B

2 m2 m

14 kN.m

3 kN/m

P5.6-18

Problems 5.6-19 through 5.6-22. A beam and its loading
are shown in the referenced figure. For each of these
problems, you are to write a computer program that car-
ries out the following steps. Use the programming lan-
guage or math application software of your own choice,
unless your instructor indicates otherwise.

(a) Input the given problem data (e.g., L, xB).
(b) Use equilibrium to determine the reactions.
(c) Use discontinuity functions from the Load column of

Table 5.2 to form an expression for the intensity p(x)
of the equivalent distributed load. Include the calcu-
lated reactions in your expression for the equivalent
load Plot a load diagram like the one in Fig. 2a of
Example Problem 5.10.

(d) Perform a term-by-term integration of the load ex-
pression obtained in Part (c) to form a discontinuity-
function expression for the shear force V(x). Refer to
the Shear column of Table 5.2. Plot a shear diagram
like the one in Fig. 2b of Example Problem 5.10.

(e) Perform a term-by-term integration of the shear ex-
pression obtained in Part (d) to obtain a discontinu-
ity-function expression for the moment M(x). Refer to
the Moment column of Table 5.2. Plot a moment dia-
gram like the one in Fig. 2c of Example Problem 5.10.

MDS 5.7–5.9

PB

L

CA
B

xB

p0

L

DA
B C

xB

xC

P5.6-19 and P7.5-21

P5.6-20 and P7.5-22

CProb. 5.6-20. (a) Write your computer program for the sim-

ply supported beam in Fig. P5.6-20. (b) Illustrate the use of

your computer program for the following data: L � 10 m,

xB � 2 m, xC � 4 m, and p0 � 12 kN/m.

CProb. 5.6-21. (a) Write your computer program for the sim-

ply supported beam in Fig. P5.6-21. (b) Illustrate the use of

your computer program for the following data: L � 12 ft,

xB � 2 ft, xC � 5 ft, and p0 � 2 kips/ft.

p0

L

DA
B C

xB

xC

P5.6-21 and P7.5-23

347

SHEAR-FORCE AND BENDING-MOMENT
DIAGRAMS: DISCONTINUITY-FUNCTION 
METHOD

▼

p0

L

A
B C D

xB

xC

PA

P5.6-22 and P7.5-24

CProb. 5.6-22. (a) Write your computer program for the can-

tilever beam in Fig. P5.6-22. (b) Illustrate the use of your

computer program for the following data: L � 15 ft. xB �
3 ft, xC � 9 ft. PA � �4 kips (i.e., 4 kips downward), and p0 �
2 kips/ft.

CProb. 5.6-19. (a) Write your computer program for the sim-

ply supported beam in Fig. P5.6-19. (b) Illustrate the use of

your computer program for the following data: L � 10 m,

xB � 2 m, and PB � 25 kN.
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Section
Suggested

Review

Problems

Types of Supports

• Roller Support

• Pin Support

• Fixed End

Types of Beams & Loads

• Simply supported

• Cantilever

• Multi-span continuous

• Propped cantilever

C H A P T E R  5  R E V I E W — E Q U I L I B R I U M
O F  B E A M S

5.1

Types of Beams (Fig. 5.2)

A AB

p0

w0

w0PC

Ay

PB

MA

D BC

A

y

B
BA CC

(c) A two-span continuous beam. (d) A propped cantilever beam.

(a) A simply supported beam with
     distributed load.

(b) A cantilever beam with a couple at A
     and a concentrated force at B.

x

By

Cy
MC

Ay By Dy By

Bx

Ax

Cx

MA
Ay

Ax

y

M(x)

V V

V

V(x)

V M M M M

V(x)

M(x)

x

x

y

x

x

(a) Positive V and M on section "x."

(d) Positive V and M.(b) Positive shear. (c) Positive moment.

+x face +y face

+ + +

Sign Convention for Stress Resultants (Fig. 5.6)

348

Stress Resultants in Beams
Whereas axial deformation and tor-
sion have only one stress resultant

each, F(x) and T(x), respectively,

bending of beams requires two

stress resultants:

• Transverse Shear Force V(x),

and

• Bending Moment M(x)

Note carefully the sign conven-

tion for internal stress resultants 
V and M (Fig. 5.6).
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Section
Suggested

Review

Problems

5.2

• Infinitesimal FBD Method 

(Sect. 5.3)

In Sections 5.4 and 5.5, two meth-

ods are given for constructing

Shear-Force Diagrams and

Bending-Moment Diagrams:

• Equilibrium Method (Sect. 5.4)

• Continued below

• Graphical Method (Sect. 5.5)

y
P0

x

p(x) = force per unit length

(a)  Distributed load. (b)  Concentrated force and couple.

x
Δx

x

xA

xB

A B

M0

Sign Convention for External Loads (Fig. 5.7)

P0 M0

(a) General FBD. (b) Shear-jump “FBD.” (c) Moment-jump “FBD.”

Δ x

VA–

xA

VA– + ΔVA

M(x)

p(x)

x

Δ p

V(x) V(x + Δ x)

M(x + Δ x)

A B

xB

MB– + ΔMBMB–

C

Infinitesimal Free-body Diagrams (Fig. 5.8)

y

x

p(x)

x
x1

x2

M2M1

V2
V1

A Finite Free-body Diagram (Fig. 5.9)

5.4–11

5.4–155.4

Derive

Eqs.

5.6–5.7.

and state

Eqs.

5.6–5.7 

in words.

Derive

Eqs.

5.2–5.5.

and state

Eqs.

5.2–5.5 

in words.

5.3

5.2–3

5.2–11

5.2–19

349

Equilibrium of beams is a topic

that you studied in your Statics
course. The two basic procedures

for solving beam equilibrium

problems are:

• Finite Free-body Diagram
Method (Sect. 5.2)

• (See below) 

Note carefully the sign conven-

tions for external loads (Fig. 5.7).
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Section
Suggested

Review

Problems

5.5

(Eq. 5.2)

(Eq. 5.4)

(Eq. 5.6)

(Eq. 5.3)

(Eq. 5.5)

(Eq. 5.7)M2 � M1 � �
x2

x1

V(x)dx

¢M � �M0

dM
dx

� V(x)

V2 � V1 � �
x2

x1

p(x)dx

¢V � P0

dV
dx

� p(x)

Section 5.6 is an “optional” section.

5.5–1

5.5–11

5.5–17

350

Study carefully the Shear and
Moment Diagram Features illus-

trated graphically in Table 5.1.

The equations that are illustrated

graphically in Table 5.1 are given

in the next column.
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STRESSES IN BEAMS 6

6.1 INTRODUCTION

In this chapter we continue our study of beams by determining how the stress re-

sultants, the bending moment M(x) and the transverse shear force V(x), are related

to the normal stress and the shear stress at section x. Loads (transverse forces or

couples) applied to a beam cause it to deflect laterally, as illustrated in Fig. 6.1. This

lateral deflection, or bending, changes the initially straight longitudinal axis of the

beam into a curve that is called the deflection curve, shown dashed in Fig. 6.1. By 

relating the curvature of the deflection curve to the bending moment M, we can 

determine the distribution of the normal stress �x. You will discover that this 

derivation includes all three of the fundamental types of equations: geometry of 
deformation (in the strain-displacement analysis), material behavior (in the stress-

strain relations), and equilibrium (in the definition of stress resultants and in relating

stress resultants to the external loads and reactions).

Beam-Deformation Terminology. To simplify this study of beams, we initially

consider only straight beams that have a longitudinal plane of symmetry (LPS),

and for which the loading and support are symmetric with respect to this plane, as

illustrated in Fig. 6.2. Under these conditions, this longitudinal plane of symmetry

is the plane of bending. (In Section 6.6 the more general case of unsymmetric

bending is considered.) As indicated in Fig. 6.2a, coordinate axes will be assigned as

follows: the plane of bending is labeled the xy plane; the longitudinal axis of the

beam is labeled the x axis, with the positive x axis directed to the right; the positive

351
FIGURE 6.1 Transverse deflection of a beam.

x

y

Deflection curve
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y axis points upward; and, finally, the z axis forms a right-handed coordinate system

with the other two axes.

To investigate the distribution of stresses in a beam, like the one in Fig. 6.1, it is

convenient to imagine the beam to be a bundle of many longitudinal fibers parallel

to the x axis. Figure 6.3a depicts a few of these imaginary “fibers.” (A wood beam,

of course, has real fibers.) Under the action of an applied bending moment M, there

is a shortening of the upper fibers and a stretching of the lower fibers, causing the

beam segment to be curved upward. But some longitudinal fibers retain their orig-

inal length. These are said to form the neutral surface (NS), which is identified in

Fig. 6.3b. For convenience, we position the undeformed beam in the xyz coordinate

frame with the xz plane corresponding to the neutral surface.1 Then, the longitudi-

nal axis of the beam, which is the intersection of the plane of bending (xy plane) and

the neutral surface (xz plane), is the deflection curve of the deformed beam, as 

indicated in Figs. 6.1 and 6.3b.

Pure Bending. Let us begin our analysis of beams by examining the deformation

of a uniform beam segment subjected to pure bending, that is, a segment whose

material properties are constant along its length, and for which M(x) is constant.

352
Stresses in Beams

FIGURE 6.2 A symmetric beam with symmetric loading and support.

y

(a) (c)

LPS

View C-C

Longitudinal plane
of symmetry (LPS)

Longitudinal
axis

(b)

C

C
x

z

1In Section 6.3 the position of the neutral surface (i.e., the xz plane) with respect to the beam is determined.

(a) A beam represented as a “bundle” of longitudinal “fibers.”

Typical longitudinal “fibers”

Neutral surface (NS)
Deflection curve

Longitudinal
plane of symmetry (LPS)

(b) Illustration of some beam-deformation terminology.

FIGURE 6.3 Beam-deformation terminology.
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One type of beam loading that produces a segment subjected to pure bending is

shown in Fig. 6.4a, where the segment between B and C is in pure bending, as shown

in the corresponding bending-moment diagram in Fig. 6.4b.

If equal couples M0 are applied to the ends of an otherwise unloaded segment

of beam, as in Figs. 6.5c through e, the moment is constant along the segment and

the segment is said to be in pure bending. Lines ABD and EFG in Fig. 6.5b represent

353
Introduction

FIGURE 6.4 A beam

whose loading produces pure

bending.(a) Beam with symmetric loading.

Pure-bending segment

Pa

x

M(x)

a

A D
CB

PP

a
(b) Bending-moment diagram.

FIGURE 6.5 A uniform

beam segment undergoing

pure bending.

xz

yy

(c) Front face of the
    deformed beam.

Deflection
curve

(b) The undeformed beam.(a) The cross section
before deformation.

C*

M0

M0

B*
A*

D*

D G

A
B F

E

G*

F*
E*

(d) Back face of the
     deformed beam.

C*

M0

M0

B**
A**

D**G**

F**
E**

(e) Front face showing that plane sections remain plane.

C* (Center of curvature)

M0

M0

B* F*
G*

A*

D*

E*
Deflection

curve
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the edges of typical cross sections in the undeformed beam; lines A*B*D* and

E*F*G* in Fig. 6.5e represent these same cross sections after deformation, as seen

from the front face of the beam.

From Figs. 6.5c through e we can determine the following characteristics of a

uniform beam undergoing pure bending:

1. Since M(x) � M0 � const, pure-bending deformation of a beam is uniform

along the length of the segment undergoing pure bending; so whatever hap-

pens at a typical cross-section ABD also happens at section EFG.

2. The curvature of the deflection curve at F* is the same as the curvature at

B* (Fig. 6.5c, e). Therefore, the deflection curve forms a circular arc, with
center of curvature at C *.

3. Pure bending has front-to-back symmetry. Assume that straight lines ABD
and EFG corresponding to two typical cross sections of the undeformed

beam become the s-shaped curves A*B*D* and E*F*G* in Fig. 6.5c when

viewed from the front side, and, correspondingly, the curves A**B**D** and

E**F**G** in Fig. 6.5d when viewed from the back side. But, if the beam

were to be viewed from the back side, as in Fig. 6.5d, curve E**F**G**

should look exactly like curve A*B*D* does in Fig. 6.5c. The only way that

this can be possible is for all cross sections, like ABD and EFG, to remain
plane and remain perpendicular to the deflection curve, as illustrated in

Fig. 6.5e.

4. In summary, when a beam undergoes pure bending, its deflection curve forms
a circular arc, and its cross sections remain plane and remain perpendicular
to the deflection curve. Experiments show that this is, indeed, the way that

beams deform when subjected to pure bending.

The above description of beam deformation applies rigorously only to the case

of pure bending, that is, when dM/dx � V(x) � 0, as in segment BC of the beam in

Fig. 6.4. However, even in the case of nonuniform bending, where, as in segments

AB and CD of the beam in Fig. 6.4, dM/dx � V(x) � 0, the assumption that cross

sections remain plane and remain perpendicular to the deformed axis leads to 

expressions for extensional strain �x and for normal stress �x that are quite accurate

if the beam is long compared with its cross-sectional dimensions; that is, if the beam

is “slender.”

354
Stresses in Beams

6.2 STRAIN-DISPLACEMENT ANALYSIS

Let us continue our analysis of the deformation of a uniform beam segment subjected

to pure bending, that is, a segment for which M(x) is constant.

Kinematic Assumptions of Bernoulli-Euler Beam Theory. The previous

discussion of pure bending can be summarized in the following four deformation 
assumptions of Bernoulli-Euler beam theory:2

2The development of the beam theory presented here is attributed principally to the work of Jacob

Bernoulli (1654–1705) and Leonard Euler (1707–1783). Jacob Bernoulli, a prominent member of the 

famous Bernoulli family of mathematicians and physicists, studied the deflection of beams, finding that

the curvature of an elastic beam at any point is proportional to the bending moment at that point. The

work of Jacob Bernoulli and his nephew Daniel Bernoulli (1700–1782) led Euler to his discovery of the

differential equation of the elastic curve of a beam [Ref. 6-1].
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1. The beam possesses a longitudinal plane of symmetry, and is loaded and 

supported symmetrically with respect to this plane. This plane is called the

plane of bending.
2. There is a longitudinal plane perpendicular to the plane of bending that 

remains free of strain (i.e., �x � 0) as the beam deforms. This plane is called

the neutral surface (NS). The intersection of the neutral surface with a cross

section is called the neutral axis (NA) of the cross section. The intersection

of the neutral surface with the plane of bending is called the axis of the beam;

it forms the deflection curve of the deformed beam.

3. Cross sections, which are plane and are perpendicular to the axis of the 
undeformed beam, remain plane and remain perpendicular to the deflection
curve of the deformed beam.

4. Deformation in the plane of a cross section (i.e., transverse strains �y and �z)

may be neglected in deriving an expression for the longitudinal strain �x.

The third of the preceding assumptions is crucial to the development of the

Bernoulli-Euler beam theory; it leads to a practical theory of bending of beams that

is comparable to the theories of axial deformation and torsion covered previously.

Strain-Displacement Analysis; Longitudinal Strain. Because of Assump-

tions 1 and 4, the fibers in any plane parallel to the xy plane behave identically to

the corresponding fibers that lie in the xy plane (i.e., the plane of bending).

Therefore, bending deformation is independent of the coordinate z, so the drawing

in Fig. 6.6 represents the deformation of any plane in the beam parallel to the xy
plane. Using Fig. 6.6 and the preceding four deformation assumptions, we can 

develop an expression for the extensional strain �x in a longitudinal fiber at coordi-

nates (x, y, z) in the beam. In Fig. 6.6a, points A and P lie in the cross-sectional plane

at coordinate x in the undeformed beam; similarly, points B and Q lie in the cross-

sectional plane at (x � �x) in the undeformed beam. Line segment PQ is paral-

lel to the x axis and lies at distance �y above the NS (xz plane). Therefore, in the

undeformed beam the infinitesimal fibers AB and PQ are both of length �x.

From Assumption 3, points A* and P* lie in a plane that is perpendicular to the

neutral surface of the deformed beam, and points B* and Q* lie in a plane that

also is perpendicular to the deformed neutral surface. According to Assumption 2,

however, the length of A*B*, a fiber lying in the neutral surface, is unchanged; that

355
Strain-Displacement Analysis

x

y

(b) The deformed beam segment.(a) The undeformed beam segment.

C* (Center of curvature)

P*

ρ Δθ*

Δx*

Δx
ΔxA*

B*

P Q y

x

A B
Q*

Deflection curve

FIGURE 6.6 The geometry of deformation of a beam segment, showing the plane of

bending.
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is, the length of A*B* is still �x, as indicated in Fig. 6.6b. Finally, by virtue of

Assumption 4, and 

Figure 6.6, therefore, embodies all four deformation assumptions of Bernoulli-

Euler beam theory, so we can use it in deriving an expression for the extensional

strain of a longitudinal fiber.

From the general definition of extensional strain in Eq. 2.35, we can express the

extensional strain in the longitudinal fiber PQ as

(6.1)

Considering A*B* to be the arc of a circle of radius �(x) � � subtending an angle

��*, we get

Similarly,

Combining these two equations with Eq. 6.1, we get

(6.2)

That is, the extensional strain �x at point (x, y, z) in the beam is independent of z and

is related to the local radius of curvature, �(x), by the following strain-displacement
equation:

(6.3)

The reciprocal of the radius of curvature, � � 1/�, is called the longitudinal curvature,
or just the curvature.

As noted earlier, the assumptions that lead to this strain-displacement equation

are strictly valid for the case of pure bending, that is, when V � 0. However, Eq. 6.3

can also be used for analyzing the bending of beams with V � 0 [i.e., M � M(x)] if

the beam is slender.

Transverse Strains. The longitudinal strain at a point in the beam is given by

Eq. 6.3. In Section 6.3 we will show that the transverse stresses �y and �z are neg-

ligible in comparison with the normal stress �x. Therefore, from the generalized

Hooke’s Law, Eq. 2.38, there is a Poisson’s-ratio effect that produces transverse

strains

(6.4)

The deformed shape of a rectangular beam segment undergoing pure bending

is shown in Fig. 6.7. Consider the transverse strain �z for this beam. Above the

neutral axis (i.e., where y is positive), the beam is compressed axially, so �x is

negative there. Then, from Eq. 6.4, �z will be positive. Therefore, since �z is positive,

�y � �z � �v�x

Strain-
Displacement
Equation

�x � �
y

r(x)

�x � lim
¢xS0

c [(r � y)¢u* � r¢u*]

r¢u*
d � �

y
r

P*Q* � ¢x* � (r � y)¢u*

A*B* � ¢x � r¢u*

�x � �x(x, y, z) � lim
QSP

c (P*Q* � PQ)

PQ
d � lim

¢xS0

c (¢x* � ¢x)

¢x
d

B*Q* � BQ � y.A*P* � AP � y,
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fibers oriented in the z direction and lying above the NA elongate. Correspondingly,

fibers oriented in the z direction and lying below the NA contract, since �z is nega-

tive there. This produces the antielastic curvature of the beam that is illustrated in

Fig. 6.7. In Homework Problem 6.2-5 you will be asked to prove that the transverse
curvature, �� � 1/��, is related to the longitudinal curvature � � 1/� by the equation

(6.5)

You can easily demonstrate this antielastic curvature if you take a soft eraser with

rectangular cross section (e.g., a “pink pearl” eraser) and bend it between your

thumb and index finger.

As noted previously in Assumption 4, deformation in the plane of a cross

section may be neglected in the derivation of the strain-displacement equation,

Eq. 6.3.

Summary of Strain-Displacement Analysis. Before we go on to discuss the

normal stress �x and its relationship to �(x) and M(x), let us examine thoroughly the

expression for extensional strain, Eq. 6.3, which we obtained from the four

Bernoulli-Euler deformation assumptions and the fundamental definition of exten-

sional strain. We observe the following:

1. The extensional strain �x is independent of z, the thickness coordinate of 
the beam, that is, �x � �x(x, y).

2. The extensional strain �x is inversely proportional to the radius of curvature

at cross section x. Figure 6.8 illustrates the fact that as � decreases, the curva-

ture � increases (i.e., the beam becomes more curved), and the strain at any

given fiber increases. For example, the length (which is equal to 

since this is identified as lying in the neutral surface) is the same for all three

figures in Fig. 6.8. But, since the length change in

the bottom fiber as a result of bending increases from left to right in Fig. 6.8,

and therefore the strain increases from the least-curved beam in Fig. 6.8a to

the progressively more-curved beams in Figs. 6.8b and 6.8c.

3. The signs of �(x) and y govern the sign of �x. If �(x) is positive, the center of
curvature lies above the beam, that is, on the �y side of the beam. Therefore,

when �(x) is positive, the deformed beam is concave upward. Because of the

minus sign in Eq. 6.3, the fibers above the neutral surface (i.e., fibers having

positive y) are in compression, while the fibers below the neutral surface are

in tension. This is the case for the beam segment in Fig. 6.9a. If �(x) is nega-

tive, the center of curvature lies below the beam, and the beam is curved

concave downward, as shown as Fig. 6.9b.

4. Finally, the strain �x is proportional to the distance y from the neutral surface.
This linear strain distribution is illustrated in Fig. 6.10.

D*
1E*

1 6 D*
2E*

2 6 D*
3E*

3,

ABA*B*

k¿ � nk

Deformed neutral axis

(Center of antielastic curvature)

(b) The deformed beam segment and its cross section.

ρʹ

Cʹ

M
M

xz

y

(a) The undeformed beam segment
      and its cross section.

x

FIGURE 6.7 Transverse

deformation of a beam 

segment in pure bending.
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FIGURE 6.8 The relation-

ship of the curvature of a beam

to the extensional strain, �x.

FIGURE 6.9 Illustrations

of positive and negative 

curvature.

FIGURE 6.10 The strain

distribution at a cross section

where �(x) is positive.

ρ decreases, curvature increases, strain increases

(a) (b)

ρ
1

ρ
2

ρ
3

(c)

B*
2

C*
2

A*
2A*

1 B*
1

D*
1 E*

1

C*
1

B*
3

C* 
3

A*
3

D*
2 E*

2 D*
3 E*

3

(a) Positive curvature. (b) Negative curvature.

y
Tension

Tension

Compression

Compression

ρ(   > 0)

ρ(   < 0)

x

y

x

C*

C*

(b)

( x negative)�
Compression
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Tension

(x, y)�

y

x

(a)

y
Compression

Tension

ρ (x)

x
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The fact that �x varies linearly with y is completely independent of the material
properties of the beam. For example, the beam could consist of two or more different

materials, like concrete and steel (Section 6.5), or the beam could be partly elastic

and partly plastic (Section 6.7). As long as the deformation can be characterized 

by the four assumptions listed in this section, the extensional strain �x is proportional
to y, as given by Eq. 6.3 and illustrated in Fig. 6.10b.

359
Strain-Displacement Analysis

E X A M P L E  6 . 1

A couple M0 acts on the end of a slender cantilever beam as shown in

Fig. 1. Take where L is the original length of the beam and 2c is

the depth of the beam. (a) Determine an expression for the normalized 

radius of curvature (� /c) if the bottom fiber (at y � �c) is at the tensile

yield strain of the material, �Y. (b) Determine the ratio (�max /c) for this

loading condition. (c) Determine � and �max if L � 15 ft and �Y � 0.001.

L
c

� 30,

ρ

2cc

C

M0

x

y

δmax

L

Fig. 1

Plan the Solution Part (a) is a straightforward application of Eq. 6.3,

which relates extensional strain �x to the radius of curvature of the 

deflection curve. To determine �max in Part (b), we need, in addition, to

use the geometric properties of a circle.

Solution (a) From the strain-displacement equation, Eq. 6.3,

The bottom fiber is in tension. Therefore,

r � �
(�c)

�Y

�x � �
y
r
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so

Ans. (a)

(b) From the sketch, in Fig. 2, of the deflection curve,

and

Therefore, for this particular beam,

or,

Ans. (b)

(c) For L � 15 ft and �Y � 0.001, we get

Finally,

Ans. (c)

Ans. (c)

Review the Solution Note that with the numerical value of L � 15 ft

and the given ratio L /c � 30, c � L/30 � 6 in. Hence, for this 12-in.-depth

beam, a maximum deflection that is less than one-fourth of the depth of

the beam causes the extreme fiber of the beam to reach the yield strain

�Y � 0.001. (Figures 1 and 2 obviously exaggerate the deflection.)

 dmax � r(1 � cos u) � 0.225 ft � 2.70 in.

 r �
L

30 �Y
� 500 ft � 6000 in.

u � 30 �Y � 0.03 rad

dmax

c
�

1

�Y
[1 � cos (30 �Y)]

u �
L
r

�
L
c

 
c
r

� 30 �Y

dmax � r(1 � cos u)

L � ru

r

c
�

1

�Y

ρ

ρ θcos 

Arc length = L

C

δmax

θ

Fig. 2 The geometry of a circular arc.

6.3 FLEXURAL STRESS IN LINEARLY ELASTIC BEAMS

In the previous section, assumptions were made about the geometry of deformation

of slender beams, and an expression for the resulting extensional strain �x was 

derived, Eq. 6.3. The corresponding normal stress in beams, �x, is often called the

flexural stress. To obtain an expression for the flexural stress, we need to consider

the material behavior, that is, the stress-strain-temperature behavior of the material.

To simplify our initial study of stresses in beams, let us assume that the material
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is linearly elastic and isotropic, and that the temperature remains constant. Then,

the following two assumptions permit us to determine the flexural stress �x:

1. The material obeys Hooke’s law, Eq. 2.38a, with �T � 0.

2. The transverse normal stresses, �y and �z, may be neglected in comparison

with the flexural stress, �x.

By combining these two assumptions, we find that the uniaxial stress-strain equation

(6.6)

applies to bending of linearly elastic beams.When Eqs. 6.3 and 6.6 are combined, we

obtain the following expression for the flexural stress:

(6.7)

If E � const, or if E � E(x), the normal stress on a cross section is linear in y,

as given by Eq. 6.8 and indicated in Fig. 6.11.3

(6.8)

As indicated in Fig. 6.11, the stress resultants that are related to the normal

stress �x acting on the cross section are:

(6.9)

A positive moment produces compression in the �y fibers of the beam.

F(x) � �
A

sx dA,  M(x) � ��
A

ysx dA

sx(x, y) �
�E(x)y

r(x)

sx �
�Ey
r

sx � E�x

361
Flexural Stress in Linearly

Elastic Beams

3In Section 6.5 we will consider stresses in nonhomogeneous beams, that is, stresses in beams that are

made of more than one material.

FIGURE 6.11 The flexural stress distribution at a cross section where �(x) is positive.

z

z'

y

y'

dF = σx dA

dA xσ

y

x x

x

M
F = 0

(a) (b)

O

O
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In Section 9.4 we will consider axial deformation combined with bending, but,

for the present discussion of bending alone, let F � 0. Therefore, substituting Eq. 6.8

into Eqs. 6.9, we get

(6.10)

The integrals appearing in Eqs. 6.10 are section properties that are defined in

Appendix C:

(6.11)

where A is the cross-sectional area, is the y coordinate of the centroid of the cross

section, and Iz is the area moment of inertia about the z axis of the cross section.

The most useful formula for moment of inertia, that of a rectangular area, may

be easily derived as follows. For the rectangle in Fig. 6.12, Eq. 6.11c gives

where the z axis passes through the centroid of the cross section and is parallel to

the two sides of length b. See Appendix C.2 for further discussion of moments of 

inertia. A table listing formulas for coordinates of the centroid and for moments of

inertia of a variety of shapes may be found inside the back cover of this book.

In order to satisfy the condition F � 0, we must make . That is, the z axis

of the cross section (labeled the z� axis in Figs. 6.11a and 6.13a) must pass through

the centroid of the cross section.Thus, the x axis passes through the centroid of each
cross section of the undeformed beam. The z� axis is called the neutral axis of the
cross section, or simply the neutral axis (NA), because it is the boundary between

the portion of the cross section that is in compression and the portion that is in tension,

as indicated in Fig. 6.13.4

y � 0

Iz � �
A

y2 dA � �
h/2

�h/2

y2(bdy) � b 
y3

3
` h/2

�h/2

�
bh3

12

y

�
A

dA � A,  �
A

y dA � yA,  �
A

y2 dA � Iz

F � �
E
r �

A

y dA � 0,  M �
E
r �

A

y2 dA
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4In the future, the “z axis of the cross section” will just be labeled z, not z�, even though the true z axis

does not lie in the particular cross section under consideration.

FIGURE 6.12 Notation for

calculating moment of inertia

of a rectangle.

FIGURE 6.13 (a) The location of the neutral axis of the cross section, and (b) the flexural

stress distribution for a homogeneous beam in bending.

h–2

h–2

dy

y

b

C

y

z

xσ

y

x

x

M

y

z′

(a) Cross section. (b) Profile view.

Neutral 
surface
(xz plane)

Centroid of
cross section

Compression
above NA

Tension
below NA
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section (z′ axis)

O
C
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Combining Eqs. 6.10b and 6.11c, we obtain the moment-curvature equation of

Bernoulli-Euler beam theory, namely

(6.12)

The curvature �(x) is related to the radius of curvature �(x) by The

product EI is called the flexural rigidity of the beam. (In Eq. 6.12 the subscript has 

been dropped from Iz to simplify the remainder of the discussion of bending of sym-

metric beams. Subscripts will be needed again in the Section 6.6 on Unsymmetric

Bending.)

We can relate the moment-curvature equation, Eq. 6.12, to the deformed-beam

segments in Fig. 6.9 by noting that a positive bending moment, M(x), leads to a pos-

itive value of �(x), which means that the beam is concave upward, as shown in 

Fig. 6.9a. Conversely, a negative moment produces a negative curvature, which

means that the center of curvature lies in the �y direction, as shown in Fig. 6.9b.

Finally, Eqs. 6.8 and 6.12 may be combined to give the important flexure formula
of Bernoulli-Euler beam theory.5

(6.13)

By making the assumptions that plane sections remain plane and that the material

is linearly elastic with E � E(x), we have obtained an expression for the stress

distribution on a cross section subjected to bending moment M(x). This is the linear

stress distribution illustrated in Fig. 6.14.6

An assumption made in the derivation of the flexure formula, Eq. 6.13, is that

�x is much greater than either �y or �z. It is left as an exercise for the reader to show

that this is a reasonable assumption if the beam is long in comparison with its cross-

sectional dimensions. (Homework Problem 6.3-37)

Flexure
Formulasx �

�My

I

k(x) �
1

r(x)
.

Moment-Curvature
Equation

M �
EI
r

� EI k

363
Flexural Stress in Linearly

Elastic Beams

5According to the sign convention adopted in this text and illustrated in Figs. 5.6 and 6.9, a positive mo-

ment produces compression in the �y fibers of the beam. This results in a minus sign in Eq. 6.13. Some

textbooks adopt a different sign convention that leads to a plus sign in the flexure formula.
6Compressive stresses as well as tensile stresses may be shown acting on the cross section, as in Fig. 6.13b.

However, to emphasize here that �x is linear in y, compressive stresses are shown in Fig. 6.14 as a contin-

uation of the straight-line plot that depicts tensile stresses.

FIGURE 6.14 The flexural stress distribution in a linearly elastic beam.
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c06StressesInBeams.qxd  9/9/10  7:30 PM  Page 363



E X A M P L E  6 . 2

The cross section of a beam is a T with the dimensions shown in Fig. 1.

The moment at the section is M � 4 kip � ft. Determine (a) the location

of the neutral axis of the cross section, (b) the moment of inertia with 

respect to the neutral axis, and (c) the maximum tensile stress and the

maximum compressive stress on the cross section.

Plan the Solution To use the flexure formula, Eq. 6.13, we need first to

locate the centroid of the cross section and then compute the moment of

inertia about an axis through the centroid (Appendix C). Since M is pos-

itive, the maximum compressive stress occurs in the top fibers, and the

maximum tensile stress occurs in the bottom fibers.

Solution (a) Locate the neutral axis.As indicated in Fig. 2, we can pick an

arbitrary origin at the bottom and let a coordinate in the y-direction be

called �.Then, by summing area contributions to the first moment, we have

or

where

Then,

Ans. (a)

(b) Determine the moment of inertia with respect to the neutral axis. The

moment of inertia of a rectangle about an axis through its own centroid is

and, from the parallel-axis theorem, the moment of inertia about an axis

through C� parallel to the axis through the centroid C is

Therefore,

� c 1

12
(1 in.)(5 in.)3 � (1 in.)(5 in.)(1.5 in.)2 d

 � c 1

12
(5 in.)(1 in.)3 � (5 in.)(1 in.)(1.5 in.)2 d

 I � (IC1
� A1d2

C1C) � (IC2
� A2d2

C2C)

IC ¿ � IC � Ad2
CC ¿

IC �
1

12
 bh3

h �
40 in3

10 in2
� 4.0 in.

A � A1 � A2 � (5 in2) � (5 in2) � 10 in2

hA � h1A1 � h2A2 � (5.5 in.)(5 in2) � (2.5 in.)(5 in2) � 40 in3

�
A

h dA � �
A1

h dA � �
A2

h dA

Fig. 2

Fig. 1

4 kip · ft

1 in. 2 in.2 in.

1 in.

5 in.
Web

Flange

5.5 in.
5 in.

1 in.

2 in.2 in.

0.5 in.

y
0.5 in.

2.5 in.

C2
z2

z

η–

η

C

C1z1 (1)

(2)
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Beam Cross-Sectional Properties—Section Properties is an MDS com-

puter program module for calculating section properties of plane areas: area, loca-

tion of centroid, moments of inertia, product of inertia, orientation of principal axes,

etc. Use it to determine the section properties of the T section in Example Problem 6.2,

and similar problems.

MDS6.1

so,

Ans. (b)

(c) Compute �max T and �max C. The maximum compression occurs at the

top of the beam, and the maximum tension occurs at the bottom of the

beam. From the flexure formula, Eq. 6.13,

Ans. (c)

Review the Solution The centroid must lie between the centroids of

the two areas A1 and A2. Furthermore, since the areas are equal, the 

combined centroid C lies midway between the individual centroids, as

we obtained above.

To see if the order of magnitude of I is reasonable, we can compare

our answer with the moment of inertia of a 1 in. 	 6 in. web about its 

own centroid Thus, the value of I � 33.3 in4 appears

reasonable.

Finally, since the T-section is not symmetric about the neutral axis,

the maximum tension and maximum compression are not equal in mag-

nitude, but, since � is linear in y, their magnitudes are in the ratio of the

distances to the top and bottom fibers.

(See Homework Problem 6.6-6, where the effect of misalignment of

the load is examined.)

( 1
12(1)(6)3 � 18 in4).

smaxC � �2.88 ksi smax T � 5.76 ksi,

 � 5.76 ksi (5.76 ksi T)

 smax T � s(x, �4 in.) �
�(4 kip � ft)(12 in./ft)(�4 in.)

33.3 in4

 � �2.88 ksi (2.88 ksi C)

 smax C � s(x, 2 in.) �
�(4 kip � ft)(12 in./ft)(2 in.)

33.3 in4

sx �
�My

I
:

I � 33.3 in4

E X A M P L E  6 . 3

For the beam of Example 6.2, (a) determine the resultant compressive

force FC, the resultant tensile force FT, and the distance that separates

them, as indicated in Fig. 1; and (b) show that FC and FT form a couple of

magnitude M � 4 kip 
 ft.
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Plan the Solution We can sketch the stress distribution on a figure like

Fig. 6.13b. Then we can apply the standard procedures for locating the

resultant of distributed forces to get the magnitude and the location of

FC and FT.

Solution (a) Determine the resultant compressive force, the resultant
tensile force, and the distance between them. We first represent the area

under various portions of the stress distribution by forces FC1, FC2, and 

so forth, as indicated in Fig. 2b. For example, from the fact that FT is the

resultant of the tensile stress, we have

Similarly,

Since FC is the resultant of FC1, FC2, and FC3, we determine its location

by computing first moments using the dimensions shown in Fig. 3a:

So,

dC �
(0.72 kips)(0.67 in.) � (7.20 kips)(1.50 in.) � (3.60 kips)(1.67 in.)

11.52 kips

FC1(dC1) � FC 2(dC 2) � FC 3(dC 3) � FCdC

 FC � FC1 � FC 2 � FC 3 � 11.52 kips

 FC 3 �
1

2
 (1.44 kips/in2)(5 in.)(1 in.) � 3.60 kips

 FC 2 � (1.44 kips/in2)(5 in.)(1 in.) � 7.20 kips

 FC1 �
1

2
 (1.44 kips/in2)(1 in.)(1 in.) � 0.72 kips

FT �
1

2
(5.76 kips/in2)(1 in.)(4 in.) � 11.52 kips

Fig. 1

d

FC

FT

5.76 ksi

2 in.2 in. 1 in.

1 in.

1.44 ksi

1

2 3

1.44 ksi

1 in.

4 in.

C

FC3FC2

FC1

FT

z

(a)

(b)

FC3FC2 FC
1.67 in.1.50 in.

0.67 in.

y

x x
FC1

FT

(a) (b)

1.50 in.

2.67 in.

FT

2.67 in.

yFig. 2

Fig. 3
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While the previous two examples illustrate the calculation of flexural stresses

on a particular cross section with prescribed moment, it is also important for the 

absolute maximum tensile stress and absolute maximum compressive stress in a beam

under given support and loading conditions to be determined.This is where a bending-

moment diagram is very useful, as you will see in the following example.

or

as indicated in Fig. 3b. Therefore,

Ans. (a)

(b) Determine the magnitude of the couple formed by FC and FT. Since 

FC � FT, the resultant force on the cross section is zero. The couple

formed by FC and FT is given by

Ans. (b)

which is the value of the applied moment.

Review the Solution The results of this example agree with our solu-

tion in Example 6.2. We can conclude that the stresses on a cross section

due to a bending moment acting on the cross section are equivalent to a

couple consisting of equal tensile and compressive forces acting on their

respective portions of the cross section.

M � FCd � FTd � (11.52 kips)(4.17 in.) � 48.0 kip � in.

 FC � FT � 11.52 kips,     d � 4.17 in.

 d � dC � dT � 1.50 in. � 2.67 in. � 4.17 in.

dC � 1.50 in.

E X A M P L E  6 . 4

A beam whose cross section is the T section of Example Problem 6.2 is

subjected to the loading shown in Fig. 1a. The shear diagram that corre-

sponds to this loading is given in Fig. 1b. (a) Using the procedure illus-

trated in Examples 5.7 through 5.9 (Section 5.5), sketch the moment 

diagram for this beam. (b) Compute the maximum compressive flexural

stress and the maximum tensile flexural stress in this beam.

(b) Shear diagram.(a) Loading diagram.

600

–400

4 8
12 x(ft)

V(lb)

4 ft4 ft4 ft
A DCB

100 lb/ft 1000 lb

1000 lb 400 lb

Fig. 1
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Plan the Solution Once we have constructed the moment diagram,

using Eqs. 5.3 and 5.7, we can determine the cross sections at which we

must calculate maximum and minimum flexural stresses.The flexure for-

mula, Eq. 6.13, may then be used to calculate the maximum compressive

stress and the maximum tensile stress.

Solution (a) Sketch the moment diagram. Use

and

to construct the moment diagram (Fig. 2a). From the diagram, the maxi-

mum negative moment is MB � M (4 ft) � �800 lb � ft, and the maximum

positive moment is MC � M (8 ft) � 1600 lb � ft.

M2 � M1 � �
x2

x1

V(x) dx

V �
dM
dx

4
8 12

x(ft)

1600

M(lb.ft)

–800

(a) Moment diagram. (b) Deflection curve.

Inflection point (M = 0)

(b) Compute the maximum compressive flexural stress and the maximum
tensile flexural stress. In Example Problem 6.2, the location of the cen-

troid and the value of I � Iz were calculated. These are shown in Fig. 3.

At section B, the top of the beam is in tension and the bottom is in com-

pression; at section C the top of the beam is in compression and the bot-

tom is in tension. Just to be safe, we can compute �x at these four points

and then select the maxima. We use the flexure formula, Eq. 6.13.

 sx(8 ft, �4 in.) �
�(1600 lb � ft)(12 in./ft)(�4 in.)

33.3 in4
� 2304 psi

 sx(8 ft, 2 in.) �
�(1600 lb � ft)(12 in./ft)(2 in.)

33.3 in4
� �1152 psi

 sx(4 ft, �4 in.) �
�(�800 lb � ft)(12 in./ft)(�4 in.)

33.3 in4
� �1152 psi

 sx(4 ft, 2 in.) �
�(�800 lb � ft)(12 in./ft)(2 in.)

33.3 in4
� 576 psi

sx �
�My

I
:

Fig. 2

Fig. 3

2 in.

I ≡ Iz = 33.3 in4

4 in.

C
z

y
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Beam Normal Stresses—Flexure is an MDS computer program

module that combines a program for plotting shear and moment diagrams for 

statically determinate beams, a program for computing section properties, and a

program for computing flexural stress in beams.

In Example Problems 6.2 and 6.4, both the loading and the dimensions, includ-

ing the shape of the cross section, were given. In Section 6.4 we will consider a

method for selecting an appropriate cross section when the loading on the beam is

given. This, then, is a design exercise.

MDS6.2 & 6.3

Therefore, the maximum tensile flexural stress occurs at the bottom of

the beam at section C. By coincidence, the particular loading and cross

section of this beam produce equal maxima of compressive flexural

stress at the bottom of the beam at B and at the top of the beam at C.

The flexural stresses at sections B and C, rounded to the nearest 10 psi,

are indicated on Fig. 4.

Ans. (c)

Review the Solution First, as a check on the moment diagram, we can

see if the moment distribution corresponds to a reasonable shape of the

deflected beam, according to Fig. 6.9 and Eq. 6.12.A sketch of the deflec-

tion curve (Fig. 2b) is drawn adjacent to the moment diagram. The shape

of the deflection curve does seem reasonable. The values of bending 

moments MB and MC can be checked easily by using free-body diagrams

based on Fig. 1a. Each does have the correct magnitude and sign. The

magnitudes and signs of the four calculated stresses are easily checked.

smax T � 2300 psi,          smax C � �1150 psi

Fig. 4

4 ft4 ft4 ft

A B C D
580 psi T 1150 psi C

2300 psi T1150 psi C

7For example, the Manual of Steel Construction [Ref. 6-2], published by the American Institute of Steel

Construction, describes how to design steel beams for structural applications.

6.4 DESIGN OF BEAMS FOR STRENGTH

The design of beams for specific applications is usually governed by detailed speci-

fications and codes involving design requirements and procedures that are beyond

the scope of this text.7 In this section, however, we will consider the design of beams

based on allowable flexural stress. That is, given the bending-moment distribution in

a beam, and given the allowable tensile stress and allowable compressive stress of

the material to be used, an appropriate beam cross section is to be selected. We will

return to the topic of design of beams in Chapter 9, where the combined effect of

flexural stress (�x) and transverse shear stress ( ) will be considered.

Before we consider the actual process of selecting the cross section of a beam,

let us first look at the types of beams available for selection. Standard sizes are

available for beams made of wood and for beams made of steel, aluminum, and

other metals. Appendices D.1 through D.10 give the properties of selected steel,

aluminum, and wood structural shapes. More extensive tables may be found, for 

example, in publications of the American Institute of Steel Construction (AISC)

[Ref. 6-2] and the Aluminum Association [Ref. 6-3]. Figure 6.15 illustrates five

structural steel shapes.

txy
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Shapes like the ones illustrated in Fig. 6.15 are produced by passing a hot billet

of metal between sets of rollers that, after several passes, produce the desired shape.

The most commonly used shape is the wide-flange section illustrated in Fig. 6.15a.

The American Standard beam, commonly called the I-beam (Fig. 6-15b), is less fre-

quently used because it tends to have excessive material in the web, and its flanges

are generally too narrow to provide adequate lateral stiffness. A W-shape, S-shape,

or C-shape is designated by its symbol, followed by its nominal depth in inches and

its weight per foot in pounds (e.g., W12	96, S24	100, C10	25). In SI units, the

nominal depth is given in mm and the mass is given in kg/m. Angles are designated

by the symbol L, followed by the leg lengths (longer leg first), followed by the thick-

ness (e.g., L8	8	3/4, L5	3	1/2).

In the case of wood beams, it is important to note that the quoted dimensions

of lumber are nominal, rough-cut, dimensions. The actual net dimensions, or finish
dimensions, which are given in Appendix D.8, are smaller. Thus, the finish dimen-

sions should be used in all structural calculations.

The flexure formula, Eq. 6.13, forms the basis for beam design based on flex-

ural stress. Consider a general situation like Example Problem 6.4, where the beam

is not doubly symmetric and where the maximum positive bending moment and

the maximum negative bending moment have different magnitudes. From Eq. 6.13

the fiber stresses at the extreme (i.e., top and bottom) fibers may be written,

respectively, as

(6.14)

sbot � s2 �
�M(�c2)

I
�

Mc2

I
�

M
S2

stop � s1 �
�M(c1)

I
�

�Mc1

I
� �

M
S1
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FIGURE 6.15 Several standard rolled structural steel shapes.

d 1 1
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2

2

1 1

3
3

3
3

4

4

4

4

2

1 1

2

2

1 1

2

2

a

b

(a) Wide-flange section.
(W shape)

(b) I-beam section.
(S shape)

(c) Channel section.
(C shape)

(d) Equal-leg angle section.
(L shape)

(e) Unequal-leg angle section.
(L shape)
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where

(6.15)

In this expression, I is the moment of inertia about the neutral axis, and c is the dis-

tance to an extreme fiber (see Fig. 6.16a). The quantity S, called the elastic section
modulus, is a property of the cross-sectional dimensions. For most structural

shapes, the values of S are tabulated, along with the location of the centroid of the

cross section and the moment of inertia values (e.g., see Appendices D.1 through

D.10).

Allowable-Stress Design.8 Consider first the simple case of selecting a beam

with doubly symmetric cross section made of material whose allowable stress (with

the same magnitude in both tension and compression) is �allow. The value of �allow is

determined by applying a factor of safety to the value of the yield strength of the

material, as given in a table of material properties (see Appendix F). Let Mmax be

the maximum absolute value of the bending moment M(x), that is, let

(6.16)

as illustrated in Fig. 6.17. For design purposes, it is convenient to combine 

Eqs. 6.14, 6.15, and 6.16 and write the resulting allowable-stress design equation in

Mmax K max 
x

|M(x) |

S �
I
c

371
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FIGURE 6.16 Examples of the stress distribution in an unsymmetric beam.

y

σx

|σ1|

σ2

σ1

c1

c2

Positive M Compression

Tension

y

σx

Negative M
Compression

Tension

(a) Positive-moment case. (b) Negative-moment case.
|σ2|

8Although the Load and Resistance Factor Design Method, mentioned briefly in Section 2.8, is now

widely used in designing beams (e.g., the AISC Manual of Steel Construction, [Ref. 6-2]), application of

that method is beyond the scope of this textbook.

FIGURE 6.17 An example bending-moment diagram.

M1

M(x)

⎥M2⎥ > M1 > M3M3

M2

x
Mmax
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the form

(6.17)

By selecting a section with S � Sdesign, we guarantee that the magnitude of the 

flexural stress will not exceed �allow anywhere in the beam.

Although there are a number of factors that must be considered in any design

process in order to minimize the initial cost and the operating cost, it is usually 

desirable to select the lightest-weight structural member that satisfies the strength

requirement (and all other requirements that are applicable).The following example

problem illustrates this design process.

Sdesign �
Mmax

sallow

372
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9There are additional candidate sections in the complete AISC tables [Ref. 6-2].

(c)

x(ft)

M(kip · ft)

50

–48

B
C

8 kips4 kips/ft

12 ft 6 ft

A

(a)

(b)

20

8

5 x(ft)

V(kips)

–28

Fig. 1

From Appendix D.1, select a wide-flange steel beam to support the load

distribution shown in Fig. 1a. Include the weight of the beam in your cal-

culations. The moment diagram for the beam, neglecting the weight of

the beam, is shown in Fig. 1c. Let �allow � 19 ksi.

Plan the Solution We can use Eq. 6.17 to compute the required section

modulus. We need to pick the lightest section, with some margin in S so

that we can accommodate the maximum moment with the beam weight

included.

Solution

Preliminary Shape Selection: From Eq. 6.17,

From Appendix D.1, there are two candidate sections, a W10	30 with

S � 32.4 in3 and a W14	26 with S � 35.3 in3.9 The W10	30 weighs 4 lb/ft

more than the W14	26, so it seems that the best choice would be the

W14	26. However, since this beam is deeper than the W10	30 (13.91 in.

vs 10.47 in.), there may be justification for choosing the W10	30 as long

as it meets the strength requirement. So, let us see if the W10	30 meets

the design requirements when the weight of the beam is added to the

loads in Fig. 1a.

Equilibrium Check: We could construct new shear and moment dia-

grams, but it may be quicker to use free-body diagrams. The maximum

positive moment will occur at the point xm, where V(xm) � 0 (xm � 5 ft

in Fig. 1b). We first need to compute the reaction at A, which is labeled

Ay in Fig. 2.

Sdesign �
Mmax

sallow

�
(50 kip � ft)(12 in./ft)

(19 kips/in2)
� 31.6 in3
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We can now determine the maximum positive moment using Fig. 3.

Therefore, the maximum positive moment occurs at

The maximum negative moment will still occur at B, and its value

can be computed using Fig. 4.

For the W10	30 beam, w � 30 lb/ft � 0.030 kips/ft. Therefore,

So Mmax � 50.3 kip � ft, which would require

Final Shape Selection: Since the W14	26 beam is lighter than the

W10	30, and since its section modulus is greater (35.3 in3 vs 32.4 in3), the

W14	26 would be the best design, unless its added depth is, for some

reason, undesirable. In that case, the W10	30 would be a perfectly satis-

factory design choice.

Review the Solution It is interesting to note that an 18-ft W14	26

beam, weighing 468 lb is able, in this case, to support a total load of

56,000 lb. (We will again consider the design of the beam in Fig. 1 in

Section 9.3, after we have taken up the topics of shear stress in beams

and the state of stress at a point.)

Sdesign �
(50.3 kip � ft)(12 in./ft)

19 ksi
� 31.8 in3

M(xm) � 50.3 kip � ft,          MB � �48.5 kip � ft

MB � (�48 � 18w) kip � ftaaMb
B

� 0:

M(xm) �
(20 � 4.5w)2

2(4 � w)
 kip � ft

M(xm) � (20 � 4.5w) a20 � 4.5w
4 � w

b � (4 � w) a20 � 4.5w
4 � w

b2

 a1

2
b

aaMb
D

� 0:

xm �
20 � 4.5w

4 � w

V(xm) � (20 � 4.5w) � (4 � w)xm � 0

Ay � (20 � 4.5w) kips

�(w kips/ft)(18 ft)(3 ft) � Ay(12 ft) � 0

(4 kips/ft)(12 ft)(6 ft) � (8 kips)(6 ft)

aaMb
B

� 0:

Fig. 2 Free-body diagram.

C

8 kips4 kips/ft
w kips/ft

12 ft 6 ft

A
B

Ay By

Fig. 3

D V(xm) = 0

M(xm)

(4 + w) kips/ft

xm

A

20 + 4.5w

Fig. 4

C

8 kips
w kips/ft

6 ft
B

VBMB
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The previous discussion and Example Problem 6.5 assumed the same allowable

stress in tension and compression and assumed that the choice of beam cross sec-

tion was to be made among candidate doubly symmetric sections. If the allowable

stresses in tension and compression are different, this must be taken into account,

and stresses must be computed where M(x) is a maximum and also where it is a 

minimum. Also, if the cross section is not symmetric about the neutral axis,

Eqs. 6.14 must be applied at the sections of maximum positive moment and maximum

negative moment.

Beam Design—Flexure is an MDS computer program module 

that combines a program for plotting shear and moment diagrams for statically 

determinate beams, a program for computing section properties, and a program for

computing normal stresses in beams.

In Example Problem 6.5 you learned that it is desirable to select a beam that

maximizes S, the elastic section modulus, and minimizes the weight. The next 

example problem indicates how the shape of the cross section affects these two

quantities and, more importantly, the strength-to-weight ratio.

MDS6.4 & 6.5

374
Stresses in Beams
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The W12	50 section, the S12	50 section, and the S15	50 section all

weigh 50 lb/ft and have a cross-sectional area of 14.7 in.2 Compare the

W12	50 section, the S12	50 section, the S15	50 section, and the three

“compact” sections in Fig. 1 on the basis of section modulus, S. Let 

A � 14.7 in2 in each case. In effect, your comparison will be on the basis

of strength-to-weight ratio, since all candidate sections have the same

area and thus the same weight.

Plan the Solution Equation 6.15 gives the formula for the elastic sec-

tion modulus. S, and Appendix C.2 and inside back covers give formulas

for the area moments of inertia, I, for the compact sections. Appendices

D.1 and D.3 give S values for the structural steel shapes.

Solution From Eq. 6.15,

and, from Appendix C.2,

Square:

Rectangle:

Circle:  S �
I
c

� apr4

4
b a1

r
b �
pr3

4

 S �
I
c

� c b(2b)3

12
d a1

b
b �

2b3

3

 S �
I
c

� a a4

12
b a2

a
b �

a3

6

S �
I
c

Fig. 1 Three “compact” shapes.

a

a

b

2b

r

(a)

(b)

(c)
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Shape S (in3)

W12	50 64.7

S12	50 50.8

S15	50 64.8

Rectangle 13.3

Square 9.39

Circle 7.95

Since all shapes are to have an area of 14.7 in2,

Then,

a � 3.834 in.,     b � 2.711 in.,     r � 2.163 in.

FIGURE 6.18 Some non-

homogeneous beams.

10Beams of this type are sometimes called composite beams. The term nonhomogeneous beams is used

here to avoid confusion with structures made of composite materials, which were discussed briefly in

Section 2.14.

6.5 FLEXURAL STRESS IN NONHOMOGENEOUS BEAMS

Many structural applications of beams involve nonhomogeneous beams,10 that is,

beams made of two or more materials. Some significant examples, illustrated in 

Fig. 6.18. are: (a) reinforced concrete beams, (b) steel-wood “sandwich” beams, (c)

bimetallic beams, and (d) fiber-reinforced-composite beams.The kinematic assump-

tions of Bernoulli-Euler beam theory apply to nonhomogeneous beams as well as

to homogeneous ones, so the strain-displacement relationship of Eq. 6.3 applies.

However, since the material properties are not constant throughout the cross-

section, we must modify the analysis of Section 6.3 to accommodate the nonuniform

material properties. Two methods are presented, a direct method and a transformed-
section method.

Direct Method. Consider the simplest type of nonhomogeneous beam, namely,

a rectangular beam consisting of two linearly elastic materials, as shown in Fig. 6.19.

The two materials are labeled 1 and 2. We will assume, for purpose of illustration,

that E1 � E2.

Strain Distribution: The strain distribution in Fig. 6.19b is given by Eq. 6.3, that is,

(6.3)

repeated
�x �

�y
r

(a) Reinforced
      concrete
      beam.

(b) Sandwich
      beam.

(c) Bimetallic
      beam.

(d) Composite
      beam.

(e) Plastic-coated
      steel pipe.

Review the Solution Two conclusions should be apparent from the 

preceding table: (a) “compact” shapes are not as efficient as beams that

have a web connecting two flanges, and (b) wide-flange beams are well

proportioned with regard to accommodating flexural stresses. For most

applications the W12	50 shape would be more desirable than the

S15	50 shape because it has essentially the same value of S but it is not

as deep as the S shape, and it has wider flanges than the S shape.

375
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Stress Distribution: The flexural stress, which is illustrated in Fig. 6.19c, is given by

(6.18)

Location of the Neutral Axis: As in Section 6.3, we must first locate the neutral 

surface by setting F(x) � 0. From Eqs. 6.9a and 6.18, we get

(6.19)

This is a generalization of the equation defining the centroid of a cross section. In

fact, we can write the above equation in the form

(6.20)

This equation, which is used to establish the position of the neutral surface (i.e., the

xz plane) in the beam, is illustrated in Example 6.7.

Moment-Curvature Equation: Once the neutral axis has been located in the cross

section, Eq. 6.9b is combined with Eqs. 6.18 to give

(6.21)

or

(6.22)

where , the weighted flexural rigidity, is given by

(6.23)EI � (E1I1 � E2I2)

EI

Moment-Curvature
EquationM �

EI
r

M � ��
A

ysx dA �
1

r
cE1�

A1

y2 dA � E2�
A2

y2 dA d

E1y1A1 � E2y2A2 � 0

F(x) � �
A

sx dA � �
E1

r �
A1

y dA �
E2

r �
A2

y dA � 0

sx2
� E2�x �

�E2y
r

sx1
� E1�x �

�E1y
r
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FIGURE 6.19 The strain distribution and stress distribution in a nonhomogeneous, linearly

elastic beam.

z

y

1
Stiffer
material

(a) Cross section. (b) Strain distribution. (c) Stress distribution.

Less stiff
material

Neutral axis

2

h1

h2

b

y

σx�x

y
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It should be carefully noted that I1 and I2 are the moments of inertia of areas 1 and

2 about the neutral axis, defined by Eq. 6.20, not about their respective centroidal

axes. Equation 6.22 is the moment-curvature equation for a beam that is nonhomo-

geneous within the cross section. Equations 6.20 and 6.23 can readily be extended

to accommodate additional materials, but such situations are rare.

Flexure Formulas: Finally, we substitute Eq. 6.22 into Eqs. 6.18 to get the following

expressions for the flexural stresses in materials 1 and 2.

(6.24)
Flexure 
Formulassx1

�
�ME1y

EI
,         sx2

�
�ME2y

EI

377
Flexural Stress in

Nonhomogeneous Beams

E X A M P L E  6 . 7

A nonhomogeneous beam having the dimensions shown in Fig. 1a is con-

structed by gluing a thin aluminum plate to the top side of a square wood

beam. Take E1 � Ealum. � 70 GPa and E2 � Ewood � 12 GPa.

Determine the maximum flexural stress in the aluminum and the

maximum flexural stress in the wood when a moment M � 3 kN � m is

applied in the manner indicated in Fig. 1b.

Plan the Solution We must use Eq. 6.20 to locate the neutral axis, and we

can then use Eqs. 6.24 to compute the flexural stresses in the two materials.

Solution

Neutral-Axis Location: The neutral axis of the beam is located at dis-

tance c1, from the top of the beam, as indicated in Fig. 2. From Eq. 6.20.

Then,

and

Moment of Inertia: Since the moments of inertia I1 and I2 are to be taken

about the z axis (neutral axis), we must use the parallel-axis theorem.

 I1 � 1.215(10�6) m4

 � 1.215(106) mm4 � 1.215(106) mm4 (103 mm/m)�4

 �
(100 mm)(10 mm)3

12
� (100 mm)(10 mm)(34.74 mm)2

 I1 �
b1h3

1

12
� A1y2

1

y1 � 34.74 mm,  y2 � �20.26 mm

c1 � 39.74 mm,  c2 � 70.26 mm

�(12 GPa)(10 000 mm2)(c1 � 60 mm) � 0

(70 GPa)(1000 mm2)(c1 � 5 mm)

E1y1A1 � E2y2A2 � 0

Fig. 2 Location of neutral axis.

Fig. 1 A beam made of two materials.

(b)

(a) 100 mm

10 mm

M

100 mm

(1)

(2)

c2

c1

(–y1 = c1 – 5 mm)

(–y2 = c1 – 60 mm)

C1

C2

Neutral
axis

100 mm

y

z
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Similarly,

Before calculating the flexural stresses we can check these moments of

inertia by using the equation

But,

Flexural Stresses: The flexural stresses in materials 1 and 2 are given by

Eqs. 6.24, with defined by Eq. 6.23.

Finally, the maximum stresses in materials 1 and 2, which occur at y � c1

and y � �c2, respectively, are

Ans.

Review the Solution This is the type of problem where we should

check our result at each major step, as we did for the moment of inertia.

We should expect the stiffer aluminum to experience higher stresses

than those in the wood, and this is the case here.

This same problem is solved, in Example Problem 6.8, by the trans-
formed-section method.

 (sx1
)max � �35.6 MPa,          (sx2

)max � 10.79 MPa

 � 10.79(103) kN/m2 � 10.79 MPa

 �
�(3 kN � m)(12 � 106 kN/m2)(�70.26 � 10�3 m)

234.3 kN � m2

 (sx2
)max �

�ME2(�c2)

EI

 � �35.6(103) kN/m2 � �35.6 MPa

 �
�(3 kN � m)(70 � 106 kN/m2)(39.74 � 10�3 m)

234.3 kN � m2

 (sx1
)max �

�ME1(c1)

EI

 � 234.3(103) N � m2 � 234.3 kN � m2

 � [12(109) N/m2] [12.439(10�6) m4]

 EI � E1I1 � E2I2 � [70(109) N/m2] [1.215(10�6) m4]

EI

 � 13.65(106) mm4

 �
1

3
 (100 mm)(39.74 mm)3 �

1

3
 (100 mm)(70.26 mm)3

 Iz � (Iz)area
above 

� (Iz)area
below

Iz � I1 � I2 � 13.65(106) mm4

I2 � 12.439(10�6) m4
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A nonhomogeneous beam may also be constructed by forming a sandwich

beam that is symmetric about the plane of loading, as illustrated in Fig. 6.20. For 

example, beams of this type may be constructed by bonding wood beams to a 

steel-plate core. In this case Eqs. 6.23 and 6.24 are used, but it is unnecessary to use

Eq. 6.20 since the location of the neutral axis is obvious.

Transformed-Section Method. Equations 6.18, 6.20, and 6.22 are the key equations

in the analysis of nonhomogeneous beams since they completely relate the flexural

stress distribution to the stress resultants F(x) � 0 and M(x). By creating a trans-
formed section it is possible to treat a nonhomogeneous beam essentially the same

way as a homogeneous beam. That is, the neutral axis passes through the centroid 
of the transformed section, and the flexural stress is determined by a simple flexure
formula of the form

(6.13)

repeated

Figure 6.21 shows the original two-material cross section (Figs. 6.21a, b) and

the transformed section with material 2 as the reference material (Fig. 6.21c).

(Material 1 is taken to be the stiffer material, as indicated in Fig. 6.19.) Note that

the transformed material (1) is “widened” (since E1 � E2) only in the z direction;

it is unchanged in the y direction. We want y-distances to be the same in the origi-

nal and the transformed section so that the distance y in the flexure formula will

be unaltered.

s �
�My

I

379
Flexural Stress in

Nonhomogeneous Beams

(a) Profile view. (b) Cross section.

yy

zx

FIGURE 6.20 A form of nonhomogeneous beam.

FIGURE 6.21 Basic geometry of the transformed section representing a nonhomoge-

neous beam.

y

1

2

h1

h2

b

y

1

2

z

b

y
dy

dA
dz

y

1t

Ct

2

z

b

y

ndz

E1 > E2
E1––E2

n ≡

dy

dA1t

nb

(a) Original cross
      section.

(b) Original cross
      section with
      dA = dy dz.

(c) Transformed cross
      section with
      dA1t = ndA.
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Also, if we rewrite Eqs. 6.19 and 6.21, substituting dydz for dA,

it is clear that, in order to leave y terms unchanged, we should group moduli E1 and

E2 with dz, as illustrated in Fig. 6.21c.

Neutral Axis of the Transformed Section: Let the ratio of moduli, with E2 as the

reference, be

(6.25)

Then, Eq. 6.19, which locates the neutral axis, can be written as

or, for the transformed cross section At simply

(6.26)

Therefore, the neutral axis passes through the centroid of the transformed section,
just as it would pass through the centroid of a homogeneous beam.

Moment-Curvature Equation: Equation 6.21 is the moment-curvature equation for

a two-material, nonhomogeneous beam, and we want this equation to hold for the

transformed section. Introducing the modulus ratio n, we can write Eq. 6.21 as

It is clear that the term in brackets in the above equation is just the moment of 

inertia of the transformed section about its neutral axis (centroid). Hence, the 

moment-curvature equation can be written as

(6.27)

where It is given by

(6.28)It � �
At

y2 dAt

Moment-Curvature
Equation

M �
E2It

r

M �
E2

r
c �

A1

y2(n dA) � �
A2

y2 dA d

�
At

y dAt � 0

�
A1

y (n dA) � �
A2

y dA � 0

n �
E1

E2

 M � ��
A

ysx dA �
1

r
 c �

A2

y2 (dy E1 dz) � �
A2

y2 (dy E2 dz) d

 F(x) � �
A

sx dA � �
1

r �
A1

y (dy E1 dz) �
1

r �
A2

y (dy E2 dz) � 0

380
Stresses in Beams

c06StressesInBeams.qxd  9/9/10  3:46 PM  Page 380



Flexure Formulas: Finally, we can substitute Eq. 6.27 into Eqs. 6.18 to determine the

stress distribution in each material. We get

(6.29)

Thus, the stress in the reference material is computed using the standard flexure 

formula, but the stress in the transformed material must be multiplied by the 

modulus ratio, n.

Material 2 was taken as the reference material for the transformed-section

analysis in Eqs. 6.25 through 6.29. Usually the less-stiff material is taken as the ref-

erence material, so that n � 1, but this is not essential. However, since the labeling

of materials as “material 1” and “material 2” is completely arbitrary, the less-stiff

material can always be labeled as “material 2.”

 sx2
� �

E2y
r

� �
My

It

 sx1
� �

E1y
r

� n a�My

It
b
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Solve the problem stated in Example Problem 6.7 using the transformed-

section method, with material 2 as the reference material.

Plan the Solution The following four steps are required to solve this

problem:

1. Sketch the transformed section using the modulus ratio n as the 

“z-stretch factor.”

2. Locate the neutral axis (the centroid of the transformed section).

3. Compute It for the transformed section.

4. Use Eqs. 6.29 to compute the stresses.

Solution

Transformed Section: The modulus ratio (Eq. 6.25) is

Therefore, the aluminum part of the cross section must be stretched by a

factor n � 5.833. The resulting transformed section is shown in Fig. 1.

n �
E1

E2

�
70 GPa

12 GPa
� 5.833

Fig. 1 The transformed section.

c2

c1

100 mm

583.3 mm

y

z
100 mm

10 mm
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Neutral Axis: Since the transformed beam is “homogeneous” with 

E1 � E2, the neutral axis passes through the centroid of the transformed

section. Therefore,

and

Moment of Inertia:

Flexural Stresses: Using Eqs. 6.29, we get

Ans.

Review the Solution We have obtained the same answers as in Example

Problem 6.7, so we can assume that they are probably correct.

 sx1
� �35.6 MPa,  sx2

� 10.79 MPa

 sx2
�

�M(�c2)

It
�

(�3 kN � m)(�70.26 	 10�3 m)

(19.53 	 10�6 m4)
� 10.79 MPa

 � �35.6 MPa

 sx1
� n a�Mc1

It
b �

5.833 (�3 kN � m)(39.74 	 10�3 m)

(19.53 	 10�6 m4)

 � 19.53(106) mm4 � 19.53(10�6) m4

 �
1

12
 (100 mm)(100 mm)3 � (100 mm)(100 mm)(�20.26 mm)2

 �
1

12
 (583.3 mm)(10 mm)3 � (583.3 mm)(10 mm)(34.74 mm)2

 It � I1t � I2 � a a 1

12
 bth

3 � Atd
2b

y2 � �20.26 mmy1 � 34.74 mm

c1 � 39.74 mm,  c2 � 70.26 mm

(583.3 mm)(10 mm)(c1 � 5 mm) � (100 mm)(100 mm)(c1 � 60 mm) � 0

Since the only difference between solving a transformed-section nonhomoge-

neous beam problem and solving a homogeneous beam problem is the multiplication

of stress in the transformed area by n, this method for solving nonhomogeneous

beam problems is preferred over the direct method used in Example Problem 6.7.

Composite Beams—Flexure is a computer program module that

uses the transformed-section method for analyzing the distribution of flexural stress

in nonhomogeneous beams, like Example Problem 6.8.

MDS6.6 & 6.7

382
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Thus far in Chapter 6, we have been considering flexural stress and strain in beams

whose cross-sectional shape and whose loading and support conditions produce

bending that is confined to a longitudinal plane of symmetry (LPS) of the beam.This

simplifies the analysis in two important respects. First, the deflection of the beam can

be characterized by a deflection curve in the LPS (e.g., Fig. 6.1); second, there is no

tendency of the beam to twist. However, we also need to be able to analyze the be-

havior of beams that are not loaded and supported in this simple manner.

In Chapter 9 we will consider combined bending and torsion, as would be expe-

rienced, for example, by a beam that is loaded parallel to, but not along, an axis of

symmetry, like the doubly symmetric box beam in Fig. 6.22. Here, however, we will

consider loading that does not produce bending in a single longitudinal plane of

symmetry. Two examples of this are a channel beam loaded parallel to its web 

(Fig. 6.23a), and a Z section (Fig. 6.23b). The former beam has a longitudinal plane

of symmetry, but the loading is perpendicular to, not in or parallel to, the plane of

symmetry. The latter beam has no longitudinal plane of symmetry.

FIGURE 6.22 A beam with transverse loading parallel to an axis of symmetry.

*6.6 UNSYMMETRIC BENDING

eP
P

T = Pe

(a) Loading parallel to LPS. (b) Equivalent LPS loading plus torque.

=

FIGURE 6.23 Two beams that are not loaded in a plane of symmetry.

P

(a) A channel beam. (b) A Z-section beam.

P

Doubly Symmetric Beams with Inclined Loads. Before we study the gen-

eral case of unsymmetric bending, let us generalize the results of Section 6.3 to the

case of a doubly symmetric beam whose loading does not lie in either longitudinal

plane of symmetry. Figure 6.24 shows a doubly symmetric beam with such an 

inclined load, that is, a load that simultaneously produces bending about both axes

of symmetry in the cross section.

Flexural Stress: For a doubly symmetric, linearly elastic beam with E � E(x), the

flexure formula, Eq. 6.13, can be applied separately for My and Mz, and the two

383
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expressions can then, by the principle of linear superposition, be added to give

(6.30)

The second term on the right corresponds to bending about the z axis of symmetry

and comes directly from Eq. 6.13. The first term is a modification of Eq. 6.13 for

bending about the y axis of symmetry. Note that this My term in Eq. 6.30 is positive.

As illustrated in Fig. 6.25a, a positive My produces tension (i.e., positive �x) where z
is positive. Since the y axis and z axis are both axes of symmetry of the cross section,

their origin is the centroid of the cross section, as indicated in Fig. 6.24b. Figure 6.25

illustrates the superposition of the stresses due to moment components My and Mz

acting on a rectangular cross section.

Orientation of the Neutral Axis: Due to the combined stresses, the beam will

bend about the inclined neutral axis indicated by NA in Figs. 6.25c and 6.25d.

The orientation of the neutral axis in a cross section may be determined by set-

ting �x � 0 in Eq. 6.30. Then, if (y*, z*) are the coordinates of points that lie on

Flexure 
Formula

sx �
Myz

Iy
�

Mzy

Iz
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x

y

z
P

x

x

y

z

x

My

Mz C

(Shears Vy and
Vz omitted.)

(a) Components of load in two
      planes of symmetry.

(b) Bending moments due to an 
      inclined load (positive My and
      positive Mz shown).

FIGURE 6.24 A doubly

symmetric beam with inclined

loading.

FIGURE 6.25 Flexural stresses due to inclined loading of a doubly symmetric beam.

My

y

z

Mz

B

A

NA

NA (y*, z*)

(a) Bending about the
      y axis due to positive My.

(b) Bending about the
      z axis due to positive Mz.

(c) My and Mz stresses
      superposed.

(d) Orientation of the moment
      vector and the NA with
      respect to the yz axes.

=+ z

M

C

β

θ

y
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the neutral axis,

(6.31)

is the equation of the neutral axis in the yz plane. Let the angles � and � be defined by

(6.32)

as illustrated in Fig. 6.25d. That is, the moment vector is oriented at angle � meas-

ured clockwise from the positive z axis, and the neutral axis is oriented at angle 

� measured clockwise from the positive z axis. Then Eq. 6.31 may be conveniently

expressed as

(6.33)

From Eq. 6.33 it is clear that � will lie in the same quadrant as �, and that the rela-

tive orientation of the NA and M will depend on whether Iz � Iy or Iz  Iy.

Figure 6.25c illustrates how flexural stress changes from tension to compression

at the neutral axis, where �x � 0. Unlike the case of loading in a plane of symmetry,

inclined loading produces a neutral-axis orientation that depends, at each cross 

section, on the orientation of the bending-moment vector at the particular cross 

section, that is, on the ratio of My(x) to Mz(x).

Maximum Tensile and Compressive Stresses: Figure 6.25c illustrates the fact that

the points of maximum tension and maximum compression on the cross section are
the two points that are farthest from the neutral axis. These points are labeled A and

B on Fig. 6.25c. We use the yz coordinates of these points in order to find the max-

imum stresses from Eq. 6.30.

Example Problem 6.9 illustrates the effect of load inclination on the flexural

stress in a beam with doubly symmetric cross section.

tan b � aIz

Iy
b tan u

tan b �
y*

z*
tan u �

My

Mz
,

aMy

Iy
b z* � aMz

Iz
b y* � 0

385
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E X A M P L E  6 . 9

The beam in Fig. 1, an S12	50 I-beam, is subjected to a moment M �
150 kip 
 in. that is supposed to lie along the z axis (e.g., due to loading

in the xy plane). (a) Determine the effect of a “load misalignment” of

� � 2� on the orientation of the neutral axis. Show the neutral axis on a

sketch of the cross section; and (b) determine the maximum tensile stress

and the maximum compressive stress on the section. Note the large dif-

ference in Iy and Iz, and note how this affects the solution.

Plan the Solution We can use Eq. 6.33 (or Eq. 6.31) to determine the

orientation of the neutral axis. Then we can identify the two points 

farthest from the NA and use Eq. 6.30 to compute the flexural stress at

these points.
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Solution (a) Locate the neutral axis. From Eq. 6.33,

(1)

where, from Fig. 1,

(2)

Therefore,

(3)

When � � 0�, � � 0�, and the z axis is the neutral axis, but when � � 2�
we get

So, for � � 2�,

Ans. (a) (4)

The orientation of the NA at this cross section is shown in Fig. 2.

(b) Determine the maximum tensile stress and maximum compressive
stress. The maximum stresses will occur at the extreme points A and B.

From Eq. 6.30,

(5)

From symmetry,

Had there been no misalignment, that is, for � � 0

(6)sx(y, z) �
�Mzy

Iz

sxB
� sx(�6.0, 2.74) � 3.86 ksi

 � �3.86 ksi

 � 
(150 kip � in.)(cos 2°)(6.0 in.)

305 in4

 sxA
K sx(6.0, �2.74) �

(150 kip � in.)(sin2°)(�2.74 in.)

15.7 in4

 sx �
Myz

Iy
�

Mzy

Iz

b � 34.2°

tan b � a 305 in4

15.7 in4
b (0.0349) � 0.678

tan b � a 305 in4

15.7 in4
b tan u

tan u �
My

Mz
�

M sin u

M cos u

tan b � aIz

Iy
b tan u

Fig. 1 An I-beam with inclined loading.

Fig. 2 Neutral axis orientation and

points of maximum and minimum 

flexural stress.

M
Cz

Iy = 15.7 in4

Iz = 305 in4

y

12.0 in.
θ

5.48 in.

CM

B

A

z

y

6.0 in.

2.74 in.

θ = 2°

34.2°

NA
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so, the maximum compression is at y � 6.0 in., or

and

In summary,

(sx)max T � 2.95 ksi

(sx)max C �
�(150 kip � in.)(6.0 in.)

305 in4
� �2.95 ksi

0� 0� �2.95 ksi 2.95 ksi

2� 34.2� �3.86 ksi 3.86 ksi

� � (�x)max C (�x)max T

Thus, a small misalignment of 2� increases the maximum stresses by 31%.

This is due to the large ratio of Iz/Iy.

Review the Solution The answers look reasonable, since a nonzero

value of My, together with a large ratio of Iz/Iy, will cause a significant 

rotation of the neutral axis, that is, a large value of �. The values of the

maximum stresses are not unreasonable.

(See Homework Problem 6.6-5 where the same loading is applied to

a very similar sized beam, a W12	50.)

Unsymmetric Bending—The Unsymmetric option in the MDS com-

puter program module Flexure combines a program for determining section prop-

erties with a program for computing the flexural stresses in a beam with arbitrarily

oriented moment vector. The yz axes must be principal axes (i.e., Iyz � 0) with their

origin at the centroid of the cross section.

Product of Inertia; Principal Axes of Inertia. In studying unsymmetric

bending we will need to make use of several geometric properties of plane areas.

(These are discussed in greater detail in Appendix C.) The product of inertia of

an area A (Fig. 6.26a) with respect to a yz reference frame in the plane of the area

MDS6.8

FIGURE 6.26 Illustrations for use in defining product of inertia and principal axes.

z

y
z

y

dA

O

Area A
(a) A plane area.

dA

O

dA
y

z

z

y

–z

(b) An area with one
      axis of symmetry.

α

Cz

y

(c) Centroidal principal
      axes.
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is defined by

(6.34)

If Iyz � 0, the y and z axes are said to be principal axes of inertia of the area. If 

either of the axes is an axis of symmetry, like the y axis in Fig. 6.26b, then Iyz � 0,

since the contributions of symmetrically located dA’s cancel in the integral for 

Iyz. Therefore, the axis of symmetry is one principal axis and any axis perpendicular

to it is also a principal axis.

Finally, as discussed in Appendix C.3, for any planar area and for any origin in

the plane, it is possible to orient a pair of orthogonal axes such that they are 

principal axes. For example, Fig. 6.26c shows the principal axes of inertia of an 

unequal-leg angle section with respect to an origin at the centroid. These are called

centroidal principal axes. Appendix D.6 gives the angle of inclination of the cen-

troidal principal axes of several unequal-leg angle sections.

Unsymmetric Bending: Arbitrary-Axis Method. So far, we have shown

that Eq. 6.30 applies to bending of beams with doubly symmetric cross section. Let

us now determine an expression for the flexural stress �x in a beam with arbitrary

cross section, including unsymmetric cross sections like those in Figs. 6.23b and

6.26c. In the remainder of this chapter axis labels y and z always refer to centroidal

principal axes in the cross section, as in Fig. 6.26c, while y� and z� refer to arbitrarily

oriented axes in the cross section, such as the axes in Fig. 6.27.

Flexure Formula: Consider the beam in Fig. 6.27a, which has no net axial force (i.e.,

F � 0), but which has both My� and Mz�; that is, consider an arbitrarily oriented bend-

ing moment acting on an arbitrarily shaped cross section. The contribution of the

flexural stress �x on an elemental area dA is shown in Fig. 6.27b. The stress result-

ants on the cross section are obtained by summing the contributions of elemental

forces dF � �x dA over the area of the cross section. This gives

(6.35)

 Mz¿(x) � ��
A

y¿sx dA

 My¿(x) � �z¿sx dA

 F(x) � �
A

sx dA

Iyz � �
A

yz dA

388
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My′

Mz′

C

y′

z′

x

F = 0

dF = σxdA

y′

z′

dA

(a) The stress resultants related to σx. (b) The normal force on an elemental area.

FIGURE 6.27 A beam with unsymmetric cross section and with arbitrarily oriented

bending moment.
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Let us assume that �x has the bilinear form

(6.36)

Then, combining Eqs. 6.35 with Eq. 6.36, we get

(6.37)

Equations 6.37 can be simplified if we select the centroid of the cross section as the

origin of the y�z� reference frame, that is, let Noting that F � 0, and

that, for arbitrarily oriented centroidal axes Iy�z� is not necessarily zero, we get

(6.38)

So, combining Eqs. 6.36 and 6.38, we get the following flexure formula:

(6.39)

where the “prime” axes may be any convenient set of rectangular coordinate axes

with origin at the centroid of the cross section.

Orientation of the Neutral Axis: The orientation of the neutral axis in the cross 

section can be determined by setting �x � 0 in Eq. 6.39. Let (y�*, z�*) be coordinates

of points that lie on the neutral axis. Then,

(6.40)

or

(6.41)

is the equation of the neutral axis in y�z� coordinates.

Maximum Tensile and Compressive Stresses: Figure 6.25c illustrates the fact that

the points of maximum tension and maximum compression on a cross section are

the two points that are farthest from the neutral axis.These points are labeled A and

B on Fig. 6.25c and on the unsymmetric cross section in Fig. 6.28.Therefore, in order

to compute the maximum tensile and compressive flexural stresses acting on a cross

section it is necessary first to determine the orientation of the neutral axis and then

to locate the two points in the cross section that are the farthest from the NA.

Example Problem 6.10 illustrates the calculation of flexural stresses on an 

unsymmetric cross section.

y¿*
z¿*

�
My¿Iz¿ � Mz¿Iy¿z¿

Mz¿Iy¿ � My¿Iy¿z¿

�y¿*(Mz¿Iy¿ � My¿Iy¿z¿) � z¿*(My¿Iz¿ � Mz¿Iy¿z¿) � 0

Flexure
Formulasx �

�y¿(Mz¿Iy¿ � My¿Iy¿z¿) � z¿(My¿Iz¿ � Mz¿Iy¿z¿)

Iy¿Iz¿ � I2
y¿z¿

a0 � 0,  a1 �
�(Mz¿Iy¿ � My¿Iy¿z¿)

Iy¿Iz¿ � I2
y¿z¿

,  a2 �
My¿Iz¿ � Mz¿Iy¿z¿

Iy¿Iz¿ � I2
y¿z¿

y¿ � z¿ � 0.

 Mz¿(x) � �a0�
A

y¿ dA � a1�
A

(y¿)2 dA � a2�
A

y¿z¿ dA

 My¿ (x) � a0�
A

z¿ dA � a1�
A

z¿y¿ dA � a2�
A

(z¿)2 dA

 F(x) � a0�
A

 dA � a1�
A

y¿ dA � a2�
A

z¿ dA

sx � a0 � a1y¿ � a2z¿

389
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FIGURE 6.28 Location of

points of maximum tension

and maximum compression in

a typical unsymmetric cross

section.

NA
C

A

B

dB

dA
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E X A M P L E  6 . 1 0

An unequal-leg angle section has the dimensions shown in Fig. 1.11 At

this cross section the moment is M � 10 kN 
 m and is oriented parallel

to the short leg of the angle, as shown. (a) Determine the orientation of

the neutral axis of the cross section, and show this orientation on a

sketch; and (b) determine the maximum tensile stress and the maximum

compressive stress on the cross section.

Plan the Solution We can use Eq. 6.41 to determine the orientation of

the neutral axis. Then, we can locate the points in the cross section that

are farthest from the NA and use Eq. 6.39 to compute the flexural stress

at these points.

Solution (a) Locate the neutral axis. Since Mz� � 0, from Eq. 6.41,12

(1)

so

Ans. (a) (2)

The orientation of the NA is shown in Fig. 2.

(b) Calculate the maximum and minimum flexural stresses. Points A and

B are the two points that are farthest from the neutral axis. To compute

the flexural stress �x at these points we need their coordinates in y�z�
reference frame. From Fig. 1 we get

Since Mz� � 0, from Eq. 6.39, we get

(3)

so,

 � �57.0 MPa

 � c�(�26.1)(�5.97) � 76.1(4.55)

27.20 (4.55) � (5.97)2
d10

 sxA K sx(�26.1 mm, �76.1 mm)

sx � c�y¿Iy¿z¿ � z¿Iz

Iy¿Iz¿ � I2
y¿z¿

dMy¿

 (y¿B, z¿B) � (�1.1 mm, 123.9 mm)

 (y¿A, z¿A) � (�26.1 mm, �76.1 mm)

b¿ � �37.3°

tan b¿ �
y¿*
z¿*

�
Iz¿

Iy¿z¿
�

4.55(106) mm4

�5.97(106) mm4Fig. 1 An unequal-leg angle.

Fig. 2 The orientation of the neutral

axis (NA).

11See Example Problems C1 through C3 for calculation of the section properties of a similar unequal-leg

angle cross section. The MDS module Section Properties may be used to compute section properties for

a wide variety of cross-sectional shapes.
12Note that �� is measured from the z� axis in the direction toward the y� axis, as shown in Fig 1.

z z'

y'

y

β'

MC
t = 25 mm

73.9 mm26.1 mm

123.9 mm
NA

76.1 mm

13.9°

Iy'   = 27.20(106) mm4

Iz'   =    4.55(106) mm4

Iy'z' = –5.97(106) mm4

z'

y'
M

A

B

NA

C

37.3°
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Unsymmetric Bending—The Unsymmetric option in the MDS com-

puter program module Flexure combines a program for determining section prop-

erties with a program for computing the flexural stresses in an unsymmetric beam

with arbitrarily oriented moment vector. The origin of the y�z� axes must be at the

centroid of the cross section, but their orientation is arbitrary.

Unsymmetric Bending: Principal-Axis Method. So far, we have shown

that Eq. 6.30 applies to bending of beams with doubly symmetric cross section, and

that Eq. 6.39 is the flexure formula for beams with arbitrary shape of cross section

and with arbitrary orientation of the resultant moment vector. However, for 

centroidal principal axes, as illustrated in Fig. 6.29a, so Eq. 6.39 

reduces to Eq. 6.30.

y � z � Iyz � 0,

MDS6.9

In summary,

Ans. (b) (4)

Review the Solution The best way to check the results of Part (a) and

Part (b) is to draw the cross section to scale in order to estimate the per-

pendicular distances from points A and B, respectively, to the neutral

axis. Since the calculated flexural stresses at A and B have opposite signs,

as they are supposed to, and since the ratio of their magnitudes is in

agreement with their perpendicular distances from the NA, then our re-

sults are probably correct.

 smax C � sxA � �57.0 MPa

 smax T � sxB � 63.2 MP

 � 63.2 MPa

 � c�(�1.1)(�5.97) � 123.9(4.55)

27.20(4.55) � (5.97)2
d10

 sxB � sx(�1.1 mm, 123.9 mm)

f

FIGURE 6.29 Principal-coordinate geometry.

z

z

z'z' cos φ
y' cos φ

z' sin φ

y' sin φ

z'z'

y' y'

y'

y

P

y
φ

φ

φ

(a) Orientation of the moment
      vector and the NA with re-
      spect to the centroidal princi-
      pal coordinates.

(b) Determination of coordinates
      (y, z) of point P from coor-
      dinates (y', z').

NA

Centroidal
principal
axesz

y

β
θ

M
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(6.30) 

repeated

where My and Mz are the components of the moment vector M for bending about

the y axis and z, axis, respectively, and Iy and Iz are the centroidal principal moments

of inertia. (It is arbitrary which of the two is Imax and which is Imin.)

Therefore, we can conclude that the flexural stress �x in a beam with arbitrary
cross section and with an arbitrarily oriented bending moment is given by Eq. 6.30,
provided that the y and z axes are centroidal principal axes. Beams with doubly sym-

metric cross section (e.g., Fig. 6.24), and beams with a single longitudinal plane of

symmetry (e.g., Fig. 6.26b) are two special cases. For the latter, loading in the longi-

tudinal plane of symmetry (e.g., Sections 6.2 and 6.3) and loading perpendicular to

the plane of symmetry (e.g., Section 6.12) are special cases.

As in the case of beams with doubly symmetric cross section, Eq. 6.31 or Eq.

6.33 can be used to determine the orientation of the neutral axis relative to the yz
principal axes.

(6.33)

repeated

where the angle � is defined in Fig. 6.29a.

The difficult aspects of using the principal-axis method to solve for flexural

stresses are (1) determining the orientation of the principal axes, and (2) determin-

ing the coordinates (y, z) of a point relative to the principal-axis reference frame.

Figure 6.29b shows how these y, z coordinates can be related to arbitrarily oriented

coordinates (y�, z�). Using the shaded triangles, we get

(6.42)

where the angle � is measured counterclockwise from the y� axis to the y axis.

Homework Problem 6.6-11 calls for the principal-axis method to be used to

solve Example Problem 6.10.

 z � �y¿ sin f � z¿ cos f

 y � y¿ cos f � z¿ sin f

tan b � aIz

Iy
b tan u

Flexure 
Formula 

sx �
Myz

Iy
�

Mzy

Iz
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*6.7 INELASTIC BENDING OF BEAMS

If the loads on a beam are large enough to cause the stress to exceed the yield

strength, the beam is said to undergo inelastic bending. A beam does not totally 

collapse when its maximum stress reaches the yield strength. For example, in photo-

graphs of buildings and bridges that have undergone earthquake loading, it is not

uncommon to see highly deformed beams and columns that have not completely

collapsed. In fact, since the ultimate load that a beam can support may be much

greater than the load that produces first yielding of the outer fibers, design codes

now employ ultimate-load design concepts. Therefore, it is important for designers

of structures and machines to understand the inelastic-bending behavior of beams

so that this additional strength margin can be properly accounted for.

Fundamental Equations. In this section we will only consider pure bending of

beams that are symmetrical about a longitudinal plane of symmetry (Fig. 6.30a,b).
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FIGURE 6.30 Pure bending of a beam.

As in Sections 6.2 and 6.3, our analysis of pure bending will involve the three essen-

tials of deformable-body mechanics—geometry of deformation, equilibrium, and

material behavior.

Geometry of Deformation: The assumption that plane sections remain plane is valid

for inelastic pure bending of beams as well as for linearly elastic bending (Section

6.2). This assumption leads to the strain-displacement equation (Eq. 6.3 repeated).

(6.43)

where � is the extensional strain of fibers at distance y from the neutral surface, � is

the radius of curvature of the deformed axis of the beam, and � � 1/� is the curva-

ture. This linear strain distribution is shown in Fig. 6.30c

Equilibrium: The stress resultants that are related to the bending of beams are the

axial force F and the bending moment M, shown in Fig. 6.31. From Eqs. 6.9,

(6.44)

As in the case of linearly elastic behavior, Eq. 6.44a is used to locate the neutral axis

in the cross section. As long as the flexural stress does not exceed the proportional

limit, the neutral axis passes through the centroid of the cross section (Section 6.3),

For inelastic bending, the location of the neutral axis depends on the shape of the

 M K Mz � ��
A

ysdA

 F � �
A

sdA � 0

� � �
y
r

� �yk

(a) Pure bending in longitudinal
plane of symmetry.

(b) Cross section. (c) Strain distribution.

x

y y y

M M
z �

|�1|

�2

c1

c2

FIGURE 6.31 The stress resultants for pure bending.

y

M

x

F = 0

y

dA

NA

z

�

 c06StressesInBeams.qxd  9/9/10  4:39 PM  Page 393



cross section, on the stress-strain (� � �) relationship, and on the magnitude of the

applied moment, as will be illustrated in this section.

Material Behavior: Three types of nonlinear stress-strain behavior are illustrated in

Fig. 3.24. Equations 6.45 are general expressions of the relationship of flexural stress

� to extensional strain � for such nonlinear materials.

(6.45)

To illustrate inelastic bending of beams we will examine only the case of elastic-

plastic bending.

Elastic-Plastic Bending. Consider pure bending of a beam made of elastic-

plastic material whose stress-strain curve is given in Fig. 6.32. The material follows

Hooke’s Law up to the proportional limit, which is assumed to be the same stress as

the yield point (�Y). It is assumed that the material has a distinct yield point in 

compression at (��Y), as indicated in Fig. 6.32. The corresponding yield strains in

tension and compression are �Y � �Y/E and (��Y), respectively.

Figure 6.33 illustrates the strain distribution and the stress distribution for three

levels of loading of a beam with a singly symmetric cross section (e.g., Fig. 6.30b).13

Location of the Neutral Axis: Since, for pure bending, the axial force F is zero, the

equation that determines the location of the neutral axis is Eq. 6.44a, which can be

written as

(6.46)

where T is the tension on the cross section and C is the compression, as illustrated

in Fig. 6.33. As the moment changes, the stress blocks that represent T and C

�
A

s dA � 0 S T � C

s � s(�),  or  � � �(s)

394
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13Unloading behavior is discussed later under the topic of residual stresses.

FIGURE 6.32 The stress-

strain curve for an elastic-

plastic material.

FIGURE 6.33 Strain distri-

bution and stress distribution

for an elastic-plastic beam.

�PL = �Y

–�Y

�Y
–�Y

�

E
1

�

c1

c2

�

(b) Strain distribution
 for Mb > MY.

(c) Strain distribution
 for Mc > Mb.

(a) Strain distribution
 for Ma = MY.

 2 = � Y � 2 > � Y � 2 > � Y

� � �

y y y

Yσ2 =σ

da

c1

c2

Ca

Ta

(a′) Stress distribution
 for Ma = MY.

Yσ2 =σ

Yσ1  =σ

dc

Cc(1)

(2)

(3)

(4)

Tc

(c′) Stress distribution
 for Mc > Mb.

db

Yσ2 =σ

Cb

Tb

(b′) Stress distribution
 for Mb > MY.
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change shape, and this change of shape leads to a shift in the location of the neutral

axis, unless the cross section has two axes of symmetry. (Note in Figs. 6.33a through

6.33c and Figs. 6.33a� through 6.33c� that the neutral axis moves upward slightly with

each increase in the applied moment.)

Maximum Elastic Moment: The maximum elastic moment, or yield moment, MY,

is the moment that causes the fiber that is farthest from the elastic neutral axis 

to yield. Since the behavior is linearly elastic up the yield moment, we can use the

flexure formula, Eq. 6.13, in the form

(6.47)

where c, the larger of the values c1 and c2, is measured from the elastic neutral axis
(which passes through the centroid of the cross section).

Fully Plastic Moment: Materials like mild steel, that exhibit elastic-plastic behavior

similar to that depicted in Fig. 6.32. are able to undergo extensional strains that are

an order of magnitude or more greater than the yield strain �Y. In Fig. 6.33c� there

is an elastic core (2)–(3), a compressive plastic zone (1)–(2), and a tensile plastic zone
(3)–(4). With increasing bending moment, the magnitude of the strain in the outer

fibers increases, and the elastic zone shrinks in depth until, in the limit, there is a

fully plastic compression zone above the (fully plastic) neutral axis and a fully plas-

tic tensile zone below the neutral axis, as illustrated in Fig. 6.34a, Since the neutral

axis is located by setting T � C (Eq. 6.46), and since both tensile and compressive

stress blocks have constant stress of magnitude �Y, the plastic neutral axis is deter-

mined by the purely geometric condition that

(6.48)

The resultant forces C and T act at the centroids of the compression zone and

tensile zone, respectively, so the plastic moment, MP, is given by

(6.49)

where dC and dT are the distances from the plastic neutral axis to the centroids of

the compression zone and the tensile zone, respectively.

MP �
sYA

2
 (dC � dT)

AC � AT �
1

2
 A

MY �
sYI

c
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FIGURE 6.34 Fully plastic bending.

Yσ
y

zP

Yσ

C

T
d = dC + dT 
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Plastic
neutral
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dT
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(a) (b)
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The value of the plastic moment can be expressed in the compact form

where Z is the plastic section modulus for the cross section.Values of Z are tabulated

in Appendix D for selected structural shapes. Recall from Section 6.4 that the yield

moment can be expressed in terms of the elastic section modulus S by the formula

The ratio of the plastic moment MP to the yield moment MY is called the shape
factor, f.

(6.50)

This factor indicates the additional moment capacity of the beam beyond the 

moment that causes first yielding. The value of f for wide flange beams is typically

in the range 1.1 to 1.2.

f �
MP

MY
�

Z
S

MY � sYS

MP � sYZ

396
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E X A M P L E  6 . 11

Determine expressions for the yield moment, the plastic moment, and

the shape factor for a beam with rectangular cross section (Fig. 1a).

Solution Because the rectangular cross section has two axes of sym-

metry, the neutral axis passes through the centroid for all values of 

applied moment. The stress state corresponding to the yield moment is

shown in Fig. 1b, and the stress state for the plastic-moment case is

shown in Fig. 1c.

Yield Moment: From Eq. 6.47,

(1)MY �
sYI

c
�

sY abh3

12
b

ah
2
b

Yσ Yσ

Yσ

MY 

z

h/2

dY

h/2

MP

y

b

dP

CP
CY

C

TPTY

(c) Plastic-moment case.(b) Yield-moment case.(a) Cross section.

Fig. 1
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or

Ans. (2)

Plastic Moment: From Eq. 6.49,

(3)

or

Ans. (4)

Shape Factor: From Eq. 6.50,

Ans. (5)

Thus, for a rectangular beam, the plastic moment is 50% higher than the

yield moment.

f �
MP

MY
�

6

4
� 1.5

MP �
1

4
 sYbh2

MP �
sYA

2
 (dC � dT) �

sY (bh)

2
 ah

4
�

h
4
b

MY �
1

6
 sYbh2

E X A M P L E  6 . 1 2

The tee beam of Example Problem 6.2 is made of elastic-plastic material

having a stress-strain diagram like Fig. 6.32 with E � 29(103) ksi and

�Y � 40 ksi. Determine the following: (a) the yield moment MY; (b) the

location of the plastic neutral axis, and the value of the plastic moment

MP; and (c) the shape factor f.
The section properties calculated in Example Problem 6.2 are shown

in Fig. 1.

Solution (a) Determine the yield moment, MY. From Eq. 6.47, the yield

moment is given by

(1)

The bottom fibers are farthest from the neutral axis, so

Ans.(a) (2)

(b) Locate the plastic neutral axis. The plastic neutral axis divides the

cross section into two equal areas (Eq. 6.48).Therefore, for this problem,

the plastic neutral axis falls at the flange-web interface, as illustrated in

 MY � 333 kip � in

 MY �
(40 ksi)(33.3 in4)

(4 in.)
� 333 kip � in

MY �
sYI

c

Fig. 1

1 in.

5 in.

1 in.

A = 10 in2

Iz = 33.3 in4
z C

4 in.

y

5 in.
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Fig. 2. From Eq. 6.49,

or

Ans. (b) (3)

(c) Calculate the shape factor. The shape factor is given by Eq. 6.50.

Ans. (c) (4)f � 1.8

f �
MP

MY
�

600 kip � in

333 kip � in
� 1.80

MP � 600 kip � in

MP �
sYA

2
 (dC � dT) �

(40 ksi)(10 in2)

2
 (0.5 in. � 2.5 in.)

σY = 40 ksi

AC = AT = 5.0 in2

dC = 0.5 in.zP

y

dT  = 2.5 in.

CC
C

CT

(a) (b)

T

Fig. 2

Inelastic Bending—An MDS Example Problem that uses the Section
Properties module to determine cross-sectional properties of a beam and uses Eqs.

6.47 and 6.49 to solve for the yield moment MY and the fully plastic moment MP.

Moment-Curvature Formulas. The moment-curvature equation for linearly

elastic bending was derived in Section 6.3 and stated in Eq. 6.12, which we write

here in terms of the curvature � rather than the radius of curvature �.

(6.51)

The yield moment MY is, therefore, related to the yield curvature �Y by the equation

(6.52)

so the moment-curvature equation for linearly elastic behavior is

(6.53)

Let us now determine an expression that relates M/MY to �/�Y for inelastic

bending, and plot a curve of M/MY versus � /�Y. The simplest case to consider is the

rectangular beam, since the location of its neutral axis does not vary with the value

of the applied moment and since it has a constant width. Figure 6.35 shows the stress

0 � M � MY
M

MY
�
k

kY
, 

MY � EIkY

M � EIk

MDS6.10
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distribution for the partially plastic case, with 2e being the depth of the elastic core.

Summing the moment contributions of the elastic core and the two plastic zones

we get

(6.54)

When e � h/2, we get the value of the yield moment MY as

(6.55)

just as we previously obtained in Example Problem 6.11. When e � 0, Eq, 6.54 

reduces to the formula for the plastic moment, MP.

(6.56)

In order to determine a moment-curvature equation corresponding to the mo-

ment expression in Eq. 6.54, we need to relate the curvature � to the value e. From

the strain-displacement equation, Eq. 6.43 (Eq. 6.3). we get

(6.57)

since the yielding occurs at the outer fiber for MY and at y � e for M � MY. (Note

that � 	 �Y.) Therefore,

(6.58)

Finally, we can combine Eqs. 6.54, 6.55, and 6.58 to get the following moment-
curvature equation for a partially plastic rectangular beam:

(6.59)

Moment-curvature formulas for the rectangular beam, Eq. 6.53 and 6.59, are

plotted as the solid-line curve in Fig. 6.36; the dashed-line curve is the moment-

curvature curve for the T-beam of Example 6.12.

M
MY

�
3

2
�

1

2
 akY

k
b2

,  MY � M � MP

e �
h
2

 akY

k
b

�Y �
h
2

 kY � ek

MP �
1

4
 sYbh2

MY �
1

6
 sYbh2

M � sYb c ah
2
b2

�
1

3
 e2 d
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σY

σY

MY  <  M < MP z
e

e

h/2

h/2

y

Plastic zone

Plastic zone

Elastic core

b

(a) (b)

FIGURE 6.35 Partially plastic bending of a rectangular beam.
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Residual Stresses. The elastic-plastic analysis summarized in the moment-curva-

ture plots of Fig. 6.36 applies only when the load continues to increase. If the applied

moment is reduced after exceeding the yield moment MY, unloading takes place

along a moment-curvature path that is parallel to the original linear portion of the

moment-curvature diagram, as illustrated in Fig. 6.37. This unloading behavior 

is very similar to the unloading behavior of circular torsion rods that was described

in Section 4.10. Therefore, we can use the same procedure of adding the elastic-

recovery stresses to the stresses due to plastic loading.

Figure 6.38 illustrates the superposition of stresses for a rectangular beam that

has been loaded to the fully plastic state and then completely unloaded. The maxi-

mum elastic recovery stress for the rectangular beam in Fig. 6.38 is obtained by 

setting M � �MP and y � h/2 in the flexure formula, Eq. 6.13, giving14

(ser)max �

�(�MP) ah
2
b

abh3

12
b

�

a1

4
 sYbh2b ah

2
b

abh3

12
b

�
3

2
 sY

400
Stresses in Beams

FIGURE 6.36 Moment-curvature plot

for elastic-plastic beams.

FIGURE 6.37 Loading-unloading 

curve of an elastic-plastic beam.

 M–––
MY

κ–––κY0

0.5

1

1.5

2

0 1 2 3 4 5 6

T beam (Ex. 6.12)
Rectangular beam

Bottom fiber yields

Top fiber yields

1
O

1

Unloading Path

Loading Path
A

B

C

Elastic
recovery

κ––κY

 MP–––
MY

)PS)
κ––κY)B)

κ––κY

 M–––
MY

FIGURE 6.38 Residual stresses determined by superposition.

14The maximum elastic recovery stress is also called the modulus of rupture.

(  er)maxσ

Yσ

MP 

+ =h
dY

b 1.5

Yσ = 1.5

(c) Elastic recovery stress state. (d) Residual stress state.(b) Fully plastic stress state.(a) Cross section.

MP

Yσ

h/3

h/6

0.5

Yσ

σY

0.5

h/3

h/6
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The point of zero stress in Fig. 638d may be determined by examining similar trian-

gles in Fig. 6.38c. Thus,

In spite of the fact that all externally applied moment has been removed from

the beam in Fig. 6.38d, it is obvious that the beam has self-equilibrating residual
stresses. Any reloading would begin from this state, rather than from the stress-free

state. After being completely unloaded, the beam would be left with a residual 

curvature called the permanent set. Figure 6.37 illustrates the permanent set, at

point C, that would result from unloading from point B on the moment-curvature

diagram, a point well short of the (infinite) curvature required to provide the fully

plastic state.

The next example problem illustrates the calculation of residual stresses.

sY

dY
�

(ser)max

(h/2)
 S dy � a sY

1.5sY
b ah

2
b �

h
3

401
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E X A M P L E  6 . 1 3

A wide-flange beam is subjected to a fully plastic moment, and then the

moment is completely removed. Determine the distribution of residual

stresses. The beam is made of (elastic-plastic) steel with a yield stress of

�Y � 200 MPa.

Solution We can follow the superposition-of-stresses procedure that

was illustrated in Fig. 6.38 for a rectangular beam. We first calculate MP

using Figs. 2a and 2d and the beam dimensions given in Fig. 1.

(1)

(2)MP � (300 kN)(0.160 m) � (150 kN)(0.075 m) � 59.25 kN � m

C2 � T2 � (200 MPa)(0.010 m)(0.075 m) � 150 kN

C1 � T1 � (200 MPa)(0.150 m)(0.010 m) � 300 kN

10 mm

150 mm

10 mm

10 mm

Iz = 2.204(10-5) m4

z

y

150 mm

(σer)max = 229 MPa

YσMP 

+ =
dY

200 MPa 29 MPa

200 MPa

(b) Elastic recovery stress state. (c) Residual stress state.(a) Fully plastic stress state.

MP 

74.4 mm

(d) Resultants of fully
 plastic stresses.

80 mm

C2

C1

T2

T1

80 mm75 mm

10 mm

75 mm

10 mm

37.5 mm

37.5 mm

Fig. 2 Stress distributions and stress resultants.

Fig. 1
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Recall from Chapter 5 that transverse loads on a beam give rise not only to a bend-

ing moment M(x) but also to a transverse shear force V(x), as indicated in Fig. 6.39a.

The bending moment on a cross section is related to the flexural stress �
(Fig. 6.39b); the transverse shear force V(x) is the resultant of distributed transverse

shear stresses (Fig. 6.39c). We need to determine how the transverse shear stress 
� varies with position in the cross section, that is, with respect to y and z. We will 

also find that surfaces other than cross sections (e.g., the neutral surface) also 

experience shear stress.

Basic Assumption. In developing the theories of axial deformation (Section

3.2), torsion (Sections 4.2 and 4.3), and flexure (Sections 6.2 and 6.3), we began by

making kinematic assumptions and performing a strain-displacement analysis. Then

we introduced the constitutive (stress-strain-temperature) equations to determine

the respective stress distributions. However, when we seek to determine the distri-

bution of shear stress in a beam and to relate the shear stress to the transverse shear

The maximum elastic recovery stress, or modulus of rupture, is obtained

by setting M � MP in the flexure formula, Eq. 6.13, giving

(3)

To sketch the residual stress state in Fig. 2c we add the stress blocks

in Figs. 2a and 2b. The point of zero stress in Fig. 2c may be determined

by using similar triangles in Fig. 2b.

(4)

Therefore, the residual stress distribution has the form shown in Fig. 2c.

sY

dY
�

(ser)max

(h/2)
S dY � a200

229
b (85 mm) � 74.4 mm

(ser)max �

MP ah
2
b

I
�

(59.25 kN � m)(0.085 m)

2.204(10�5) m4
� 229 MPa

402

6.8 SHEAR STRESS AND SHEAR FLOW IN BEAMS

FIGURE 6.39 The stress resultants and stresses on a cross section.

y

z

x
V(x)

M(x)

M
V= +

σ = σx τ = –τxy

(a) Stress resultants. (b) Normal (flexural) stress. (c) Transverse shear stress.
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force V(x), we are immediately faced with a dilemma. Shear stress produces a

change in angle, but in Section 6.2 we assumed that plane sections remain plane and
remain perpendicular to the deformed axis of the beam (i.e., without change of

angle). Therefore, in order to derive an expression for the distribution of transverse

shear stress, we make the following assumption:15

• The distribution of flexural stress on a given cross section is not affected by the
deformation due to shear.

Thus, for example, we can analyze the shear stress in homogeneous, linearly elastic

beams, using the flexural stress given by the flexure formula. Eq. 6.13.

(6.13) 

repeated

Because we have no convenient way to characterize the displacement due to

shear (like the “plane sections” assumption that was used to characterize displace-

ment due to flexure) we must follow a different approach. Fortunately, we can 

employ an equilibrium analysis to develop a shear-stress theory for beams.16

Shear-Stress Distribution. Before developing formulas for the distribution of

shear stress in a beam, let us examine physical descriptions of shear stress and shear

strain in beams. Figure 6.40 shows a cantilever beam subjected to a transverse load

P at x � 0. (To simplify the drawings, a rectangular cross section is used in Fig. 6.40.)

On an arbitrary cross section at x, the load P produces a positive bending moment

and a positive shear force (as in Fig. 6.39a).

With linearly elastic behavior, the bending moment M(x) produces the flexural

stress distribution at section x as shown in Fig. 6.40b. Imagine now that a horizontal

sectioning plane separates the portion of the beam up to section x into two parts;

one from y � y1 to the top of the beam, the other from y � y1 to the bottom of the

s �
�My

I

403
Shear Stress and Shear Flow

in Beams

15There are some limitations on the theory that is based on this assumption. These are discussed in

Section 6.9.
16A Russian engineer, D. J. Jourawski (1829–1891) was the first person to develop the elementary shear

stress theory presented here. He developed this theory, which is based on equilibrium, while designing

timber railroad bridges [Ref. 6-1].

M

σ ≡ σx σ ≡ σx

τbτ

τb

τc

τc = 0

P

y

x

xx

a

(a) A cantilever beam. (b) Flexural-stress distribution
 (linearly elastic).

(c) Unbalanced flexural stresses lead to
 shear stresses on a longitudinal section.

(d) Transverse and longitudinal
 shear stresses.

b

c
x

A1

F1

y1

FIGURE 6.40 Shear-stress distribution in a beam.
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beam, as illustrated in Fig. 6.40c. The resultant of the flexural stress on A1, the cross-

sectional area above y � y1, is designated as F1. It is clear from Fig. 6.40c that the

only way to satisfy for either the portion of beam above y � y1 or the por-

tion below y � y1 is for there to be longitudinal shear stress on the horizontal sec-

tioning plane, as indicated in Fig. 6.40c. The resultant of this longitudinal shear

stress balances the normal force F1. But this says that the unbalanced flexural

stresses on this beam free body lead to longitudinal shear stresses on the free body.

What about transverse shear stress on the cross section of the beam? Consider 

Fig. 6.40d, and recall from Section 2.7 that �yx � �xy; that is, the shear stress on a ver-

tical plane must be equal to the shear stress on a horizontal plane at the intersection

of the two planes. Thus, at point b in Fig. 6.40d the longitudinal shear stress and the

vertical shear stress can both be labeled �b, because they are equal.This leads to two

very interesting conclusions:

1. The transverse shear stress at an arbitrary level y in the cross section can be

calculated by determining the longitudinal shear stress at this level.

2. The transverse shear stress must vanish at points a and c, since there is no

horizontal shear stress on the top surface or on the bottom surface of the

beam.

Shear-Strain Distribution. From the preceding discussion of beams subjected

to transverse loads, and especially from Fig. 6.40c, it should be clear that planes par-

allel to the neutral surface (i.e., horizontal planes) must be able to transmit shear.

Consider a cantilever beam like the one in Fig. 6.41a. In Fig. 6.41b the cantilever

beam is made up of four “planks” that are not bonded together at levels a � a�,
b � b�, and c � c�, but are free to slip along the surfaces of contact at these levels.

Clearly, there is slip along the plank interfaces, and plane sections, like de, do not re-

main plane through the entire thickness of the beam in Fig. 6.41b. If the planks are

bonded together to form a single beam (or if the beam is originally homogeneous

throughout its depth), the beam will undergo shear deformation as illustrated in 

Fig. 6.41c. Because of shear deformation, plane sections do not remain plane, as they

do in the case of pure bending (Fig. 6.41d). However, as noted earlier, the shear 
deformation has little effect on the distribution of flexural stress as long as the beam
is slender (length greater than ten times depth).

Shear Flow in Beams. To derive an expression relating the shear stress � to

the resultant shear force V we will first define and derive an expression for shear
flow. Consider the segment from x to (x � 
x) of a beam subjected to transverse

loads (Fig. 6.42a). The segment from x to (x � 
x) is enlarged in Fig. 6.43a, and

©Fx � 0

404
Stresses in Beams

FIGURE 6.41 Some illus-

trations of shear deformation

in beams.

FIGURE 6.42 A beam subjected to transverse loading.

(a) A beam made of separate
"planks."

a
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P
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e
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(b) Slip between non-bonded
"planks."
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e*

(c) Shear deformation of a
uniform beam (or bonded-
layer beam).
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distortionMaximum

shear distortion
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no shear distortion
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(d) Pure bending of a
cantilever beam.

(a) Profile view. (b) Cross section.
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the normal stresses acting on this segment are shown in Fig. 6.43b. (Note that V(x)

is taken in the positive sense according to the sign convention given in Chapter 5.)

From Eq. 5.3, repeated here,

(5.3) 

repeated

Thus, when V � 0, M(x � 
x) � M(x). Consequently, the flexural stresses at 

(x � 
x) in Fig. 6.43b are shown larger in magnitude than the corresponding stresses

at x.

Our goal is to determine an expression �(x, y) that relates the shear stress at

level y on the cross section at x to the transverse shear force V(x). In deriving the

expression for shear stress �(x, y) it is useful to first define a shear quantity called

shear flow. As was suggested earlier, the key to the derivation of the distribution of

transverse shear stress on a cross section is the fact that the transverse shear stress
is equal to the longitudinal shear stress at the same point (Figs. 6.40d and 6.43b).

Figures 6.43c and 6.43d focus on the portion above the level y, where the shear flow

and the shear stress are to be determined. In Fig. 6.43c the resultant of the normal

stresses on the area A� above level y at cross section x is labeled F1; the correspon-

ding resultant at (x � 
x) is labeled F2. The total shear force on the horizontal 

section at level y is labeled 
H. Equilibrium requires that and since there

is no x-component of force on the sides or top of the beam,

(6.60)

The shear flow, q, which is the shear force per unit length, can be defined by taking

the limit

(6.61)

which, from Eq. 6.60, can be calculated by using the expression

(6.62)q � q(x, y) � lim
¢xS0

(F2 � F1)

¢x

q � lim
¢xS0

¢H
¢x

¢H � F2 � F1

© Fx � 0,

V �
dM
dx

FIGURE 6.43 The stress resultants and stresses on segments of a beam.

 (d) The flexural stress
 contributing to F2.

 (c) A free body diagram (minus
 vertical shear on ac and bd).

 (b) The distribution of flexural stress.
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The forces F1 and F2 are the resultants of the normal stresses at x and (x � 
x),

respectively, over the area labeled A�, as illustrated in Fig, 6.43d. Thus,

(6.63)

where the variable of integration, �, locates a differential strip within A� (Fig.

6.43d). The area of integration, A�, is from level y, where the shear flow is to be

calculated, to the top (free surface) of the beam. The integral in Eq. 6.63 is just the

first moment of the area A� with respect to the neutral axis. It is given the symbol

Q, that is

(6.64)

where is the y coordinate of the centroid of area A�. (Note that A� � A�(y) and

that is, both depend on the level y at which the shear flow and shear

stress are being evaluated.) Combining Eqs. 6.62 through 6.64, and recalling from

Eq. 5.3 that V � dM/dx, we get

or, simply,

(6.65)

In the derivation of Eq. 6.65 it has been assumed that the beam is prismatic, that is,

that the moment of inertia, I, is constant, and Q is a function of y only.

We will now use this expression for shear flow to obtain an expression for the

distribution of transverse shear stress. Later, we will also make use of Eq. 6.65 in

Sections 6.10 through 6.12, where we examine shear stresses in thin-wall beams and

built-up beams.

Shear-Stress Formula. Note that the shear flow, q, in Eq. 6.65 was derived by

dividing the shear force, 
H, by the length 
x over which it acts. If, instead, we

divide 
H by the area over which it acts, we get an average shear stress on the

longitudinal plane at level y. From the equality of longitudinal and transverse shear,

we get17

(6.66)tavg(x, y) � lim
¢xS0

 
¢H
t¢x

�
V(x)Q(x, y)

I(x)t(x, y)

Shear-Flow
Formulaq �

VQ

I

q � lim
¢xS0

c [M(x � ¢x) � M(x)

¢x
d   Q

I
�

V(x)Q(y)

I

y¿ � y¿(y),

y¿

Q(y) K �
A¿
h dA � A¿y¿

F2 � �
A¿

|s(x � ¢x, h)| dA �
M(x � ¢x)

I �
A¿
h dA

F1 � �
A¿

|s(x, h)| dA �
M(x)

I �
A¿
h dA
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17Here we allow the beam to be nonprismatic, so I, t, and Q may be functions of x.
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where t(x, y) is the thickness, or width, of the beam at level y in section x, as 

indicated in Fig. 6.43d. The formula for transverse shear stress is generally written

without its xy qualifiers as, simply

(6.67)

where

� � the average transverse shear stress at level y in section x,

Q � � the first moment, with respect to the neutral axis, of the cross sectional

area above level y,18

I � the moment of inertia of the entire cross section, taken with respect to the neutral

axis, and

t � the width of the cross section at level y.

The sign convention implied in Eq. 6.67 is that the shear stress � acts in the same

direction as the resultant shear force V. (Since a positive V acts in the �y direction,

�xy � ��). Sometimes the absolute values of V and Q are used in the shear-stress

formula to compute the magnitude of the shear stress, and the direction is simply 

assigned as that of the resultant shear force.

After illustrating how to use the transverse-shear-stress formula (in Example

Problem 6.14), we will discuss the limitations of the formula.

A¿y¿

Shear-Stress
Formula

t �
VQ

It

407
Shear Stress and Shear Flow

in Beams

E X A M P L E  6 . 1 4

The rectangular beam of width b and height h (Fig. 1) is subjected to a

transverse shear force V. (a) Determine the average shear stress as a

function of y, (b) sketch the shear-stress distribution, and (c) determine

the maximum shear stress on the cross section.

Plan the Solution This is a straightforward application of the shear-

stress formula, Eq. 6.67. Since V, I, and b are constant, �max will occur at

the neutral axis, where Q has its maximum value.

Solution (a) Determine an expression for the transverse shear stress.
The shear-stress formula, Eq. 6.67, is

As indicated in Fig. 2, the neutral axis of the rectangular cross section is

at its mid-depth, and the area to be used in calculating Q is the area

above level y.

t �
VQ

It

18This derivation has been based on calculating Q using the area A� above level y. Since the first moment

of the total area of the cross section, taken about the neutral axis, is zero (by definition of the neutral

axis) the first moment of the area below level y is just the negative of the value Q in Eq. 6.64.

Fig. 1

h

z

y

bx

x

V
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Shear Stress in Beams—The Shear Stress option in the MDS computer

program module Flexure combines a program for determining section properties

with equations for computing the transverse shear stress in beams.

MDS6.11

Fig. 3 The shear-stress distribution on

a rectangular cross section.

Since and 

or

Ans. (a) (1)

(b) Sketch the shear-stress distribution. From Eq. 1 we see that the distri-

bution of � is parabolic. As we noted earlier when discussing Fig. 6.38d.

� vanishes at the top edge (y � �c) and at the bottom edge (y � �c).

The parabolic distribution of � is illustrated in Fig. 3.

(c) Determine the maximum shear-stress. From Eq. 1 and Fig. 3 it is 

obvious that �max occurs at the neutral axis, as expected. Therefore.

Ans. (c)

Review the Solution Unlike the case of direct shear (Section 2.7),

where the shear stress is just the shear force divided by the area on which

the shear stress acts, we have found a parabolic distribution of shear

stress on the cross section of a rectangular beam. Since we know 

(Fig. 6.40d) that the shear stress must vanish at the top and bottom sur-

faces ( ), it is reasonable for the maximum shear stress to be 50%

greater than the overall average shear stress, V/A.

y � �c

tmax �
3

2
 
V
A

t �
6V

bh3
 ah2

4
� y2b �

3

2
 
V
A

 ac2 � y2

c2
b

t �
VA¿y¿

Ib
�

V cb ah
2

� yb d c 1
2

 ah
2

� yb d
abh3

12
b b

I � bh3/12,Q � A¿y¿, t � b,

6.9 LIMITATIONS ON THE SHEAR-STRESS FORMULA

The shear-flow formula and the shear-stress formula, Eqs. 6.65 and 6.67, respec-

tively, may be applied to calculate the distribution of shear in a wide variety of beam

shapes under a wide variety of loading conditions.These formulas were based on the

flexure formula. Therefore, the limitations on the applicability of the flexure for-

mula (slender beam, linearly elastic behavior, etc.) apply to these shear formulas

also. However, there are some additional limitations on the shape of the beam and

on the load distribution.

Effect of Cross-Sectional Shape. Consider first a beam with rectangular

cross section. Figure 6.44 contrasts a “wide beam” (b � 4h in Fig. 6.44a) and a

b

c ≡ h/2 y
τ

C′
A′

y_′

τmax
NA

Fig. 2

408
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“narrow beam” (b � 0.5h in Fig. 6.44b). The corresponding distributions of shear

stress at the neutral axis of the two rectangular shapes come from a theory of
elasticity solution [Ref. 6-4, Section 124]. It is clear that the elementary shear-

stress theory represented by Eq. 6.67 is applicable only to narrow beams (e.g.,

h 	 2b).

In mechanical applications, circular shafts often act as beams (Fig. 6.45).

Although Fig. 6.43d and Eq. 6.66 deal with beams whose width may vary with y,

the shear stress formula does not apply where the width, t(x, y), varies rapidly. For

example, the shear stresses at a line across a solid circular cross section, like line

409
Limitations on the Shear-

Stress Formula

FIGURE 6.44 The shear-stress distribution in “beams” with rectangular cross section.

P

P

h

b = 0.5h

 (a) A “wide beam,” or plate.  (b) A “narrow beam.”

 (c) Shear-stress distribution in the
“wide beam” of Fig. 6.44a.

 (d) Shear-stress distribution in the
“narrow beam” of Fig. 6.44b.

h

b = 4h

(τNA)
max

 = 1.99 (τNA)
avg

(τNA)
avg

(τNA)
avg

NA

NA

(τNA)
max

 = 1.03 (τNA)
avg

FIGURE 6.45 The shear-stress distribution in a solid circular beam.
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 (b) The shear-stress distribution
 on a circular cross section.

 (a) A beam with circular cross section.
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AA� in Fig. 6.45b, are not parallel to the y axis and cannot be determined by the

shear stress formula.19 However, along the neutral axis (diameter) of the circular

cross section, the theory of elasticity [Ref. 6-4, Section 122] shows that the elemen-

tary solution is quite accurate, as indicated in Fig, 6.45b.20

Here we have considered only “compact” sections, rectangular and circular.

Limitations on the applicability of shear-stress formulas will also be discussed in

Section 6.10 on thin-wall beams.

Effect of the Load Distribution. Consider first a cantilever beam with end

load P, as illustrated in Fig. 6.46a. For this loading, V(x) � P � constant. The shear

deformation of a central portion of the beam, of length 2
x, is shown in Fig. 6.46b.

Since V � constant, the shear stresses on cross sections away from the loaded end

and away from the supported end produce the same warped shape at neighboring

cross sections. Hence, considering shear deformation alone, A*B* � B*C* � 
x.

Therefore, although the cross sections do not remain plane, the extensional strain

based on the “plane-sections” assumption is not altered by the presence of shear.

For loading conditions other than pure bending or constant shear, like the distrib-

uted loading in Fig. 6.46c. error in the flexural stress calculated by the flexure 

formula is introduced by the presence of shear deformation, but this error is small

if the length of the beam is large in comparison with its depth.21

Effect of Length of Beam. The elementary expressions for flexural stress and

transverse shear stress are accurate to within about 3% for beams whose length-to-

depth ratio, L/h, is greater than 4.22 A more elaborate analytical theory should be

used to calculate the stresses in shorter spans, or the stresses should be computed by

using a detailed finite-element solution.23

410
Stresses in Beams

FIGURE 6.46 An illustration of the effect of shear deformation.

19Beams having a circular tubular cross section are considered in Section 6.10.
20See Homework Problem 6.8-10 for the elementary solution based on Eq. 6.67.
21See Ref. 6-4, Section 22 for a solution based on the theory of elasticity.
22This error estimate is based on an elasticity solution for bending of a rectangular beam by a uniform

distributed load. (See Section 22 of Ref. 6-4.)
23See Ref. 6-5. Section 7.5 for illustrations based on finite-element solutions.

Δx

Δx

 (a) End-loaded cantilever beam.

 (c) A cantilever beam with
 distributed load.

 (b) Shear deformation when
 V(x) = constant.
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6.10 SHEAR STRESS IN THIN-WALL BEAMS

Many of the structural shapes used as beams can be classified as having thin-wall

sections. That is, the wall thickness, t, is significantly smaller than the overall dimen-

sions of the cross section, like the outer diameter, do, of a tubular beam (Fig. 6.47a)

or the depth, h, of a wide-flange beam (Fig. 6.47b). The dashed curve in Fig. 6.47c is

called the centerline, or midline, of the cross section. A centerline coordinate s, meas-

ured from an origin on the centerline, is used to locate points in the cross section at

x. The wall thickness at location (x, s). identified as t(x, s), is usually, but not always.

independent of both x and s.

FIGURE 6.47 Dimensions of thin-wall beams.

FIGURE 6.48 Some thin-wall structural shapes.

24See Appendix D, Section Properties of Selected Structural Shapes.

(a) A circular tubular beam.

do
t

 (a) W-shape.  (b) S-shape.  (c) Box beam.  (d) Circular pipe beam
 or shaft.

 (e) Channel section.  (i) Z-section. (h) Unequal-leg angle. (g) Equal-leg angle. (f) T-section.

Some examples of thin-wall beams are ones with cross sections that are 

symmetric about two axes, like W-shapes (Fig. 6.48a), S-shapes (Fig. 6.48b), box

beams (Fig. 6.48c), and circular pipe beams (Fig. 6.48d); channel sections 

(Fig. 6.48e), T-sections (Fig. 6.48f ), and equal-leg angles (Fig. 6.48g), which have

only one axis of symmetry in the cross section: and unequal-leg angle sections

(Fig. 6.48h) and Z-sections (Fig. 6.48i), which have no axis of symmetry in the

cross section.24

t(x, s)

s

(c) The cross section of a thin-wall beam.

tf

tw
h

b

(b) A wide-flange beam.
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The principal feature that distinguishes the theory of thin-wall beams is the fact

that the shear flow q(x, s) can be computed at the location (x, s), and, because the

section is thin, it can be assumed that:

• the shear flow, q(x, s), is locally tangent to the centerline of the section,
• the average shear stress is given by

(6.68)

and
• this average shear stress accurately reflects the shear stress distribution through

the thickness at location s in cross section x.

Figure 6.49a illustrates shear flow along a thin-wall section, and the corresponding

average shear stress is depicted in Fig. 6.49b.

In this section we will illustrate the analysis of thin-wall beams by considering

the stress distributions in wide-flange beams, in box beams, and in thin-wall beams

with circular cross section.

Shear Stress in Web-Flange Beams. Let us begin our analysis of stresses in

thin-wall beams by considering the important case of doubly symmetric, open

beams25 that consist of a web lying in the longitudinal plane of symmetry and two

equal flanges, as illustrated in Fig. 6.50. Wide-flange beams and I-beams fall in this

category, as do steel plate girders used, for example, in buildings and bridges.

In Example Problem 6.6 it was shown that thin-wall beams, like W-sections and

S-sections, are much more efficient than compact sections, such as rectangular sec-

tions and circular sections, in their resistance to bending, as expressed by the ratio S
of bending moment to maximum flexural stress. Let us now consider the distribu-

tion of shear stress in beams of this type. To determine the shear-stress distribution

in the flanges and in the web, we can follow the steps of the equilibrium analysis

given in Section 6.8. In each case, that is, for flange shear and for web shear, we need

to select the appropriate free-body diagram. The segment of wide-flange beam in

Fig. 6.50a from x to (x � �x) is enlarged in Fig. 6.51a, and the flexural stresses are

shown on the cross sections at x and (x � �x).

Shear Flow in Flanges: Let us first determine the shear flow, qf , and associated

shear stress, �f , in a flange.26 Figure 6.51b shows that location of the cutting plane

t(x, s) �
q(x, s)

t(x, s)

412
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25An open cross section is distinguished from closed, thin-wall sections like the box beam in Fig. 6.48c and

the circular pipe beam in Fig. 6.48d.
26Here we are considering shear flow that is parallel to the flange (i.e., parallel to the z axis).This is much

more important than the flange shear that is parallel to the web.

FIGURE 6.49 An illustra-

tion of shear in a thin-wall

beam.

FIGURE 6.50 A doubly symmetric, thin-wall, web-flange beam.

(a) Shear flow.

(b) Average shear stress.

t(x, s)

τ(x, s) = q/t

s

x

s

x

q(x, s)

x Δx

x

y Top flange

(a) Profile view. (b) Cross section.

Bottom
flange

Web
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that isolates the free body to use in determining qf . Figure 6.51c shows the appro-

priate free-body diagram.27 Note carefully how the shear force �Ff on the cutting
plane is required to balance the flexural stresses acting on the flange outboard of

the cutting plane. Note also that the direction of qf in Fig. 6.51b is dictated by the 

direction of �Ff on the free-body diagram in Fig. 6.51c.

Having used 3-D sketches to clearly identify the free body that serves as a basis

for this shear-flow analysis, we can now resort to a profile view (Fig. 6.52a) and a

cross-sectional view (Fig. 6.52b) as we use Eq. 6.65 to calculate the flange shear flow

qf . From Eq. 6.65, the flange shear flow is given by

(6.69)

The moment of inertia of the entire cross section, taken about the neutral axis, is

or

(6.70)

where hw � h � 2tf . From Eq. 6.64,

(6.71)

where and are defined in Fig. 6.52b. Thus,

Qf � stf ah
2

�
tf

2
b

y¿fA¿f

Qf � A¿f y¿f

I �
1

12
(bh3 � bh3

w � twh3
w)

I �
bh3

12
�

(b � tw)h3
w

12

qf �
VQf

I

FIGURE 6.51 Illustrations of stresses in a web-flange beam.

413

27Drawing 3-D free-body diagrams, like the ones in Figs. 6.51c and 6.51d, can be tedious, but the secret to

developing a thorough understanding of shear stress in beams lies in the success with which you are able

to visualize the manner in which unbalanced flexural stresses lead to shear stresses.

A

A′
B

(d) A free-body diagram for
determining web shear flow.

NA
Δx ΔFw

tw

y

B′
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(c) A free-body diagram for
determining flange shear flow.
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qw NA
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(b) Cutting planes used to determine
 the flange shear flow qf and the
 web shear flow qw.

(a) A beam segment showing flexural
 stresses due to M(x) and due to
 M(x + Δx). 

Δx
x

FIGURE 6.52 Information

for use in calculating flange

shear flow.

(a) Profile view of flange 
free-body diagram.

(b) The area on which the unbalanced
flexural stresses act.
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or, in terms of hw, the height of the web,

(6.72)

Therefore, combining Eqs. 6.69 through 6.72, we get the following expression for the

flange shear flow:

(6.73)

If the flange is thin, say the flange shear stress can be computed by using

Eq. 6.68, that is

(6.74)

After deriving an expression for shear flow and shear stress in the web, we will

plot and discuss both flange shear and web shear.

Shear Flow in the Web: Starting with the free-body diagram in Fig. 6.51d, also

shown in profile view in Fig. 6.53a, and following the same steps just used to derive

expressions for flange shear flow and flange shear stress, we will now derive expres-

sions for web shear flow and web shear stress. From Eq. 6.65, the web shear flow is

given by

(6.75)

where, from Eq. 6.64 and Fig. 6.53b,

So, in terms of hw,

or,

(6.76)

Therefore, combining Eqs. 6.70, 6.75, and 6.76, we get the following expression for

the web shear flow:

(6.77)qw �
3V
2

 abh2 � bh2
w � twh2

w � 4twy2

bh3 � bh3
w � twh3

w

b

Qw �
b
2

 c ah
2
b2

� ahw

2
b2 d �

tw
2

 c ahw

2
b2

� y2 d

Qw � b ah
2

�
hw

2
b a1

2
b ah

2
�

hw

2
b � tw ahw

2
� yb a1

2
b ahw

2
� yb

Qw � A¿wy¿w � A¿1y¿1 � A¿2y¿2

qw �
VQw

I

tf �
qf

tf
�

3

2
 aVs

tf
b h2 � h2

w

bh3 � bh3
w � twh3

w

tf � b/5,

qf �
3

2
 (Vs) 

h2 � h2
w

bh3 � bh3
w � twh3

w

Qf �
s
8

 (h2 � h2
w)
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FIGURE 6.53 Information

for use in calculating web

shear flow.

tw

(a) Profile view of web-flange 
free-body diagram.

(b) The area used to compute
shear flow in the web.
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If the web is thin, then the web shear stress may be computed by using Eq. 6.68. So,

(6.78)

Summary of Shear in Web-Flange Beams: From Eqs. 6.73 and 6.74 we see that:

1. The flange shear flow qf and shear stress �f vary linearly with distance from

the outer edge of the flange.

2. The maximum flange shear flow (and shear stress) occurs at the web-flange

intersection (section a – a� in Fig. 6.52b).

3. For the flange free body analyzed, shear flow is directed from the outer edge

of the flange toward the web (Fig. 6.52b).

4. The maximum flange shear stress is given by28

(6.79)

From similar flange shear analyses for the other three flange areas we can conclude

that:

5. Equations 6.73 and 6.74 are valid for any of the four flange areas.

6. The shear flow in each of the four flange areas “flows” (in the sense of fluid

flowing in a pipe) in the directions indicated on Fig. 6.51b and Fig. 6.54. and

the shear flow in the web is in the direction of the resultant transverse shear

force, V.

From Eqs. 6.77 and 6.78 we can conclude that:

7. The web shear flow and shear stress are parabolic, that is, they are quadratic

functions of y.

8. The maxima of qw and �w occur at the neutral axis (y � 0), and the minima

occur at the web-flange junction (Because actual beam cross

sections have fillets at the web-flange junctions to reduce stress concentra-

tion there, the minima are only theoretical minimum values.)

9. Expressions for the maximum and minimum web shear stresses are29

(6.80)

and

(6.81)

The magnitudes and directions of the web and flange shear stresses are indi-

cated on Fig. 6.54. The actual stress distribution in the vicinity of the reentrant

(tw)min �
3Vb
2tw

 a h2 � h2
w

bh3 � bh3
w � twh3

w

b

(tw)max �
3V
2tw

 abh2 � bh2
w � twh2

w

bh3 � bh3
w � twh3

w

b

(y � �hw/2).

(tf)max �
3V(b � tw)(h2 � h2

w)

4tf (bh3 � bh3
w � twh3

w)

tw �
3V
2tw

 abh2 � bh2
w � twh2

w � 4twy2

bh3 � bh3
w � twh3

w

b
415

Shear Stress in Thin-Wall
Beams

FIGURE 6.54 The shear

stresses in a wide-flange

beam.

28If V is negative, (�f)max will be the magnitude of this quantity.
29Absolute values are taken if V is negative.

s

y
NA

τf (s)
(τf)max

(τw)min

(τw)max

τw(y)
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corner at a flange-web junction is complex and depends on the fillet radius and

other dimensions. For a discussion of this corner stress distribution, see Ref. 6-4,

Section 128.

From Eqs. 6.80 and 6.81 we note that, as tw/b → 0, (�w)min → max, that is, the

web shear stress approaches a constant shear stress. For beams of practical dimen-

sions, the maximum web shear stress typically exceeds the minimum web shear

stress by 10%–50%.

It is of interest to determine what percent of the vertical shear force V is car-

ried by the web. We can determine this value by integrating the shear flow over the

depth of the web, that is,

(6.82)

but we can also determine this value by multiplying the area under the �w curve in

Fig. 6.54 by tw, noting that the area consists of a rectangle and a parabola. Thus,

or

(6.83)

For practical beams, Vw typically accounts for more than 90% of the total vertical

shear force. The remainder is carried by vertical shear in the flanges. This vertical

shear in the flanges is quite small and cannot be computed by the shear flow method

above.

The following Example Problem illustrates the calculation of shear stresses in

wide-flange beams.

Vw �
hwtw

3
 [2(tw)max � (tw)min]

Vw � hwtw e (tw)min �
2

3
 [(tw)max � (tw)min] f

Vw � �
hw/2

�hw/2

qw(y) dy

(tw)

416
Stresses in Beams

30The properties of the W14 	 26 section are given in Appendix D.1.
31This is the shear force just to the left of the support at B in Example Problem 6.5.

E X A M P L E  6 . 1 5

(a) Determine the shear stress distribution in the flanges and the web of

a W14 	 26 beam30 subjected to the shear force V � �28 kips, as shown

in Fig. 1.31 (b) Determine the percent of the vertical shear that is carried

by the web of this cross section.

Plan the Solution Although it would be possible to solve Part (a) by

using the formulas in Eqs. 6.74 and 6.78, it will be more instructive to use

the basic shear-flow formulas, Eqs. 6.69 and 6.75, and the average shear-

stress formula, Eq. 6.68. We can determine the total web shear force by

integrating the shear flow, as indicated in Eq. 6.82. Since the shear on the

cross section is negative (i.e., it points in �y direction in Fig. 1) the shear

flows and shear stresses will act in the opposite sense to those shown in

Fig. 6.54.
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Solution (a) Determine the shear flow and the shear stress in the flanges
and in the web.

Flange Shear Flow and Shear Stress: The flange shear flow is given by

Eq. 6.69:

(1)

(2)

(3)

(4)

Ans. (a)

Web Shear Flow and Web Shear Stress: The web shear flow is given by

Eq. 6.75:

(5)

where A2 is the area of the entire top flange. Therefore,

or

(6)

Ans. (a) (7a)

(7b)

The results of the flange shear analysis and web shear analysis are

summarized on Fig. 2. The negative shear (V � �28 kips) gives shear

stresses in the opposite direction to those in Fig. 6.54.

(tw)min � |(tw)y�6.535 in.| � 6.38 ksi

(tw)max � |(tw)y�0| � 8.82 ksi

tw �
qw

tw
� �(8.82 � 0.0571y2) ksi

 � �(2.249 � 0.0146y2) kips/in.

qw �
(�28)[14.235 � 0.1275(42.71 � y2)]

245

 � (6.535 in. � y)(0.255 in.)(0.5)(6.535 in. � y)]

qw � a�28 kips

245 in4
b [(5.025 in.)(0.420 in.)(6.745 in.)

qw �
VQw

I
�

VA¿wy¿w
I

�
V
I

 (A2y2 � A3y3)

(tf)max � 1.84 ksitf � �0.771 s ksi,

(tf)max � �(tf)s�2.385 in.� � 1.84 ksi

tf �
qf

tf
�

�0.324 s kips/in.

0.420 in.
� �0.771 s ksi

qf �
(�28 kips)(0.420 s in2)(6.745 in.)

245 in4
� �0.324 s kips/in.

qf �
VQf

I
�

VA¿f yf¿
I

�
VA1y1

I

Fig. 1 A W14 � 26 wide-flange

beam section.

Fig. 2 The shear stresses in a

W14 � 26 beam.

z
NA

y

y
y3

s C1C2

C3

28 kips

b = 5.025 in.

y1 = y2 =
6.745 in.

tf = 0.420 in.
tw = 0.255 in.

 =
 6

.5
35

 in
.

h =
 1

3.
91

 in
.

Iz = 245 in4

h w __ 2

1.84 ksi

1.84 ksi

8.82 ksi
NA

6.38 ksi
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Shear Stress in Beams—The Shear Stress option in the MDS

computer program module Flexure combines a program for determining section

properties with equations for computing the transverse shear stress in beams.

The analysis procedure employed above to determine the shear stress in the web

and the flanges of a doubly symmetric, thin-wall, open beam can also be applied to

thin-wall open beams with one axis of symmetry and with loading in the plane of sym-

metry. For example, Fig. 6.55 shows a T-section and an equal-leg V-section. Since these

sections have only one axis of symmetry (the longitudinal plane of symmetry) it is

necessary to locate the neutral axis first before proceeding with a shear flow/shear

stress analysis based on Eq. 6.65. Here, as before, the maximum shear flow occurs at
the neutral axis, since the imbalance of normal forces is a maximum at the neutral axis.

Stresses in Closed, Thin-Wall Beams. Box beams and circular pipe beams, as

illustrated in Figs. 6.48c and 6.48d, may be classified as closed, thin-wall sections. Let

us determine the shear-stress distribution in this type of beam, assuming that the

beam has at least one longitudinal plane of symmetry and that the loads lie in this

plane, as illustrated by the generic closed, thin-wall section in Fig. 6.56a.

The analysis of shear stress in closed, thin-wall beams differs from the analysis of

open thin-wall beams, like the wide-flange beam illustrated in Fig. 6.51, in only one

major respect, namely, the location of a point in the cross section where the shear van-

ishes. For the flange free-body diagram in Fig. 6.51c, the outboard edge AA� is free of

shear, and the plot of �f (s) in Fig. 6.54 reflects this fact. Likewise, the free-body dia-

gram in Fig. 6.51d includes the portion of beam from the web sectioning-plane at level

y to the free surfaces of the flange. For a closed section we need to be able to deter-

mine the shear flow (and shear stress) at any arbitrary location in the cross section,

say the locations identified by coordinates z, y, and s in Fig. 6.56a. But, how do we

choose an appropriate free body? One answer is that we can make use of symmetry

MDS6.12 & 6.13

(b) Determine the percent of vertical shear that is carried by the web. Let

us use Eq. 6.82.

Comparing Vw with V, we see that 95% of the vertical shear is carried by
the web of this beam.

Review the Solution We can spot-check the above results by using Eq.

6.80 to compute (�w)max. When we do so, we get (�w)max � 9.02 ksi, which

does not agree very well with the value of 8.82 ksi that we got in Eq. (7a).

So let us compare the value of I � 245 in4 from Appendix D.1 with the

value calculated from Eq. 6.70. For the latter we get I � 240 in4. The

difference in I values accounts for the difference in (�w)max values. This

difference stems from the fact that the actual cross section has web-

to-flange fillets that provide a slight increase in the value of the moment

of inertia. This was not accounted for in Eq. 6.70.

 � �29.40 � 2.71 � �26.69 kips

 � �2.249(6.535)(2) �
2

3
 (0.0146)(6.535)3

 Vw � �
hw /2

�hw/2

qw(y) dy � ��
6.535

�6.535

(2.249 � 0.0146y2) dy

FIGURE 6.55 Shear in

open beams with one axis of

symmetry in the cross section.

NA

NA

LPS = plane of loading
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about the xy-plane and always select a free body that is symmetric in z. Because of sym-

metry, there can be no longitudinal shear on surfaces exposed by a cutting plane in the

LPS, and thus there can be no shear on the cross section at z � 0, as indicated in 

Fig. 6.57. (Can you explain why symmetry about the LPS makes � � 0 at z � 0?) The

shear flow will be directed so that the resultant shear force on the cross section is V,

as indicated in Fig. 6.56a. Finally, the sectioning cut should be made normal to the mid-

line of the thin-wall section, like the cuts at z, y, and s in Fig. 6.56a. In the next exam-

ple problem we will illustrate how to select the appropriate free-body diagram and

how to calculate shear flow and shear stress on a closed, thin-wall section.

419
Shear Stress in Thin-Wall

Beams

τa = 0

τb = 0

τa′ = 0

τb' = 0

a′

b′

b

a

y

x

z

E X A M P L E  6 . 1 6

A pipe conveying fluid over a narrow stream crossing must act as a beam

as well as a conduit, as indicated in Fig. 1.

Assuming that the ratio of mean diameter to wall thickness satisfies

the requirement d/t 1. determine the shear flow and shear stress dis-

tribution at a section due to the transverse shear force, V, at that section,

Also, determine the maximum shear stress on the cross section, and

express �max in terms of V/A.

W

Fig. 1 A pipe transporting fluid and acting as a beam.

Fluid

d

t

FIGURE 6.56 A closed,

thin-wall section.

NA
z

V

y

y

s

z
xy plane (LPS)

(a) Cross section.

(b) Flexural stress distribution.

M(x) M(x + Δx)

x Δx

FIGURE 6.57 Shear stress on a

sectioning plane in the xy-plane.
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Plan the Solution As noted in the preceding discussion of shear in

closed, thin-wall beams, we should pick a free-body diagram that is

symmetric about the xy-plane. Then we can apply the shear flow for-

mula, Eq. 6.65, and the average shear formula, Eq. 6.68, to this free-body

diagram.

Solution Because this is a circular cross section, it is convenient to se-

lect a free-body diagram that is defined by radial cutting planes at angle

� either side of the xy-plane, as indicated in Fig. 2. In Fig. 2b there are two

surfaces that have equal shear forces �H which serve to balance the net

force (F2 — F1) due to the flexural stresses. Therefore, we get

(1)

where, from the definition of shear flow

(2)

Comparing Eq. (1) to Eq. 6.60, and following the same steps that were

used to arrive at Eq. 6.65, we get

(3)

for the symmetric free-body diagram in Fig. 2. Here, as in Eq. 6.65,

(4)

is the first moment, about the neutral axis, of the area acted on by the un-

balanced flexural stresses, and I is the moment of inertia of the entire

cross section about its neutral axis. The geometric properties for a thin

ring and for a sector of a thin ring are shown in Fig. 3. Using the formulas

in Fig. 3b, we have, for t r,

(5)

Combining the moment of inertia from Fig. 3a with Eqs. (3) and (5),

we get

Ans. (6)

The average shear stress is obtained from the shear flow by using Eq.

6.68. Therefore,

Ans. (7)

Figure 4 illustrates the distribution of shear flow (and shear stress).

t �
q

t
�

V  sin  u

prt

q �
V(2r2t  sin  u)

(2pr3t)
�

V  sin  u

pr

Q � A¿y¿ � 2r2t  sin  u

V

Q � �
A¿

y dA � A¿y¿

2q �
VQ

I

¢H � q¢x

2¢H � F2 � F1

y

z

(a) A thin ring.

A ≈ 2πrt,  Iy = Iz ≈ πr3t

A ≈ 2rtθ,  y_
 ≈       

t<<r

t<<r

t

r

(b) A sector of a thin ring.

θ θ

y
C

r
y_

r sin θ_____
θ

y

z

θ θ
q q

 (a) Cross-sectional view.

t
r

a

A'
a

V

(b) A free-body diagram
(View a – a).

x Δx

ΔH
(another ΔH
on hidden

cutting plane)

F1 F2

Fig. 2 Selection of a symmetric

free body.

Fig. 3 Some geometric properties

of plane areas.
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32See Homework Problem 6.8-12 for shear in a “thick-wall” pipe beam.

The maximum shear stress is given by

Since the area of the cross section can be approximated by

for a thin-wall pipe beam with t r, the maximum shear stress is32

Ans. (8)

Review the Solution As a check on the expression that we obtained

for q, Eq. (6). we can see if the resultant of this distribution is V. as it

is supposed to be. The force on the elemental area highlighted in Fig.

4 is

The vertical component, as shown on the insert in Fig. 4, is, therefore,

So, due to symmetry, we have

Since the distribution looks “reasonable” (the shear flow has its maxi-

mum at the neutral axis and is zero on the plane of symmetry), and since

it gives the correct resultant, we can assume that our answer is correct.

 �
2V
p
c u
2

�
1

4
  sin  2u dp

0

� V

 �
2V
p �

p

0

sin2 
 u 

 du

 Fy � 2�
p

0

qr  sin  u du

dFy � qr  sin u du

dF � q ds � qr du

tmax �
2V
A

V

A � 2prt

tmax � t(u�p/2) �
V
prt

6.11 SHEAR IN BUILT-UP BEAMS

In Sections 6.8 and 6.10 we assumed the beams to be homogeneous, so it was appro-

priate for us to derive formulas for the average shear stress on a given surface.

However, there are a number of important applications of beams where welds, glue,

rivets, bolts, or nails are used to join two or more structural components to form a

single beam. Several examples of such built-up beams are shown in Fig. 6.58. They

are: (a) a glued-laminated timber beam, (b) a welded plate girder, (c) a wooden box

θ

V

θ

dθ__
2

V sin θ_____
πrq = dF

dFy = dF sin θ

Fig. 4 The distribution of shear flow

corresponding to a resultant shear

force V.
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beam constructed of several planks nailed together, and (d) a beam with reinforc-

ing flange plates bolted to the basic beam. In such cases it is assumed that the beam

acts as a unit (e.g., plane sections remain plane) and that the joining medium (nails,

welds, bolts, etc.) is capable of transferring shear across the longitudinal junctions

between component parts of the beam.

Shear may be transferred between adjoining parts of a built-up beam in three

ways:33

1. by shear distributed over the interface areas, as when surfaces are glued

together (Fig. 6.58a).

2. by shear distributed along a line, as when two metal parts are jointed by weld

beads (Fig. 6.58b), and

3. by discrete shear connectors, as when two parts are nailed, riveted, or bolted

together (Figs. 6.58c,d).

As was pointed out earlier in the discussion of Fig. 6.41, if a beam is composed

of several pieces, it will only behave as a single beam (i.e., satisfy the “plane sec-

tions” hypothesis) if some provision is made to transfer shear between adjacent

parts. When shear is distributed over a bond area, like the glued joints in Fig. 6.58a,

the analysis is based on the shear stress in the bond layer, as though the beam were

homogeneous (Section 6.8). In the case of a linear shear connector (e.g., the weld

beads in Fig. 6.58b), and the case of discrete shear connectors (e.g., the nails in 

Fig. 6.58c and the bolts in Fig. 6.58d), an analysis based on shear flow is appropriate.

We will now consider the latter two cases.

The shear flow equation, Eq. 6.65, is used to compute the required shear flow,

that is, the shear force per unit length that must be transferred from one part of the

beam to the adjacent part under the given loading condition.

(6.84)

where, as before, the area A� is the area on which the unbalanced flexural stresses

responsible for the shear flow qr are exerted. Knowing qr, it is a design exercise to

select the size weld or the number of discrete connectors (nails, rivets, or bolts) that

will provide the required shear strength.

Linear Shear Connectors. In the case of a linear shear connector, Eq. 6.84 de-

termines the actual shear force per unit length that must be transferred through the

linear shear connector(s). The shear connector (e.g., a weld bead) can exert an

allowable shear force per unit length, which we will designate as qa. Therefore, the

joint will fail locally unless

(6.85)

Example Problem 6.17 illustrates this type of problem.

Discrete Shear Connectors. If discrete connectors, each having a shear-force

capacity Va, are spaced along a joint at a spacing �s, as illustrated in Fig. 6.59a, then

the joint will fail unless

(6.86)Va 
 qr¢s

qa 
 qr

qr �
VQ

I
�

VA¿y¿
I

422
Stresses in Beams

33The analysis of the transfer of shear from steel reinforcing bars to the surrounding concrete is similar

to the analysis of shear presented in this section, but is beyond the scope of this text.

Weld
bead

Nail

(a) A glued, laminated
      wood beam.

(b) A welded steel
      plate girder.

(c) A wood box
      beam.

(d) A reinforced
      steel beam.

FIGURE 6.58 Several 

examples of built-up beams.
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Figure 6.59b illustrates how the two nails in a beam segment of length �s
provide the longitudinal shear force �H equal to the force due to the unbalanced

flexural stresses. The allowable shear-force capacity of a single discrete shear con-

nector, like the nail in Fig. 6.59c, is designated as Va, whether this available strength

represents shearing the nail in two (which is highly unlikely) or whether the joint

fails by pull-out of the nail or crushing of the adjacent wood. Direct-shear tests, as

illustrated in Fig. 6.59c, may be performed to determine the ultimate shear capacity

of a certain size and type of nail used to connect two pieces of wood of a certain type.

Example Problem 6.18 illustrates this discrete-shear-connector type of problem.

Δs Nails

Δs

(a) Nails on a uniform spacing of Δs. (b) A free-body diagram for
    determining shear force
   in discrete connectors.

(c) A direct-shear test to determine
     the shear capacity of a single nail.

A single nail

Neglect friction

Grips to hold
end of plank AB

A B

P

ΔH___
2 ΔH___

2

FIGURE 6.59 A nailed shear joint.

E X A M P L E  6 . 1 7

A built-up plate girder has the dimensions shown in Fig. 1. If the shear

force at this cross section is V � 300 kips, what is the shear flow in each

fillet weld bead? Iz � 54,800 in4.

Plan the Solution Since there are two weld beads that attach each

flange to the web, we can use Eq. 6.84 modified by a factor of two.

Solution From Eq, 6.84 (modified).

where, as indicated, Q is the first moment of the entire flange area, taken

about the NA.

Ans.

Review the Solution A simple recheck of the calculations is all that is

necessary here.

Interesting design information on steel girders and weld beads can

be found in Ref. 6-2, but we will not pursue the design of welds further

in this text.

 qr � 2.10 kips/in.

 qr �
(300 kips)(20 in.)(1.25 in.)(30.625 in.)

2(54,800 in4)

2qr �
VQ

I
�

VA¿y¿
I Fig. 1 (Drawing not to scale.)

hw = 60.0 in.

tw = 0.438 in.

tf = 1.25 in.

tf

30 in.

z

A′

Fillet
welds

20 in.
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Fig. 1

Fig. 2 Surfaced lumber design

dimensions.

E X A M P L E  6 . 1 8

A box beam is made by nailing together four boards in the configuration

shown in Fig. 1a. The beam supports a concentrated load of 1000 lb at its

midspan, and it rests on simple supports (Fig. 1b). If each nail can with-

stand an allowable shear force of 150 lb, what is the maximum spacing

that can be used?

2 × 4 (nom.)

2 × 8 (nom.)

(a) Cross section. (b) Loading arrangement and shear diagram.

Δs
P = 1000 lb

x

V
(lb)

500

–500

L/2L/2

Plan the Solution Since the shear force V is constant over each half of

the beam, we can use a constant nail spacing �s.The shear flow along each

row of nails can be computed using the shaded area between A and B in

Fig. 2. Equations 6.84 and 6.86 can be combined to compute the maximum

spacing. The finish dimensions of the boards are given in Appendix D.8.

Solution Since there are two rows of nails transferring shear between

the shaded area in Fig. 2 and the vertical boards, we need to modify 

Eq. 6.84 to read

(1)

in order to calculate the shear flow along a single line of nails. The spac-

ing along each row of nails is then given by Eq. 6.86.

(2)

The moment of inertia can be computed by taking a 6.5 in. 	 7.25 in.

rectangle and subtracting a 3.5 in. 	 4.25 in. rectangle.

I �
6.5(7.25)3

12
�

3.5(4.25)3

12
� 184.0 in4

¢smax �
Va

qr

2qr �
VQ

I
�

VA¿y¿
I

4.25 in.

1.5 in.

1.5 in.

1.5 in.3.5 in.1.5 in.

A B
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The shear flow is given by Eq. (1),

Then, from Eq. (2),

Use Ans.

Review the Solution The answer seems reasonable, and the calcula-

tions are easily rechecked and found to be correct.

Of course, factors other than shear strength should be considered in

the design of joints. For example, nails cannot be driven too close to the

edge of a piece of timber, and nails cannot be spaced too close together,

or the wood is likely to split.

¢s � 7 in.

¢smax �
Va

qr
�

150 lb

20.5 lb/in.
� 7.32 in.

 qr � 20.5 lb/in.

 qr �
VA¿y¿

2I
�

(500 lb)[(3.5 in.)(1.5 in.)](2.875 in.)

2(184.0 in4)

*6.12 SHEAR CENTER

In Section 6.6 “Unsymmetric Bending,” you discovered that loading of a beam, even
an unsymmetric beam, parallel to a principal axis of inertia of the cross section pro-
duces bending that is confined to the corresponding longitudinal principal plane. We

considered the direction of loading, but we did not establish the line of action of
loading that would produce bending without simultaneous twisting. Consider bend-

ing of a beam that has a thin-wall channel cross section (Fig. 6.60a) and is loaded

FIGURE 6.60 Loading of a thin-wall, open beam normal to its plane of symmetry. (Courtesy Roy Craig)

(b) Bending plus counter-clockwise twisting. (c) Bending plus clockwise twisting. (d) Bending without twisting.

 (a) Cross section of
 cantilever beam in
 Figs. 6.60b, c, d.

425

  c06StressesInBeams.qxd  10/1/10  8:39 PM  Page 425



normal to the axis of symmetry of the cross section. Figure 6.60 shows this situation,

with the load placed in three different positions. In Fig. 6.60b the load is too far to

the left, so it produces both bending (which is not really visible) and a counterclock-

wise twisting, as indicated by the position of the pointer. In Fig. 6.60c a load that acts

to the right of the centroid of the cross section clearly produces twisting in a clock-

wise sense. Finally, by trial-and-error, a location is found where the load produces

bending (again, too small to see) without any twisting (Fig. 6.60d).

The shear center of a cross section is defined as that point in the cross section
through which the resultant shear force V must pass if the beam is to bend with-
out twisting.

It is particularly important that the shear center of open, thin-wall beams be

located, since, as Fig. 6.60 shows, such members are very flexible in torsion (See

Section 4.9). There are other situations, as well, where locating the shear center

of the cross section of a beam is very important. For example, the shear center of

an airplane wing, which may in some cases be analyzed as a thin-wall closed

beam, must be properly located with respect to the imposed aerodynamic loads

(Fig. 6.61).

Shear-center location is important for all beams, but especially for thin-wall

open beams. Therefore, we will begin our analysis of shear-center location by con-

sidering singly symmetric, thin-wall beams, similar to the channel section in Fig. 6.60.

If a cross section has an axis of symmetry, the shear center will be located some-

where along the axis of symmetry of the section. An inclined load may be resolved

into one component lying in the plane of symmetry, which contains one principal

axis, and one component in the perpendicular (principal) direction, as illustrated in

Fig. 6.62. Therefore, to locate the shear center, S, we need only consider shear that

is perpendicular to the axis of symmetry of the cross section.

Consider the cantilever beam with open, thin-wall, singly symmetric section

shown in Fig. 6.63. At an arbitrary cross section there is a resultant shear force

V, as shown in the pictorial view of Fig. 6.63a and in the cross-sectional view in

Fig. 6.63b. The single shear force V is the resultant of a shear force V2 in the web

and the shear forces V1 and V3 in the two inclined flanges (Fig. 6.63c). Finally,

these shear forces are the resultants of shear flows (Fig. 6.63d) that we can
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FIGURE 6.63 Steps in locating the shear center of a thin-wall, open beam.

S

e

y

z S
C

V

e

y
y

Vz
z

C
O

Web
Flange

y

V3

V2

V1

z
O

h1

h3 = h1

hw/2

hw/2

φ

φ

y

q1(s)

q2(y)

z
y

s

=

(b) Single resultant
      shear force.

(a) A segment of a beam with loading perpendicular
      to the plane of symmetry.

(c) Resultant shear
      forces.

(d) Shear flow.

P
M

V

FIGURE 6.61 The shear

center of a wing cross section.

FIGURE 6.62 The shear

center is on the axis of 

symmetry.
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compute by the method of Section 6.8. The problem can therefore be stated as

follows:

• Determine the location of the shear center, S, so that the shear force acting
through S is the resultant of shear stresses due to bending only (i.e., bending
without twisting).

First, we can relate the eccentricity, e, of the shear center to the shear resultants

in Fig. 6.63c by setting the moment about O in Fig. 6.63b equal to the moment about

O in Fig. 6.63c.

(6.87)

(b) (c)

We also must satisfy the force-equilibrium equation

(6.88)

(b) (c)

Combining these two equations, we get

(6.89)

Therefore, to locate the shear center for this cross section we need to determine

the shear force V1 in the flange. From Eq. 6.65, the shear flow in the inclined flange

is given by

(6.90)

Figure 6.64 can be used in the determination of the cross-sectional properties that

are required in the calculation of the shear flow q1(s). We assume that the thick-

nesses of the flanges and of the web are small in comparison with other dimensions.

q1(s) �
VQ1(s)

I

e �
V1hw   cos  f

V

d�a Fz � 0 � V1  cos  f � V3  cos  f

aaMb
o

� Ve � (V1  cos  f)ahw

2
b � (V3  cos  f)ahw

2
b

427
Shear Center

y

tw
tf

z

s
b

hw––
2

hw––
2

φ

A′

ytf

z

s
ds

b

hw––
2

φ

(a) (b)

FIGURE 6.64 Cross-sectional dimensions used in calculating the shear flow in the flange.
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First, we need the moment of inertia of the entire cross section, taken with respect

to the z axis.

(6.91)

We can use the definition of moment of inertia, together with Fig. 6.64b, to determine

an expression for (Iz)flange.

Carrying out the integration, we get34

Therefore, for the complete cross section,

(6.92)

We can use Fig. 6.64a to determine Q1(s).

or

(6.93)

Therefore, the flange shear flow is

(6.94)

This distribution of shear flow in the flange is illustrated in Fig. 6.65. The web shear

flow distribution is also illustrated.

The total shear force in the flange is given by the integral

(6.95)

Combining Eqs. 6.89 and 6.95 we finally obtain an expression for the location of the

shear center.

(6.96)

where the moment of inertia, I, is given by Eq. 6.92.

In Example Problems 6.19 and 6.20 we determine two special cases of the above

analysis, a channel cross section and an equal-leg angle cross section, respectively.

e �
b2tf hw  cos  f

I
 ahw

4
�

b  sin f

3
b

V1 � �
b

0

q1(s) ds �
Vtf b2

I
 ahw

4
�

b  sin f

3
b

q1(s) �
VQ1(s)

I
�

Vtf 
s

I
 c hw

2
� ab �

s
2

 b sin  f d

Q1(s) � (tf s) c hw

2
� ab �

s
2
b sin  f d

Q1(s) � �
A¿

y dA � A¿y¿

I �
twh3

w

12
� 2btf c ahw

2
b2

� abhw

2
b sin  f � ab2

3
b sin2

 
 f d

(Iz)flange � btf c ahw

2
b2

� abhw

2
b sin  f � ab2

3
b sin2

 
 f d

(Iz)flange � �
Aflange

y2 dA � �
b

0

c hw

2
� (b � s) sin  f d 2(tf   ds)

I � Iz � (Iz)web � 2(Iz)flange
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34Check this expression by evaluating it for � � 0 and � � 90�.

qf

qw

FIGURE 6.65 The shear-

flow distribution in an open,

thin-wall beam.

  c06StressesInBeams.qxd  9/9/10  5:53 PM  Page 428



E X A M P L E  6 . 1 9

Use the fundamental equation of shear flow analysis for beams. Eq. 6.65,

to determine the eccentricity of the shear center for the channel section

in Fig. 1. Neglect the thickness in comparison with the other cross-

sectional dimensions. For dimensional purposes. let V be in newtons.

Plan the Solution We can follow the basic procedure that was followed in

deriving Eq. 6.96, that is, we can derive an expression for e, like Eq. 6.89,

based on resultant moments about O. This will involve the flange shear

force. Next we can determine an expression for the flange shear flow, and

then use the flange shear flow to determine the flange shear force needed in

the expression for e.The shear center should lie “out-side” the cross section.

Solution Neglecting a small flange contribution we get the fol-

lowing value for the moment of inertia:

From resultant moments about point O, through which Vw passes

(Fig. 2),

so

(1)

From Eq. 6.65,

(2)

with Qf based on the flange area A� in Fig. 3, that is,

So,

(3)
 � 2.51(10�3) V N/m

 (qf)max � (qf)s�40 mm

 qf �
(VN)(875 s  mm3)

13.96(106) mm4

 Qf � 875s mm3

 Qf � A¿y¿ � (7 mm)(s)(125 mm)

qf �
VQf

I

e �
Vf 

hw

V

aaMb
o

� Ve � Vfhw

 I � 13.96(106) mm4 � 13.96(10�6) m4

 I �
(4 mm)(250 mm)3

12
� 2(40 mm)(7 mm)(125 mm)2

 I �
twh3

w

12
� 2Af d

2
f

( 1
12 

bt3
f ),

Fig. 1 (Drawing not to scale.)

125 mm

40 mm

125 mm

tf = 7 mm

tw = 4 mm

S O

V
z

e

hw = 250 mm

V

S

Vw

Vf

Vf

e

O

Fig. 2

y′ = 125 mm

tf = 7 mm

–

s

A′

Fig. 3
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E X A M P L E  6 . 2 0

(a) Prove that the shear center of an equal-leg angle (Fig. 1) is at the cor-

ner of the angle, and prove that the resultant of the shear flow in the legs

of the angle is equal to the total shear force on the section. The shear

force acts normal to the axis of symmetry of the cross section. Assume

that t b. (b) Determine the maximum shear stress in the cross section

in Fig. 1.

Plan the Solution There is a resultant shear force along each leg of the

angle. Since the lines of action of these two forces pass through the cor-

ner O, this point must be the shear center. We could develop an expres-

sion for this using basic shear-flow concepts (i.e., Eq. 6.65), or we can

make use of Eq. 6.95, setting hw � 0 and � � 45�. The maximum shear

stress should occur at the neutral axis.

Solution (a) Determine shear-center location and prove that the result-
ant of flange shears is V. Since V1 and V2 both pass through point O, as

indicated in Fig. 2, the resultant, V, must pass through this point.

Therefore, the shear center lies at the intersection of the legs of the

angle.35 The flange shear is given by Eq. 6.95, with hw � 0.

(1)

where the moment of inertia is obtained by specializing Eq. 6.92 to give

(2)I �
2

3
 b3t  sin2 45° �

b3t
3

Vf �
Vtb3

 
 sin 

 45°

3I

V

Since the shear flow varies linearly, as illustrated in Fig. 4, the flange

shear force Vf is

(4)

Combining Eqs. (1) and (4) we get

Ans.

Review the Solution The eccentricity e should be positive so that the

shear center lies outside the cross section. Our answer has the correct

sign, and the magnitude seems reasonable in comparison with the

dimensions of the beam. Many commercial channel sections have an 

e/hw ratio in the 0.05–0.15 range.

e � 0.0501hw � 12.5 mm

 Vf � 0.0501 V  N

 Vf �
1

2
[2.507(10�3) V N/mm](40 mm)

(qf)max

Fig. 4

35This argument also holds for unequal-leg angles, but the shear-flow distribution in an unequal-leg angle

must be obtained using the unsymmetric bending theory of Section 6.6, so this problem, which asks for

the shear flow, only treats equal-leg angles.

45°

45°

t = const
b

b

O
NA

e

V

S = O

V

V1 = Vf

V2 = Vf

Fig. 1

Fig. 2
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Combining Eqs. (1) and (2) we get

(3)

Since

we have shown that combining Eqs. 6.92 and 6.95 leads to the correct re-

sultant shear force.

(b) Determine the maximum shear stress. The shear flow distribution is

given by Eq. 6.94, which specializes to

(4)

where I is given by Eq. (2). This shear-flow distribution is depicted in 

Fig. 3. Since �f � qf /t,

or

Ans. (5)

Review the Solution As a rough check on our answer for �max, we can

compare the preceding result, Eq. (5), with �max for a rectangle. From

Example Problem 6.14,

Since the area of the equal-leg angle is 2bt, Eq. (5) can be expressed as

Since the shear flows in the angle are not parallel with the resultant V, it

is reasonable that the shear stress in the angle section is greater than that

in a rectangle by a factor of 

See Homework Problem 6.12-16 for a chance to use the basic shear

flow formula, Eq. 6.65, to obtain the above results.

12.

(tf max)angle �
322

2

V
A

(tmax)rectangle �
3

2
 
V
A

(tf)max � a322

4
b 

V
bt

(tf)max �
(qf)s�b

t

qf 
(s) �

Vts
I

  ab �
s
2
b  sin  45°

�Ta Fy � 2Vf   sin  45° � V

Vf �
V

12

(qf)max

s

qf(s)

Fig. 3 Shear-flow distribution.
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STRAIN-DISPLACEMENT ANALYSIS 
OF BEAMS

Prob. 6.2-1. A steel band-saw blade with rectangular cross

section passes over a pulley of radius r � 600 mm, as shown

in Fig. P6.2-1. Neglect the teeth of the saw blade, and assume

that the neutral surface passes through the center of the saw

blade’s cross section. Determine the maximum strain, �max, in

the saw blade (a) if the thickness of the blade is h � 1.25 mm,

and (b) if the thickness of the blade is h � 2.0 mm.

the strap is h � 1 mm. (b) If the length of the steel strap is 

L � 3 m, and if its thickness is h � 1.5 mm, what is the max-

imum strain in the strap?

6.13 PROBLEMS

▼

P6.2-1

b

h

r

Prob. 6.2-2. Couples M0 are applied to a steel strap of length

L � 30 in. and thickness to bend it into the form of

a circular are, as shown in Fig. P6.2-2. The deflection � at the

midpoint of the are, measured from a line joining the tips, is

3.5 in. (a) Determine the radius of curvature, �, of the strap,

measured from the center of curvature C to the neutral axis

of the strap (which passes through the center of the cross

section of the strap). (b) Calculate the maximum extensional

strain, �max, in the curved strap.

h � 1
8 in.

C

M0

M0

h_
2

h

ρ

δ

P6.2-2

Prob. 6.2-3. A steel strap of length L (meters) is bent to

form a circle, and its ends are then butt-welded together, as

shown in Fig. P6.2-3. (a) Determine the shortest length of

strap that can be used if the maximum permissible strain in

the strap is �max � 2.0 	 10�3 mm/mm and if the thickness of

h

Weld

L

b

h

P6.2-3

Prob. 6.2-4. A couple M0 acts on the end of a slender can-

tilever beam to bend it into the arc of a circle of radius �, as

shown in Fig. P6.2-4. If the depth of the beam is h � 2c, the

length of the beam is L, and the extensional strain in the bot-

tom fibers (y � �c) is �max, (a) determine an expression for

the radius of curvature �, and (b) determine an expression

for the tip deflection �max. Your answers should be in terms

of �max, c, and L.

C

y

x

δmax

M0

L

ρ

c

P6.2-4

Prob. 6.2-5. Prove that the transverse curvature, � 1/��, is

related to the longitudinal curvature, � 1/�, by the equa-

tion � � that is, derive Eq. 6.5.nkk

k

k¿

FLEXURAL STRESS IN LINEARLY ELASTIC 
BEAMS

Prob. 6.3-1. A metal strap (Young’s modulus � E) with rec-

tangular cross section is bent around a solid circular cylinder

of radius r, as shown in Fig. P6.3-1. Determine an expression

for the maximum tensile stress in the curved portion of the

▼
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strap. Express your answer in terms of the dimensions of the

strap, the radius r, and the modulus E.
Calculate the maximum deflection, �max, of the beam if its

length is L � 4 m.

P6.3-1, P6.3-2, and P6.3-3

b

h

r

DProb. 6.3-2. A steel strap (E � 210 GPa) with rectangular

cross section of dimensions b � 6 mm and h � 1 mm is bent

around a solid cylinder of radius r as shown in Fig. P6.3-2. If

the maximum permissible tensile stress in the steel strap is

�max � 200 MPa, what is the minimum radius, r, of cylinder

that can be used?
DProb. 6.3-3. A steel strap (E � 29 	 103 ksi) with rectangu-

lar cross section is bent around a solid circular cylinder of

radius r � 20 in., as shown in Fig. P6.3-3. If the maximum

allowable flexural stress is not to exceed the yield strength

(�Y � 36 ksi), what is the maximum thickness h that the strap

can have?

Prob. 6.3-4. A high-strength steel strap (E � 210 GPa) with

thickness h � 4 mm and length L � 1.5 m is bent into the arc

of a circle by end couples M0, as shown in Fig. P6.3-4. (a) If

the resulting circular arc subtends an angle 	 � 30�, what is

the maximum flexural stress (�max)a in the strap? (b) If the

moment M0 is decreased so that the resulting circular arc

subtends an angle 	 � 24�, what is the maximum flexural

stress (�max)b in the strap?

M0 M0

L = length

h

α

P6.3-4

Prob. 6.3-5. A couple M0 � 20 kN m acts on the end of a

slender steel cantilever beam (E � 210 GPa) to bend it into

the arc of a circle of radius �. as shown in Fig. P6.3-5. The

cross section of the beam is a square of dimension d � 120

mm. (a) Calculate the maximum tensile stress in the beam.

(b) Calculate the radius of curvature of the beam. (c)

C

y

x

δmax

M0

L

ρ

d––
2

d

d

P6.3-5 and P6.3-6

Prob. 6.3-6. Solve Prob. 6.3-5 if E � 30 	 103 ksi, d � 4 in.,

L � 10 ft, and M0 � 20 kip ft.

FLEXURAL STRESS IN 
LINEARLY ELASTIC BEAMS

Prob. 6.3-7. A timber beam consists of four planks fastened

together with screws to form a box section 5.5 in. wide and

8.5 in. deep, as shown in Fig. P6.3-7. If the flexural stress at

point B in the cross section is 900 psi (T), (a) determine the

flexural stress at point A in the cross section; (b) determine

the stress at point C in the cross section; and (c) determine

the total force on the top plank.

�

MDS 6.1–6.3

A

B

C

2.5 in.

2.0 in.

0.75 in.

1.5 in.

1.5 in.

1.5 in.

5.5 in.

NA

1.5 in.

P6.3-7

DProb. 6.3-8. The structural steel wide-flange beam shown

in Fig. P6.3-8 is a W10 	 60 section (See Table D.1). The 

allowable flexural stress in the beam is �allow � 28 ksi. (a)

Calculate the maximum moment Mz, that can be applied

(producing deflection in the xy-plane); and (b) calculate the
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maximum moment My that can be applied (producing de-

flection in the xz-plane).

Prob. 6.3-12. Repeat Prob. 6.3-11 if M � 20 kN  m and the

dimensions of the beam are bf � 150 mm, tf � 50 mm, hw �
200 mm, and tw � 50 mm.

Prob. 6.3-13. A beam is made from three boards that are

glued together to form a single beam, as shown in Fig. P6.3-13.

The moment acting at this cross section is M. (a) Determine

an expression for the distance from the bottom of the beam

to the neutral axis (NA); (b) determine an expression for the

maximum tensile stress in the beam; and (c) determine an

expression for the total force (compressive) acting on the

top board.

Mz

z

(a) (b)

y

x

My
z

y

x

P6.3-8 and P6.3-9

DProb. 6.3-9. Repeat Prob. 6.3-8 if the wide-flange beam is a

W250 	 89 section (see Table D.2) and the allowable flexural

stress is �allow � 200 MPa.
DProb. 6.3-10. An extruded aluminum machine part has the

cross section in Fig. P6.3-10. Determine the maximum

moment M that can be applied to the member if the allowable

flexural stress in tension is (�allow)T � 200 MPa and the

allowable flexural stress in compression is (�allow)C � 100 MPa.

100 mm

50 mm
50 mm 25 mm

25 mm

25 mm

NA

M

Prob. 6.3-11. Determine the flexural stresses at points A and

B in the cross section in Fig. P6.3-11 if the bending moment

at this section is M � 10 kip  ft. The dimensions of the cross

section are bf � 8 in., tf � 2 in., hw � 6 in., and tw � 2 in.

P6.3-10

MNA

A

B
tw

hw

tf

bf

P6.3-11 and P6.3-12

a
a

4a

2a

2a

2a

NA

M

P6.3-13

Prob. 6.3-14. An extruded aluminum machine part has the

cross section shown in Fig. P6.3-14. The bending moment M
acts in the sense shown in the figure. If the magnitude of the

maximum tension at the top and the magnitude of the max-

imum compression at the bottom are in the ratio of 3:1, what

is the thickness t of the two vertical webs?

8 in.t
t

¾ in.

3¼ in.

NA

M

P6.3-14

Prob. 6.3-15. The solid shaft AD in Fig. P6.3-15 is supported

by bearings at A and C. The belt forces on the pulleys at B
and D are both perpendicular to the shaft. Assume that the

bearings produce concentrated reaction forces that are per-

pendicular to the shaft. Determine the maximum flexural

stress in the shaft at cross section B.
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Prob. 6.3-16. A rectangular timber beam AE has the cross-

sectional dimensions and loading shown in Fig. P6.3-16. (a)

Determine the flexural stress distribution on the cross sec-

tion at C; (b) make a two-dimensional sketch of this stress

distribution; and (c) determine the total compressive force

at this cross section.

Prob. 6.3-19. A W12 	 65 wide-flange beam supports the

distributed load and concentrated load shown in Fig.

P6.3-19. See Table D.1 for the cross-sectional properties of

the beam. (a) Determine the maximum tensile stress on the

cross section just to the left of the 5-kip load at B, and (b)

determine the maximum compressive stress on the cross

section at C.

100 lb

A
B DC

12 in.8 in. 8 in.

60 lb

3––
4

d =      in.

P6.3-15 and P6.8-13

1.5 m 1.5 m

0.5 m

1 m
100 mm

200 mm

12 kN 8 kN

A B C D E

P6.3-16 and P6.3-27

Prob. 6.3-17. A simply supported wide-flange beam has the

loading and cross-sectional dimensions shown in Fig. P6.3-17.

Determine the maximum tensile stress on the cross section

at C. Neglect the weight of the beam.

1 m 1 m 1 m 2 m

b = 200 mm

h = 300 mm
tf = 25 mm

tw = 15 mm

20 kN 20 kN 20 kN

A B C D E

Prob. 6.3-18. A wide-flange beam with overhangs is shown in

Fig. P6.3-18. Determine the maximum tensile stress on the

cross section at C. Neglect the weight of the beam.

P6.3-17, P6.3-28, and P6.3-38

3 ft 2 ft2 ft 3 ft

b = 4 in.

h = 6 in.
tf = 0.25 in.

tw = 0.20 in.

1 kip 2 kip

6 kip·ft

A B

x

C D E

P6.3-18, P6.3-29, and P6.3-39

6 ft 3 ft 9 ft

5 kips

2 kip/ft

A

x

B C
D

P6.3-19, P6.3-30 and P6.3-40

Prob. 6.3-20. A W150 	 24 wide-flange beam supports the

distributed load and concentrated load shown in Fig.

P6.3-20. See Table D.2 for the cross-sectional properties of

the beam, (a) Determine the maximum tensile stress on a

cross section just to the left of B, where the 8 kN  m couple

acts, and (b) determine the maximum tensile stress on a

cross section just to right of B.

2 m 1 m 1 m 2 m

8 kN·m
2 kN/m

A

x

B C

D E

P6.3-20, P6.3-31, and P9.3-5

Prob. 6.3-21. The solid steel shaft AE in Fig. P6.3-21 is sup-

ported by bearings at B and D. Assume that the pulley

loads at A and E are parallel to each other and that the

bearings produce concentrated reaction forces that are
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normal to the shaft. (a) Sketch shear-force and bending-

moment diagrams for the shaft, and (b) determine the max-

imum flexural stress in the shaft if its diameter is 

d � 0.625 in.

L � 4 m. (b) If the allowable flexural stress (tension or com-

pression) is �allow � 180 MPa, determine the maximum value

of load P (newtons) that can be applied to the beam.

The moment of inertia about the neutral axis (NA) is I �
122 (106) mm4.

BA DC E

4 in.4 in.4 in. 6 in.

25 lb

50 lb

P6.3-21

Prob. 6.3-22. A structural tee section is used as a cantilever

beam to support a triangular distributed load of maximum

intensity w � 600 N/m and a concentrated load P � 1 kN, as

shown in Fig. P6.3-22. Determine the maximum tensile flex-

ural stress and the maximum compressive flexural stress at

end B. The relevant dimensions of the cross section are

shown in the figure, and the moment of inertia about the

neutral axis (NA) is I � 13.8 	 106 mm4.

2 m

46 mm

157 mm

P = 1 kN 600 N/m

A B
NA

P6.3-22

Prob. 6.3-23. A channel section is used as a cantilever beam

to support a uniformly distributed load of intensity w � 25

lb/ft and a concentrated load P � 50 lb, as shown in Fig.

P6.3-23. Determine the maximum tensile flexural stress and

the maximum compressive flexural stress at end A. The

relevant dimensions of the cross section are shown in the

figure, and the moment of inertia about the neutral axis

(NA) is I � 5.14 in4.

4 ft 2 ft

0.674 in.

2.496 in.

w = 25 lb/ft P = 50 lb

A B C

NA

P6.3-23

DProb. 6.3-24. A cantilever beam is subjected to two con-

centrated loads, and its cross section has the dimensions

shown in Fig. P6.3-24. (a) Sketch shear and moment dia-

grams for the beam, expressing the shear values in terms of

P and the bending moment values in terms of PL, where 

2 m 2 m

68.6 mm

248.9 mm

PP/4

A B C NA

P6.3-24

Prob. 6.3-25. A W24 	 94 wide-flange member is used as a

cantilever beam to support a uniformly distributed load of

intensity w � 1.5 kips/ft and a concentrated load P � 20 kips

as shown in Fig. P6.3-25. (a) Sketch shear-force and bending-

moment diagrams for the beam AC, and (b) determine the

maximum flexural stress in the beam. Include the weight of

the beam in your calculation of the flexural stress.

12 ft8 ft

P = 20 kips

w = 1.5 kips/ft

A
CB

x

P6.3-25 and P9.3-4

Prob. 6.3-26. To limit the downward motion of D, a micro-

switch is installed as shown in Fig. P6.3-26a. When fully de-

pressed, the switch arm AC can be modeled as a cantilever

beam with a concentrated force P � 0.50 oz applied at end

C and a reaction of 2P � 1.00 oz at the contact point B, as

shown in Fig. P6.3-26b. (a) Sketch shear and moment dia-

grams for the beam AC, and (b) determine the maximum

flexural stress in the beam when the switch is fully activated.

Express the stress in psi. The cross section of the beam is

shown in Fig. P6.3-26c.

0.6 in.
0.4 in.

in.

P = 0.50 oz

2P = 1.00 oz

A B

C

CBA

(b) (c)(a)

D

1–
4

in.1––
32

P6.3-26
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Prob. 6.3-27. For beam AE in Fig. P6.3-16, (a) sketch shear

and moment diagrams, and (b) determine the maximum

flexural stress in the beam.

Prob. 6.3-28. For beam AE in Fig. P6.3-17, (a) sketch shear

and moment diagrams, and (b) determine the maximum

flexural stress in the beam.

Prob. 6.3-29. For beam AE in Fig. P6.3-18, (a) sketch shear

and moment diagrams, and (b) determine the maximum

flexural stress in the beam.

Prob. 6.3-30. For beam AD in Fig. P6.3-19, (a) sketch shear

and moment diagrams, and (b) determine the maximum

flexural stress in the beam.

Prob. 6.3-31. For beam AE in Fig. P6.3-20, (a) sketch shear

and moment diagrams, and (b) determine the maximum

flexural stress in the beam.

Prob. 6.3-32. A structural tee section is used as a cantilever

beam to support a triangularly distributed load of maximum

intensity w0 � 3 kN/m and a concentrated load P � 500 N as

shown in Fig. P6.3-32. (a) Sketch shear and moment dia-

grams for the beam, and (b) determine the maximum tensile

flexural stress and the maximum compressive flexural stress

in the beam.The relevant dimensions of the cross section are

shown below, and the moment of inertia about the beam’s

neutral axis (NA) is I � 895(103) mm4.

section as shown in Fig. P6.3-34. The allowable tensile stress

is (�allow)T � 20 ksi; and the allowable compressive stress is

(�allow)C � 16 ksi.

437

2 m

24 mm

76 mm

P = 500 N w0  = 3 kN/m

NA

A B

P6.3-32

Prob. 6.3-33. A channel section is used as a cantilever beam

to support a uniformly distributed load of intensity w � 100

lb/ft and a concentrated load of P � 100 lb, as shown in Fig.

P6.3-33. (a) Sketch shear and moment diagrams for the

beam, and (b) determine the maximum tensile flexural stress

and the maximum compressive flexural stress in the beam.

The relevant dimensions of the cross section are shown

below, and the moment of inertia about the neutral axis

(NA) is I � 5.14 in4.

4 ft2 ft

0.674 in.

2.496 in.

w = 100 lb/ft
P = 100 lb

A B C

NA

P6.3-33

DProb. 6.3-34. Determine the maximum uniform distributed

load, w, that can be applied to a cantilever beam with tee

8 ft

3.94 in.

11.06 in.

w

NA

I = 373 in4

A B

w

4 m

A

B
C

2 m

P6.3-34

DProb. 6.3-35. Determine the maximum uniform distributed

load, w, that can be applied to the beam with overhang

shown in Fig. P6.3-35. The allowable stress (magnitude) in

tension or compression is 150 MPa, and the beam is a W310 	
97 (see Table D.2 of Appendix D).

P6.3-35, P6.3-36, and P6.3-41

DProb. 6.3-36. Repeat Prob. 6.3-35 for a uniformly loaded

W360 	 79 beam with length AB of 5 m and length BC of 

2 m (see Table D.2 of Appendix D).

Prob. 6.3-37. One of the assumptions made in deriving the

flexure formula, Eq. 6-13, was that �y and �z are much

smaller than �x (a) Using the cantilever beam with uniformly

distributed load, shown in Fig. P6.3-37, derive an expression

for the ratio of the magnitude of the maximum flexural 

stress at the top of the beam, �xm � |�x(x, y � h/2)|, at an arbi-

trary cross section x to the maximum transverse normal stress

in the beam, �ym � p/b. (b) Use your results from Part (a) to

show that the stated assumption is satisfied practically every-

where in this cantilever beam with uniform distributed load.

L
x

p = force/length

y

x

σy(x, h/2) = p/b

b

h/2
h/2

P6.3-37

FLEXURAL STRESS IN 
LINEARLY ELASTIC BEAMS

CProb. 6.3-38. Use the MDSolids modules Section Properties,
Determinate Beams, and Flexure to solve Problem 6.3-28.

MDS 6.1–6.3▼
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CProb. 6.3-39. Use the MDSolids modules Section Properties,
Determinate Beams, and Flexure to solve Problem 6.3-29.
CProb. 6.3-40. Use the MDSolids modules Section Properties,
Determinate Beams, and Flexure to solve Problem 6.3-30.
C*Prob. 6.3-41. Use the MDSolids modules Section Properties,
Determinate Beams, and Flexure to solve Problem 6.3-35.

DProb. 6.4-4. The simply supported beam in Fig. P6.4-4 is

subjected to a concentrated load of P � 40 kips at the center

of its span of L � 8 ft and a uniformly distributed downward

load of intensity w � 5 kips/ft over the half-span AB. The

allowable stress (magnitude) in tension or compression is

�allow � 20 ksi. From Table D.1 of Appendix D select the

lightest wide-flange steel beam that may be used for this

application.
DProb. 6.4-5. (a) A glued, laminated (glulam) beam is made

by gluing together n planks of width b and thickness t, as illus-

trated in Fig. P6.4-5a. Derive a formula that relates the value

of the section modulus S to the number of planks used to

make the beam. Assume that the thickness of each glue layer

is negligible and that the laminated beam behaves like an or-

dinary wood beam. (b) A simply supported glulam beam of

width b � 200 mm and length L � 6 m supports a concen-

trated load P � 8 kN at its center, as shown in Fig. P6.4-5b.

The magnitude of the allowable stress of the wood in tension

or compression is �allow � 6 MPa. Determine the number of

planks of thickness t � 50 mm required for the lightest glulam

timber beam that can be used for this application.

In Problems 6.4-1 through 6.4-16 ignore the weight of the
beam in comparison with the applied loading. It is
suggested that you use shear and moment diagrams to
determine the locations of critical sections.

DESIGN OF BEAMS FOR STRENGTH

MDS 6.4 & 6.5

▼

DProb. 6.4-1. The simply-supported beam in Fig. P6.4-1 is

subjected to a uniform downward load of w � 8 kips/ft on a

span of L � 10 ft. The allowable stress (magnitude) in

tension or compression is �allow � 20 ksi. From Table D.1 of

Appendix D, select the lightest wide-flange steel beam that

may be used for this application.

w

L

P6.4-1 and P6.4-2

DProb. 6.4-2. The simply supported beam in Fig. P6.4-2 is

subjected to a uniform downward load of w � 90 kN/m on a

span of L � 4 m.The allowable stress (magnitude) in tension

or compression is �allow � 150 MPa. From Table D.2 of

Appendix D, select the lightest wide-flange steel beam that

may be used for this application.
DProb. 6.4-3. The simply supported beam in Fig. P6.4-3 is

subjected to a concentrated load of P � 200 kN at the cen-

ter of its span of L � 4 m and a uniformly distributed down-

ward load of intensity w � 50 kN/m over the half-span AB.

The allowable stress (magnitude) in tension or compression

is �allow � 150 MPa. From Table D.2 of Appendix D select 

the lightest wide-flange steel beam that may be used for

this application.

P6.4-3 and P6.4-4

w

P

L/2

A
B

C

L/2

P6.4-5

b

c

c
t

(a) (b)

Py

z

nt

L_
2

L_
2

c = nt__
2

DProb. 6.4-6. A simply supported timber beam supports a

triangularly distributed load, as shown in Fig. P6.4-6. The

magnitude of the allowable stress in tension or compression

is �allow � 800 psi. From Table D.8 of Appendix D select the

lightest timber beam that may be used for this application if

the nominal depth of the beam may not exceed twice its

nominal width.

P6.4-6

9 ft

A

w0 = 50 lb/in

B

DProb. 6.4-7. A simply supported timber beam supports 

a linearly varying load, as shown in Fig. P6.4-7. The magni-

tude of the allowable stress in tension or compression is 
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DProb. 6.4-8. From Table D.2 of Appendix D, select the

lightest wide-flange steel beam that may be used for the

application shown in Fig. P6.4-8. The allowable stress (mag-

nitude) in tension or compression is �allow � 150 MPa.

DProb. 6.4-11. A sawmill cuts rectangular timber beams

from circular logs. If two beams of width b and depth h are

to be cut from a single log of diameter d, what b and h would

give the strongest beams, that is, the beams with maximum

value of S? (Neglect the width of saw cuts.)

P6.4-7

6 m

A

1.6 kN/m

3.2 kN/m

B

P6.4-8

20 kN10 kN 20 kN

1 m

A B C D

10 kN

E F

1 m 1 m 1 m 1 m

DProb. 6.4-9. From Table D.1 of Appendix D, select the

lightest wide-flange steel beam that may be used for the

application shown in Fig. P6.4-9. The allowable stress (mag-

nitude) in tension or compression is �allow � 20 ksi.

P6.4-9

8 ft 12 ft

P = 20 kips

A B C

w  = 1.5 kips/ft

D*Prob. 6.4-10. Two angle sections with equal legs (from

Table D.5 of Appendix D) are to be welded together to form

a beam with a channel cross section as illustrated in Fig.

P6.4-10b. The loads are w � 1.0 kip/ft and P � 12 kips. If the

allowable stress in tension is (�allow)T � 20 ksi and the

P6.4-10

w

P
(a) (b)

8 ft 12 ft

Weld

A B C
bt

2b

NA

P6.4-11

h d

b b

DProb. 6.4-12. An 18-ft-long wood beam is subjected to two

concentrated loads, as shown in Fig P6.4-12. The allowable

tensile (and compressive) stress for the wood is �allow � 960

psi. Select the best beam for this application from the lists of

2	 and 4	 (i.e., nominal 2-in.-wide or 4-in.-wide) wood

beams in Table D.8.

P6.4-12

300 lb

A B D

6 ft6 ft 6 ft

C

1000 lb

�allow � 6 MPa. Determine, to the nearest 10 mm, the dimen-

sion b of the lightest timber beam with square cross section

that can be used for this application.

allowable stress magnitude in compression is (�allow)C � 15 ksi,

what is the lightest angle that could be used to make the

beam shown in Fig. P6.4-10a? (Note: Assume that t /b 1

in obtaining expressions for the moment of inertia, etc.)

V

439

  c06StressesInBeams.qxd  9/9/10  5:53 PM  Page 439



DProb. 6.4-14. Solve Prob. 6.4-13 for the following parame-

ters: PA � 4 kips, PC � 12 kips, L � 4 ft, �allow � 16 ksi. For

Part (b), use Table D1.
DProb. 6.4-15. An inverted structural steel tee beam is sup-

ported by a pin at A and rests on a roller at B, as shown in

Fig. P6.4-15a. What is the maximum load P that can be hung

from the beam at C if the cross section of the tee has the di-

mensions shown in Fig. P6.4-15b, with tw � 0.420 in., and the

allowable banding stress (in tension and compression) is

�allow � 20 ksi?

Prob. 6.5-2. A steel-reinforced timber beam has the cross

section shown in Fig. P6.5-2a (see Prob. 6.5-1) and is used as

an 18-ft-long simply supported beam to carry a uniformly

distributed load w � 500 lb/ft, as shown in Fig. P6.5-2b.

Determine the maximum normal stresses in the steel and the

wood, (�max)s and (�max)w, respectively, under this loading

condition. The ratio of elastic moduli of the steel and wood

is Es /Ew � 20. (In your calculations, you may neglect the

weight of the beam.) 

P6.4-13 and P6.4-14

PCPA

A

C

B
D

L2L

b

P6.4-15 and P6.4-16

10 ft 5 ft

A B C

P

tw

6.54 in.

0.42 in.

5.02 in.

In Probs. 6.5-1 through 6.5-12 assume that the component
parts of the beams are securely bonded together so that
the assumption that “plane sections remain plane” is
valid. Use the Direct Composite-Beam Method of Eqs.
6.18-6.24 to solve these problems.

DIRECT COMPOSITE-BEAM METHOD▼

Prob. 6.5-1. A timber beam (nominal 6 in. 	 8 in.) is rein-

forced by attaching -in.-thick steel plates to its top and bot-

tom surfaces, as shown in Fig. P6.5-1. The ratio of elastic

moduli of the steel and wood is Es /Ew � 20. If the beam is

subjected to a bending moment M � 200 kip  in, what are

the maximum stresses in the steel and wood, (�max)s and

(�max)w?

3
8

DProb. 6.4-16. An inverted structural steel tee beam is sup-

ported by a pin at A and rests on a roller at B, as shown in

Fig. P6.4-16a. What is the maximum load P that can be hung

from the beam at C if the cross section of the tee has the di-

mensions shown in Fig. P6.4-16b, with tw � 0.500 in., and the

allowable bending stress in tension is (�allow)T � 20 ksi and

the allowable bending stress (magnitude) in compression is

(�allow)C � 9 ksi?

P6.5-1 and P6.5-2a

5.5 in.

7.5 in.

0.375 in.

0.375 in.

z

y

P6.5-2b

A
B

w = 500 lb/ft

x

y

18 ft

DProb. 6.5.3. The reinforced timber beam shown in Fig.

P6.5-3a is simply supported and is subjected to quarter-point

loading, as shown in Fig. P6.5-3b. If the allowable stresses in

the steel and wood are (�allow)s � 124 MPa and (�allow)w �
8 MPa, respectively, and the ratio of elastic moduli is 

Es /Ew � 20, determine the (maximum) allowable load P. (In

your calculations, you may neglect the weight of the beam.)

DProb. 6.4-13. A structural designer wishes to locate the

roller support B such that the beam AD in Fig. P6.4-13 will

have the same maximum magnitude of positive moment and

negative moment when subjected to concentrated loads PA

and PC acting on the beam as shown. Once the overhang

length b has been determined, the designer must choose an

appropriate beam to satisfy a flexural stress allowable of

�allow (tension or compression). (a) Determine the overhang

length b. (b) From Table D.2, select the best wide-flange

section for this application.

Let PA � 30 kN, PC � 40 kN, L � 1.5 m, �allow � 80 MPa.

440

  c06StressesInBeams.qxd  9/9/10  5:53 PM  Page 440



Prob. 6.5-4. A steel-reinforced timber beam has the cross

section shown in Fig. P6.5-4a (see Fig. P6.5-3a) and is used as

a simply supported beam to carry a uniformly distributed

loading of intensity w � 2.0 kN/m, as shown in Fig. P6.5-4b.

Determine the maximum normal stresses in the steel and the

wood, (�max)s and (�max)w, under this loading condition. The

ratio of elastic moduli of the steel and wood is Es/Ew � 20.

(You may neglect the weight of the beam.)

Prob. 6.5-6. An off-shore oil pipeline consists of a steel pipe

of inside diameter di � 10.00 in. and wall thickness tp � 0.375

in., as shown in Fig. P6.5-6a. For protection from abrasion

and the salt water environment, the pipe is coated by a plas-

tic sleeve of thickness ts � 0.25 in. The ratio of elastic moduli

of the pipe and sleeve is Ep/Es � 70. While it is being trans-

ferred from a ship to the floor of the ocean (Fig. P6.5-4b), the

pipeline bends, and may be subjected to a maximum bend-

ing moment of M � 300 kip  in.What are the corresponding

maximum stresses in the steel pipe and the plastic sleeve,

(�max)p and (�max)s, respectively?P6.5-3 and P6.5-4a

140 mm

240 mm

12 mm

12 mm

z

y

(a)

(b)

x

PP

y

1 m 3 m 1 m

P6.5-4b

w

x

y

5 m

Prob. 6.5-5. A three-layer composite beam consists of an in-

terior component of material “a” and outer components of

material “b” bonded together to form the cross section

shown in Fig. P6.5-5. The elastic moduli of the two materials

are Ea and Eb, respectively, with Eb � n Ea. Determine for-

mulas relating the maximum stresses in the two materials to

the value of the bending moment at the given cross section

and the dimensions shown in Fig. P6.5-5.

P6.5-5 and P6.5-15

b

h/4

h/4

h/4

h/4

z

y

b

a

b

P6.5-6

di

Pipe-laying ship

Ocean floor

tp ts

(a) (b)

Prob. 6.5-7. A timber beam (actual dimensions b 	 h) is re-

inforced by bonding a steel splice plate of width h and thick-

ness ts on either side, as shown in Fig. P6.5-7. If the bending

P6.5-7 and P6.5-13

b

hz

ts

y
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moment that is to be resisted by the beam is M, and the ratio

of elastic moduli is Es/Ew, determine expressions for the flex-

ural stresses �s in the steel and �w in the timber.
DProb. 6.5-8. A steel/timber sandwich beam is fabricated

from two 80 mm 	 160 mm timber beams and a 10 mm 	
160 mm steel plate, as illustrated in Fig. P6.5-8. The ratio of

elastic moduli is Es /Ew � 20. If the allowable stresses in the

steel and wood are (�allow)s � 120 MPa and (�allow)w � 8

MPa, respectively, what is the maximum moment Mz that

can be safely applied to this sandwich beam?

*Prob. 6.5-11. A simply supported beam spans a length of

20 ft and supports equal downward loads, P, as shown in Fig.

P6.5-11. To strengthen the 6 	 12 timber beam (finished di-

mensions are 5.5 in. 	 11.5 in., as shown) a 4 in. 	 in. steel

plate is bonded to the bottom of the wood beam. The elastic

moduli are Ew � 1.2 	 106 psi and Es � 30 	 106 psi for the

wood and steel, respectively. The specific weights of the

wood and steel are 
w � 40 lb/ft3 and 
s � 490 lb/ft3. (a) If

3
8

442

P6.5-8 and P6.5-14

y

z 160 mm

10 mm

80
mm

80
mm

Prob. 6.5-9. A bimetallic strip, whose cross section is de-

picted in Fig. P6.5-9, is used as the sensing element in a tem-

perature-activated switch. The two metals are copper and

nickel, whose elastic moduli are Ec � 120 GPa and En �
210 GPa, respectively. The z axis is the NA. (a) If the strip is

subjected to a bending moment Mz � 2 N  m, what are the

maximum stresses (�c)max and (�n)max in the copper and

nickel, respectively? (b) What radius of curvature, �, is pro-

duced by this bending moment?

P6.5-9

140 mm

240 mm

6 mm

z
O

y
(a)

(b)

x

w

A B

y

L = 4 m

15 mm

3 mm

Ni (nickel)

Cu (copper)
3 mm

z

y

O

Prob. 6.5-10. The simply supported beam in Fig. P6.5-10

spans a length of L � 4 m and carries a uniformly distributed

load of magnitude w. The cross section of the beam consists

of a timber beam (Ew � 10 GPa) to which is attached a steel

bottom-plate (Es � 210 GPa). The z axis is the NA. (a) If the

distributed load is w � 4 kN/m (including beam weight), find

the maximum stresses in the wood and in the steel. (�max)w

and (�max)s . (b) Determine the radius of curvature, �, at the

midspan.

P6.5-10 and P6.5-19

P6.5-11 and P6.5-12

4 in.

11.5 in.

0.375 in.

0.75 in.

z

y

(a)

(b)

x

PP

y

O

6 ft 6 ft8 ft
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the loads on the beam are P � 2 kips each, find the maxi-

mum stresses in the wood and in the steel, (�max)w and

(�max)s. Include the weight of the beam in your calculations.

(b) Determine the radius of curvature in the section of the

beam between the two loads.
D*Prob. 6.5-12. If the allowable stresses for the beam in

Prob. 6.5-11 are (�allow)w � 1,200 psi and (�allow)s � 18,000 psi

for the wood and steel, respectively, what is the allowable

value, Pallow, of each of the two loads? (You may neglect the

weight of the beam in your calculations.)

443

elastic moduli is Ea/Ew � 6, determine the (maximum) al-

lowable load P.

In Probs. 6.5-13 through 6.5-21 assume that the compo-
nent parts of the beams are securely bonded together so
that the assumption that “plane sections remain plane”
is valid. Use the Transformed-Section Method of 
Fig. 6.21 and Eqs. 6.25–6.29 to solve these problems.

TRANSFORMED-SECTION METHOD

MDS 6.6 & 6.7

▼

Prob. 6.5-13. (a) Use the transformed-section method to

solve Prob. 6.5-7. (b) Letting b � 5.5 in., h � 11.5 in., ts �
0.375 in., and M � 20 kip  ft, determine numerical values for

the maximum flexural stresses in the steel and the timber.
DProb. 6.5-14. Use the transformed-section method to solve

Prob. 6.5-8.

Prob. 6.5-15. Use the transformed-section method to solve

Prob. 6.5-5.

Prob. 6.5-16. Aluminum-alloy cover sheets are bonded to a

plastic core to form the sandwich beam whose cross section

is shown in Fig. P6.5-16, with t � 0.25 in. The elastic moduli

of the aluminum and plastic are Ea � 10 	 103 ksi and Ep �
0.40 	 103 ksi. respectively. Determine the maximum normal

stresses in the aluminum skin and plastic core, (�max)a and

(�max)p, respectively, if the cross section is subjected to a

bending moment Mz � 10 kip  in.

P6.5-16

6t

10t

t

t

z

y

DProb. 6.5-17. The simply supported timber beam in Fig.

P6.5-17a is reinforced by aluminum-alloy cover plates and is

subjected to a midspan load P, as shown in Fig. P6.5-17b. If the

allowable stresses in the aluminum and wood are (�allow)a �
120 MPa and (�allow)w � 8 MPa, respectively, and the ratio of

P6.5-17

y

(b)

x

P

2.5 m 2.5 m

100 mm

180 mm

10 mm

10 mm

z

(a)

y

Prob. 6.5-18. The cross section of a bimetallic beam is

shown in Fig. P6.5-18. The elastic moduli of the two metallic

components are E1 � 15,000 ksi and E2 � 10,000 ksi, and the

z axis is the NA. (a) In which material does the maximum

normal stress occur when the beam is subjected to a bending

moment Mz? (b) Determine the value of the minimum

elastic section modulus, where Smin � Mz/�max.

P6.5-18

1 in.

0.25 in.

0.25 in.

z

y
1

2

O

DProb. 6.5-19. If the allowable stresses for the beam in Prob.

6.5-10 are (�allow)w � 6 MPa and (�allow)s � 120 MPa in the

wood and steel, respectively, what is the allowable value of

the distributed load w (including the weight of the beam)?
D*Prob. 6.5-20. The cross section of a steel-reinforced con-

crete beam of width b is shown in Fig. P6.5-20a. The allow-

able compressive stress in the concrete is �c, and the allow-

able tensile stress in the steel is �s. The diameter of each of

the three steel bars is d, and the ratio of the moduli of elas-

ticity is Es/Ec. Assume that the area of the steel bars is
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concentrated along a horizontal line at a distance of h from

the top of the beam, and assume that the concrete is only ef-

fective in compression. That is, tension is carried solely by

the steel bars. Calculate the maximum allowable bending

moment for the beam. Let b � 12 in., h � 16 in., d � 0.875

in., (�allow)c � 1.5 ksi, (�allow)s � 18 ksi, and Es/Ec � 10.
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Prob. 6.6-2. A square timber beam whose cross-sectional di-

mension is b � 150 mm is subjected to a resultant bending

moment of magnitude M � 2 kN  m at an angle � � 30�,
where � is the angle indicated in Fig. P6.6-2. Determine the

flexural stress at each corner of the cross section, and sketch

the stress distribution (as in Fig. 6.25c).
DProb. 6.6-3. A rectangular beam with cross-sectional di-

mensions b � 55 mm and h � 40 mm is subjected to a result-

ant bending moment M oriented at an angle � � 45�, where

� is the angle indicated in fig. P6.6-3. (a) Locate the neutral

axis for the given cross section and the given orientation of

moment. (b) Determine the maximum moment that can be

applied if the allowable flexural stress (tension or compres-

sion) is �allow � 120 MPa.

P6.5-20

b

(a)

y

h

d

(b)

area effective
in compression

area effective
in tension

z

y

z
O

DProb. 6.5-21. A wood beam (Ew � 1,500 ksi) is to be rein-

forced by the addition of a steel plate (Es � 30,000 ksi), as

shown in Fig. P6.5-21.The allowable stresses in the wood and

steel are (�allow)w � 1 ksi and (�allow)s � 12 ksi, respectively.

The dimensions of the wood beam are given (5.5 in. 	 7.5 in.),

as is the thickness of the steel plate (t � 0.25 in.). You are to

determine the width of the steel plate such that the allow-

able stresses in the steel and wood are reached simultane-

ously (i.e., for the same value bending moment). Let the 

z axis be the NA.

P6.5-21

w
5.5 in.

7.5 in.

0.25 in.

z

y

O

INCLINED LOADING OF 
DOUBLY-SYMMETRIC BEAMS

Prob. 6.6-1. A 4 	 4 timber beam (see Table D.8 for finish

dimension b) in subjected to a resultant bending moment of

magnitude M � 5 kip  in. oriented at angle � � 20�, where �
is the angle shown in Fig. P6.6-1. Determine the flexural

stress at each corner of the cross section, and sketch the

stress distribution (as in Fig. 6.25c).

▼

P6.6-1 and P6.6-2

x

b
b

z

B

A

M

D
y

E

C

θ

MDS 6.8

P6.6-3 and P6.6-4

x

b
b

z

B

A

M

D
y

E

C

θ

Prob. 6.6-4. A beam with rectangular cross section of di-

mensions b � 4 in. and h � 2 in, is subjected to a resultant

bending moment of magnitude M � 2 kip  ft oriented at an

angle � � 20�, where � is the angle shown in Fig. P6.6-4.

(a) Determine the orientation of the neutral axis for this sit-

uation and sketch its location with respect to the cross sec-

tion. (b) Determine the maximum tensile flexural stress and

indicate where it occurs.

Prob. 6.6-5. Solve Example Problem 6.9, substituting a 

W12 	 50 wide-flange beam for the S12 	 50 I-beam in the

present text example. Compare your answers with those of

Example 6.9, and briefly discuss the similarities and differ-

ences in the stresses in the S-shape and the W-shape.

Prob. 6.6-6. The W250 	 45 wide-flange beam shown in Fig.

P6.6-6 is subjected to a moment M that is intended to lie

along the z axis (due to loading in the xy plane). (See Table

D.2 for section properties.) (a) Determine the effect a “load

misalignment” of � � 2� has on the orientation of the neutral
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axis. Show the neutral axis on a sketch of the cross section.

(b) Determine the maximum tensile flexural stress acting on

the cross section and compare this stress with the maximum

stress in the beam if the load were property aligned (i.e.,� � 0�).
Let M � 30 kN  m.

445

C-22b, determine the moments of inertia Iy� and Iz� and the

product of inertia Iy�z�. (b) Determine the orientation of the

neutral axis at this section, and indicate the orientation of

the neutral axis on a sketch of the cross section. (c) If the

magnitude of the maximum allowable flexural stress (tensile

or compressive) is �allow � 16 ksi, what is the maximum al-

lowable value of the moment, (My�)max?

P6.6-6

y

z C

M
θ

UNSYMMETRIC BENDING▼
MDS 6.9

Use the Arbitrary-Axis Method of Eq. 6.39 to solve
Probs. 6.6-7 through 6.6-10. Use the Principal-Axis
Method of Eq. 6.30 to solve Prob. 6.6-11. Note that
Probs. 6.6-8 through 6.6-11 involve bending of beams
that have no cross-sectional axis of symmetry.

*Prob. 6.6-7. A 4 	 4 	 steel equal-leg angle (See Table

D.5) is subjected to loading in the x�z� plane that produces a

moment My � 12 kip  in. at the section shown in Fig. P6.6-

7. (a) Determine the product of inertia Iy�z�. (Hint: Use Eqs.

C-28 and C-22b.) (b) Determine the orientation of the neu-

tral axis, and show the neutral axis on a sketch of the cross

section. (c) Determine the maximum tensile flexural stress

acting on the cross section, and indicate the location of this

maximum tensile stress.

1
2

P6.6-7 and P6.6-17

z′

y′
My′

yz

CIy′ = Iz′ = 5.56 in4

Iy = 2.29 in4

0.50 in.

0.68 in.

2.82 in.

D*Prob. 6.6-8. As shown in Fig. P6.6-8, the vector represent-

ing the bending moment on the 5 	 3 	 unequal-leg struc-

tural steel angle cross section is along the y� direction. (a)

Using information from Table D.6, and using Eqs. C-28 and

1
2

P6.6-8

z′

y′
My′C

*Prob. 6.6-9. As shown in Fig. P6.6-9, the bending moment

M acts at an angle of 20� counterclockwise from the y� axis

of an unequal-leg angle section. (a) Locate the centroid of

the cross section, and determine the moments of inertia Iy�

and Iz� and the product of inertia Iy�z�. You may use the re-

sults of Examples C-1 through C-3 in Appendix C. (b)

Determine the orientation of the neutral axis at this section,

and indicate the orientation of the neutral axis on a sketch

of the cross section. (c) Calculate the maximum tensile flex-

ural stress and the maximum compressive flexural stress at

this cross section.

P6.6-9

z′

y′

M = 2.0 kN·m

C
120 mm

20 mm

20 mm

20°

160 mm

D*Prob. 6.6-10. An aluminum Z section has the dimensions

shown in Fig. P6.6-10. The yield strength (tension or com-

pression) of the aluminum is �Y � 40 ksi, and a factor of

safety of F.S. � 2.0 is to be maintained. (a) Determine Iy�, Iz�,

and Iy�z�. (See Appendices C-2 and C-3.) (b) Determine the

orientation of the neutral axis for the given orientation of

bending moment. (c) Determine the maximum allowable

magnitude of bending moment My�.
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*Prob. 6.6-11. An unequal-leg angle section has the dimensions

shown in Fig. 1 of Example 6.10. At this cross section the mo-

ment is My� � 10 kN  m and is oriented parallel to the short leg

of the angle. (a) Using the principal-axis method, determine the

orientation of the neutral axis of the cross section, and show this

orientation on a sketch. (b) Determine the maximum tensile

stress and the maximum compressive stress on the cross section,

and indicate their respective locations on the cross section.

446

P6.6-10

z′

y′
My′

C

4 in. 4 in.

4 in.

4 in.

t = 1 in. x�z�-plane, but the beam is rotated through a 2� angle about

the x(x�) axis as indicated. Calculate the increase (or de-

crease, if that is the case) in the maximum compressive flex-

ural stress that is caused by a 2� rotation of the beam. Let 

Iy � 7.33 	 105 mm4, and Iz � 2.77 	 106 mm4.

INCLINED LOADING OF SINGLY 
SYMMETRIC BEAMS

▼

Problems 6.6-12 through 6.6-17 involve bending of
beams that have one cross-sectional axis of sym-
metry. Use the Principal-Axis Method of Eq. 6.30
to solve these problems.

Prob. 6.6-12. A moment M acts through the centroid of the 

T-section in Fig. P6.6-12 at an inclination angle � � 10�. The

depth of the web is hw � 9a. (a) Determine the orientation

of the neutral axis, and show the neutral axis on a sketch of

the cross section. (b) Determine the maximum tensile flex-

ural stress acting on the cross section, and compare this with

the maximum tensile flexural stress the beam would experi-

ence if � � 0�. Express your answers in terms of M and the

dimension a.

P6.6-12 and P6.6-13

a

hw

2a2a a

y

z
C

M
θ

3 m

x

z

y

(a)

2°

P = 500 N

DProb. 6.6-15. Due to load misalignment, the bending mo-

ment acting on the channel sections in Fig. P6.6-15 is inclined

at an angle of 4� with respect to the y axis. If the allowable

flexural stress for this beam is �allow � 16 ksi, what is the

maximum moment, Mmax, that may be applied?

P6.6-15

y

z

C

M4°

0.927 in.

2.073 in.

3.00 in.3.00 in.

Iy = 3.82 in4

Iz = 26.0 in4

DProb. 6.6-16. The bending moment in Fig. P6.6-16 is inclined

at an angle of � � 6� with respect to the z axis of the 6.00 	
2.50 aluminum C section. (See Table D.10 of Appendix D for

the properties of the cross section.) If the allowable flexural

stress for this beam is �allow � 16.0 ksi, what is the maximum

moment Mmax that may be applied to the beam?

2°

14.22 mm

73.2 mm

69.5 mm

9.27 mm

P

y
C

z

y ′

z ′

73.2 mm

6.6 mm

(b)

P6.6-14

Prob. 6.6-13. Repeat Prob. 6.6-12 using the following

parameters: hw � 6a and � � 4�.

Prob. 6.6-14. The structural tee whose cross section is shown

in Fig. P6.6-14b is used as a cantilever beam to support a con-

centrated load P that passes through the centroid of the end

cross section, as shown in Fig. P6.6-14a. The load acts in the
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Prob. 6.6-17. A 4 	 4 	 equal-leg angle (See Table D.5) is

subjected to loading in the x�z� plane that produces a mo-

ment My� � 12 kip  in. at the section shown in Fig. P6.6-17

(see Prob. 6.6-7.). (a) Determine the orientation of the neu-

tral axis, and show the neutral axis on a sketch of the cross

section. (b) Determine the maximum tensile flexural stress

acting on the cross section, and indicate the location of this

maximum stress. (Note: From Eq. C-28, Iy � Iz � Iy� � Iz�.)

1
2

447

E � 30 	 103 ksi. (a) Calculate numerical values for the yield

moment MY, the plastic moment MP, and the shape factor f .

(b) Plot the moment-curvature diagram for this particular

beam for values of curvature up to � 3 .

Prob. 6.7-2. Repeat Problem 6.7-1 for a rectangular beam

with b � 50 mm, h � 150 mm, E � 210 GPa, and �Y �
250 MPa.

Prob. 6.7-3. A rectangular box beam with height h � 12 in.

and width b � 8 in. has a constant wall thickness t � 0.50 in.

It is made of structural steel with �Y � 36 ksi and E � 30 	
103 ksi. Calculate numerical values for the yield moment MY,

the plastic moment MP, and the shape factor f.

kYk

P6.6-16

y

z C

M

θ

For Problems 6.7-1 through 6.7-20, assume that the mate-
rial is elastic-plastic (i.e., linearly elastic, perfectly plas-
tic), and has the same stress-strain properties for both
tension and compression.

INELASTIC BENDING▼

P6.7-1 and P6.7-2

M
h

b

y

z

x

C

�
�Y

–�Y

– σY

σY

σ

Prob. 6.7-1. A beam with rectangular cross section (b � 1 In.,

h � 2 in.) is made of structural steel with �Y � 36 ksi and 

MDS 6.10

P6.7-3, P6.7-4, and P6.7-18

M

C

t

h

b

y

x

z

Prob. 6.7-4. Repeat Prob. 6.7-3 for a rectangular box beam

with b � 300 mm, h � 400 mm and t � 12.7 mm, made of

steel with �Y � 250 MPa and E � 210 GPa.

Prob. 6.7-5. A wide-flange beam with dimensions bf � 8.060

in., tf � 0.660 in., h � 13.92 in., and tw � 0.370 in. is made of

structural steel with �Y � 36 ksi and E � 30 	 103 ksi.

Calculate numerical values for the yield moment MY, the

plastic moment MP, and the shape factor f.

P6.7-5, P6.7-6, P6.7-13, and P6.7-14

y

z

tw
tf

M

bf

h––
2

h––
2

Prob. 6.7-6. Repeat Prob. 6.7-5 for a wide-flange beam with

dimensions bf � 400 mm, tf � 30 mm, h � 850 mm, and tw � 18

mm. The beam is made of structural steel with �Y � 250 MPa

  c06StressesInBeams.qxd  9/9/10  5:53 PM  Page 447



and E � 210 GPa. Calculate numerical values for the yield

moment MY, the plastic moment MP, and the shape factor f.

Prob. 6.7-7. A W10 	 45 wide-flange beam is made of struc-

tural steel with �Y � 36 ksi and E � 30 	 103 ksi. Calculate

numerical values for the yield moment MY, the plastic mo-

ment MP, and the shape factor f. (See Table D.1 for the sec-

tion properties.)

Prob. 6.7-8. A W200 	 71 wide-flange beam is made of

structural steel with �Y � 250 MPa and E � 210 GPa.

Calculate numerical values for the yield moment MY, the

plastic moment MP, and the shape factor f. (See Table D.2 for

the section properties.)

Prob. 6.7-9. The structural tee section shown in Fig. P6.7-9

has the dimensions d � 5.05 in., bf � 8.02 in., tw � 0.350 in.,

tf � 0.620 in., and it is made of steel with �Y � 36 ksi and 

E � 30 	 103 ksi. Calculate numerical values for the yield

moment MY, the plastic moment MP, and the shape factor f.

448

P6.7-9 and P6.7-10

y

z C

d

bf

tf

tw

Prob. 6.7-10. Repeat Prob. 6.7-9 for a structural tee beam

with dimensions d � 430 mm, bf � 400 mm, tw � 18 mm, tf �
30 mm that is made of structural steel with �Y � 250 MPa

and E � 210 GPa.

Prob. 6.7-11. A beam with solid circular cross section of di-

ameter d is made of elastic-plastic steel with yield point �Y

modulus of elasticity E. Determine expressions for the yield

moment MY, the plastic moment MP, and the shape factor f.

Prob. 6.7-12. A circular tube of outer diameter do and inner

diameter di is made of elastic-plastic steel with yield point 

�Y and modulus of elasticity E. Determine expressions for

the yield moment MY, the plastic moment MP, and the shape 

factor f.

Prob. 6.7-13. Determine the value of the bending moment,

call it MF, that would cause the flange of the wide-flange

beam in Prob. 6.7-5 to be fully plastic while the web remains

linearly elastic.

Prob. 6.7-14. Repeat Prob. 6.7-13 for the wide flange beam

in Prob. 6.7-6.

Prob. 6.7-15. Repeat Prob. 6.7-13 for the wide flange beam

in Prob. 6.7-7.

Prob. 6.7-16. Repeat Prob. 6.7-13 for the wide flange beam

in Prob. 6.7-8.

Prob. 6.7-17. A beam with solid circular cross section of di-

ameter d is subjected to the plastic moment MP; then the

load is completely removed. The beam is made of elastic-

plastic steel with yield point �Y, Determine an expression for

the maximum residual stress, and sketch the residual-stress

state (as is done for a rectangular beam in Fig. 6.38d).

Prob. 6.7-18. Repeat Prob. 6.7-17 for the rectangular box

beam in Prob. 6.7-3.

Prob. 6.7-19. Repeat Prob. 6.7-17 for the W10 	 45 wide-

flange beam in Prob. 6.7-7.

Prob. 6.7-20. Repeat Prob. 6.7-17 for the W200 	 71 wide-

flange beam in Prob. 6.7-8.

*Prob. 6.7-21. A beam with rectangular cross section of

width b and height h, as shown in Fig. P6.7-21a, is made of

material whose stress-strain curve (in tension or compres-

sion) is approximately the form shown in Fig. P6.7-21b. Let

�Y2 � �Y, �Y1 � �Y, �Y2 � �Y, and �Y1 � �Y. (a) Determine an

expression for the moment that causes first yielding, MY1. (b)

Determine an expression for the moment MY2 that causes

the outer fibers to reach the second yield stress, �Y2 � �Y. (c)

Determine an expression for the fully plastic moment, MP,

the moment that causes all fibers (except an infinitesimally

small core near the neutral axis) to reach the second yield

stress.

1
2

3
4

P6.7-21

y

z
M

b

(a) (b)

1

2
h––
2

h––
2

�
�Y1 �Y2

σY1

σY2

σ

SHEAR STRESS IN BEAMS

DProb. 6.8-1. If the allowable shear stress (for shear parallel

to the grain of the wood) for a 4 in. 	 6 in. timber beam 

(see Appendix D.8 for actual finish dimensions b and h) is

MDS 6.11
▼

b

h

V

P6.8-1 and P6.8-2
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(�allow)w � 400 psi, what is the maximum value of transverse

shear force, Vmax, that the beam can sustain, based on this

shear-stress criterion?
DProb. 6.8-2. A timber beam is to be selected to sustain a

maximum transverse shear of Vmax � 50 kN without exceed-

ing an allowable shear stress of 2 MPa (for shear parallel to

the grain of the wood). If wood beams are available with

cross sections having h � 2b, what is the minimum value of

b (to the nearest even mm) that satisfies the shear stress

criterion?

Prob. 6.8-3. A simply supported beam AC of length L �
4 m supports a concentrated load W � 1.0 kN that hangs

from the beam at B, as shown in Fig. P6.8-3. The cross sec-

tion of the beam is 40 mm 	 60 mm. Determine the flexural

stress �(x, y) and shear stress �(x, y) at three levels—y �
0 mm, y � 10 mm, and y � 20 mm—on the cross section just

to the left of the load point B.

449

to support a midspan concentrated load P, as shown in Fig.

P6.8-5. (a) Determine an expression for P�, the maximum al-

lowable load based on an allowable flexural stress �allow.

(b) Determine an expression for P� , the maximum allowable

load based on an allowable shear stress �allow. (c) Form the

ratio P� /P�; then discuss the implications of the beam di-

mensions that enter into the resulting ratio. [In Parts (a)

through (c), neglect the weight of the beam.]

60 mm

40 mm
A CB

1 m 3 m

y

y z

x

W

Prob. 6.8-4. A simply supported beam AC of length L �
15 ft. supports a concentrated load P � 15 kips at B, as

shown in Fig. P6.8-4. The cross section of the timber beam

has nominal dimensions 8 in. 	 8 in. (See Appendix D.8 for

the actual cross-sectional dimensions.) Determine the flex-

ural stress �(x, y) and shear stress �(x, y) at three levels—

y � 0 in., y � 1.25 in., and y � 2.50 in.—on the cross section

just to the left of the load P.

P6.8-3

P = 15 kips

A
CB

9 ft6 ft

y

1.25 in.
1.25 in.y

z

x

P6.8-4

DProb. 6.8-5. A simply supported beam of length L with

rectangular cross section of width b and depth h is required

P

A

B

C

O

y

y
z

x

L––
2

L––
2

P6.8-5

DProb. 6.8-6. A simply supported timber beam, whose depth

is h � 9.5 in., supports a concentrated load P at its midspan.

The allowable flexural stress for the wood is �allow � 1.2 ksi,

and the allowable shear stress is �allow � 150 psi. Determine

the length (call it Lcr) below which the shear-stress criterion

governs the allowable load and above which the flexural

stress criterion governs.

Prob. 6.8-7. A beam with 200 mm 	 300 mm rectangular

cross section supports loads PB � 15 kN and PC � 25 kN, as

shown in Fig. P6.8-7. (a) Determine the maximum flexural

stress, �max, in the beam, and (b) determine the maximum

shear stress, �max, in the beam. (Neglect the weight of the

beam.)

PB = 15 kN PC = 25 kN

B C DA

y

z

2 m 3 m 2 m

300
mm

200
mm

P6.8-7

DProb.6.8-8. A wood beam with nominal dimensions 4 in.	 8 in.

is supported and loaded, as shown in Fig. P6.8-8. If the allow-

able shear stress for the wood is (�allow)w � 120 psi, and if the

load at C is always three times the load at A, that is, 3P
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and P, respectively, calculate the maximum load value P that

may be applied to this beam. Include the weight of the beam

in your calculations, using 
 � 36 lb/ft3 for the specific weight

of the wood beam. (See Appendix D.8 for the finish dimen-

sions of structural lumber.)

and used as vacation cabins. As the structural engineer for

the timber company, you must (a) determine an expression

that relates the maximum shear stress in a log (circular cross

section) to the transverse shear force V and the diameter d,

and (b) determine the maximum span, Lmax, of a simply sup-

ported log beam that must support a uniformly distributed

load w (including beam weight) without exceeding the al-

lowable shear stress �allow.

6 ft

x

6 ft6 ft

y

y

z
B

C

A

P 3P

D

O

A DB C

5 ft

y

y z

x

5 ft

PB = 6 kips PD = 3 kips

4 in. × 6 in. (nom.)

5 ft

d

y

NAz

V

P6.8-8

Prob. 6.8-9. A wood beam with 4 in. 	 6 in. (nominal) rec-

tangular cross section supports loads PB � 6 kips and PD �
3 kips, as shown in Fig. P6.8-9. (a) Determine the maximum

flexural stress, �max, in the beam, and (b) determine the max-

imum shear stress, �max, in the beam. (Assume that the beam

is on simple supports at A and C, and neglect the weight of

the beam.)

P6.8-9

Prob. 6.8-10. Using the shear-stress formula, Eq. 6.67. deter-

mine an expression for the shear stress at the neutral-axis

level on the circular cross section shown in Fig. P6.8-10.

Compare your results with the information given in Fig.

6.45b.

P6.8-10

DProb. 6.8-11. A timber company wishes to increase its sales

of timber by supplying log-cabin kits that can be assembled

L

A

d

d

B

w

V

do

y

NAz

V

di

P6.8-11

Prob. 6.8-12. Using the shear stress formula, Eq. 6.67, deter-

mine an expression for the shear stress at the neutral axis

level on the thick-wall circular tubular cross section shown

in Fig. P6.8-12.

P6.8-12

Prob. 6.8-13. (a) Draw a shear diagram and a moment dia-

gram for the shaft in Fig. P6.8-13 (see Fig. P6.3-15). (b) If the

shaft has a diameter of 0.75 in., what is the maximum shear

stress in the shaft, and where does it occur (i.e., at which

cross section, and where in that cross section)? (c) What is

the maximum flexural stress in this 0.75-in.-diameter shaft,

and where does it occur?

*Prob. 6.8-14. As a set of wheels on one axle of a railway

freight car passes directly over one of the cross ties, each

wheel exerts a force through the rail and through the tie plate

beneath the rail to a cross tie, as shown in Fig. P6.8-14a. Each

wheel load can be represented by a uniformly distributed

load of pw � 32 kips/ft over the 1 ft width of the tie plate, as

shown in Fig. P6.8-14b. Assume that the cross tie distributes

this load as a uniform force-per-unit-length pb to the ballast

on which the cross tie rests. (a) Solve for the distributed load

pb. (b) What is the maximum shear stress, �max, in the wood

cross tie and where does it occur? (c) Determine the maxi-

mum flexural stress, �max, and indicate where it occurs.
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SHEAR STRESS IN THIN-WALL BEAMS

Prob. 6.10-4. An aluminum-alloy beam with cross-sectional

dimensions h � 8.00 in., hw � 7.18 in., b � 5.00 in., and tw �
0.25 in., and with shear force V � 12 kips. (See Table D.9.)

Prob. 6.10-5. A W360 � 79 steel wide-flange beam, with

shear force V � 220 kN. (See Table D.2.)

Prob. 6.10-6. A W12 � 50 wide-flange beam and a W16 �
50 wide-flange beam are each subjected to the same magni-

tude of vertical shear force, V. Determine the ratio of the

maximum shear stresses (�max)a/(�max)b. (See Table D.1 for

the section properties of these beams.)

pw pw

pb

4 ft
1 ft1 ft1 ft1 ft

x z

y
y

Ballast

Cross tie
Rail

Wheels

Tie plate

(a)

(b) 6.5 in.

8 in.

P6.8-14

Problems 6.10-1 through 6.10-5. A vertical shear force V
is applied to a web-flange beam with cross-sectional
dimensions as labeled in the figure below. Following
Example Problem 6.15, for each problem below: (a)
Calculate (or look up in Appendix D for commercial
shapes) the moment of inertia of the cross section.
Neglect the fillets at the junctions between the flanges
and the web. (b) Calculate the maximum shear stress,
�max , in the web. (c) Calculate the minimum shear stress,
�min , in the web. (d) Calculate the vertical shear force,
Vw , carried by the web, and determine the ratio of Vw to
the total shear force V.

MDS 6.12 & 6.13

Prob. 6.10-1. A beam with cross-sectional dimensions h �
12.5 in., hw � 11.75 in., b � 6.5 in., and tw � 0.25 in., and with

shear force V � 40 kips.

b

y

z

tw

V

hhw

P6.10-1 through P6.10-5

Prob. 6.10-2. A 380 beam with cross-sectional dimensions 

h � 410 mm, hw � 390 mm, b � 260 mm, and tw � 15 mm,

and with shear force V � 280 kN.

Prob. 6.10-3. A W24 � 94 steel wide-flange beam, with

shear force V � 160 kips. (See Table D.1.)

V

20t

11t

t = const

(a) (b)

V

11t

20t

t

6t

t

2t

z

V

C

y

t2t

V
V

(a) W12 × 50 section. (b) W16 × 50 section.

P6.10-6

Prob. 6.10-7. A wide-flange beam has the relative dimen-

sions shown in Figs. P6.10-7. If the beam is to be subjected to

a transverse shear force V, what is the ratio (�max)a)/(�max)b

for the beam in orientations (a) and (b)? In each case, indi-

cate where �max occurs.

P6.10-7

Prob. 6.10-8. A tee beam has the relative cross-sectional di-

mensions shown in Fig. P6.10-8, and it is subjected to a

P6.10-8
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vertical shear force V. (a) Determine an expression for �w(y),

the (vertical) shear stress in the web, and (b) sketch the func-

tion �w(y) obtained in Part (a).

Prob. 6.10-9. A structural tee beam has the dimensions shown

in Fig. P6.10-9. (a) Determine an expression for �w(y), the (ver-

tical) shear stress in the web, and (b) determine the percent of

the shear force that is carried by the web (i.e., Vw /V � 100%).

along the beam is a force of 8 kips acting vertically through

the centroid of the cross section, determine the maximum

shear stress in the beam.

Prob. 6.10-12. A rectangular box beam has the dimensions

shown in Fig. P6.10-12 and is subjected to a vertical shear

force V � 60 kN. Determine the web shear stresses �A and �B

at the locations A and B indicated in the figure.

d = 121 mm

y

z

V

tw = 4 mm

tf = 5 mm

83.6 mm

34 mm34 mm

C

P6.10-9

Prob. 6.10-10. A channel section is subjected to a vertical

shear force V � 10 kN at the section shown in Fig. P.6.10-10.

Determine the values of the horizontal shear stress �A at the

point designated A, and the vertical shear stress �B at the

point labeled B. Assume the thickness tf to be constant.

125 mm

76 mm

50 mm

y

z B C

A

τA
τB

125 mm

V

12 mm tw = 12 mm

tf = 16 mm

P6.10-10

Prob. 6.10-11. A beam has a channel-shaped cross section,

as shown in Fig. P6.10-11. If the maximum shearing force

4 in. 1 in.

3 in.

1 in.

y

z
C
V

1 in.

P6.10-11

V

CB

A

100 mm

50 mm50 mm

100 mm

t = 10 mm = const

z

y

P6.10-12

Prob. 6.10-13. A rectangular box beam has the relative di-

mensions shown in Fig. P6.10-13. If the beam is to be sub-

jected to a transverse shear force V, what is the ratio

(�max)a/(�max)b for the beam in orientations (a) and (b)? In

each case, indicate where �max occurs.

(a) (b)

20t

12t

20t

12t

V

V

t = const

t

P6.10-13

Prob. 6.10-14. A tee beam with both top and bottom flanges

has the dimensions shown in Fig. P6.10-14. The thickness of

the web is tw � 40 mm. If the beam is subjected to a vertical

shear force V � 10 kN, determine the following: (a) the loca-

tion of the centroid C, and the moment of inertia, IC, about

the neutral axis; and (b) the shear stress in the web at C, and

the shear stresses in the web at points A and B where the

web connects to the top flange and to the bottom flange,

respectively.
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120 mm

40 mm

40 mm

100 mm100 mm

200 mmz

V

C

B

A

y

tw

P6.10-14 and P6.10-15

Prob. 6.10-15. Repeat Parts (a) and (b) of Prob. 6.10-14 if

the thickness of the web is tw � 50 mm, instead of the thick-

ness of the web in Prob. 6.10-14.

Prob. 6.10-16. The beam shown in Fig. P6.10-16a is a W12 	
35 wide-flange beam. (a) Determine the web shear stresses

�C and �D at locations C and D in the cross section just to the

left of the support at B; and (b) determine the maximum

flexural stress, �max, and state where this occurs.

(a)

(b)

A B

D (just below flange)

C (centroid)

4 ft3 ft3 ft

18 kips
3 kips/ft

P6.10-16

Prob. 6.10-17. The beam in Fig. P6.10-17 supports a concen-

trated downward load P � 20 kN at its left end and a uni-

formly distributed downward load w � 40 kN/m over the

span BC. If the beam is a W310 	 52 wide-flange beam, (a)

determine the maximum flexural stress, �max, and (b) deter-

mine the maximum transverse shear stress, �max.

1 m

CA B

w = 40 kN/m
P = 20 kN

2 m

P6.10-17

Prob. 6.10-18. For the W12 	 35 wide-flange beam loaded

as shown in Fig. P6.10-18, let w � 2 kips/ft. (a) Determine the

maximum flexural stress, �max, and (b) determine the maxi-

mum transverse shear stress, �max.

6 ft

A B

w

x

y

4 ft

P6.10-18

Prob. 6.10-19. A tubular beam with circular cross section

has an outer diameter do � 10.75 in. and wall thickness t �
0.365 in., as indicated in Fig. P6.10-19. If the beam is sub-

jected to a vertical shear force V � 40 kips at this section,

what is the maximum shear stress on the cross section?

do = 10.75 in.

t = 0.365 in.

V

z

y

P6.10-19

DProb. 6.10-20. The tongue, AB, of a small utility trailer is

the square box section shown in Fig. P6.10-20b. Assume that

the total weight of the trailer and its load is W, and that its

line of action is 1 ft forward of the axle of the trailer, as

shown in Fig. P6.10-20a. Furthermore, assume that the

tongue is effectively cantilevered from the trailer body at B.

Neglect any axial towing loads on the tongue, and consider

only the static loads when the trailer hitch at A is resting on

a stationary trailer ball. Determine the maximum weight W
(trailer plus load) if the allowable flexural stress in the

tongue is �allow � 12 ksi and the allowable transverse shear

stress in the tongue is �allow � 8 ksi.

a
AB

a

5 ft
1 ft

(a) (b) Section a-a.

W

2 in.

2 in.

0.25 in.

P6.10-20

DProb. 6.10-21. Two 2 in. 	 6 in. (nominal dimensions)

boards are nailed and glued together to form a tee beam, as
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shown in Fig. P6.10-21b. Assume that the nails and glue are

sufficient to cause the two planks to function together as a sin-

gle beam. The allowable stress in horizontal shear (i.e., shear

parallel to the grain of the wood) is �allow � 80 psi. If this beam

is to be used as a cantilever to support a triangularly distrib-

uted load, as shown in Fig. P6.10-21a, what is the maximum

load intensity w0 that can be supported by this beam? In

your calculations neglect the weight of the beam.

*Prob. 6.11-4. A wood beam (b � 90 mm, d � 250 mm, Ew �
14 GPa) is strengthened and stiffened by the addition of

steel cover plates (b � 90 mm, t � 6 mm, Es � 210 GPa),

which are glued to the top and bottom surfaces of the beam,

as shown in Fig. P6.11-4. (Note: This is a nonhomogeneous

beam, so you will need to incorporate the bending analysis

of Section 6.5 in solving this problem.) (a) If this “sandwich”

beam is to support a vertical shear force V � 10 kN, what is

the shear stress that must be transferred between the cover

plates and the wood core by the layer of glue? (b) What is

the maximum shear stress in the wood for the given shear

force V?

w0

BA
L = 9 ft

(a) (b)

1   in.
1–
2

1   in.
1–
2

5   in.
1–
2

2 in. 2 in.

z C

y

y

x

P6.10-21

SHEAR STRESS IN BUILT-UP BEAMS

DProb. 6.11-1. A glued-laminated (glulam) timber beam is

made from three 2 	 4 ( 	 in. finish dimensions) boards,

as shown in Fig. P6.11.1. The strength of the wood in hori-

zontal shear is �allow � 80 psi (which takes into account a fac-

tor of safety). What is the required shear strength of the glue

joints (psi). If there is to be a factor of safety against failure

of the glue joints of FS � 3.0? That is, how strong must the

glue joint be so that the joints do not fail before the wood it-

self does? Neglect the thickness of the glue joint.

31
211

2

1   in.
1–
2

3   in.

Glue
joints

1–
2

1   in.
1–
2

1   in.
1–
2

V

P6.11-1 and P6.11-2

▼

DProb. 6.11-2. Solve Prob. 6.11-1 if the glulam beam is made

from five 40 mm 	 140 mm (finish dimensions) boards, in-

stead of the three 2 	 4 boards shown in Fig. P6.11-1. The

strength of the wood in horizontal shear is �allow � 550 kPa

(which takes into account a factor of safety).
DProb. 6.11-3. Lumber is available in three sizes for use in

making glued-laminated (glulam) beams—25 mm 	 100 mm,

50 mm 	 100 mm, and 100 mm square (all are finished-

lumber dimensions). “Company A” fabricates the 100 mm 	
150 mm beam shown in Fig. P6.11-3a, and “Company B” fab-

ricates beams like the one in Fig. P6.11-3b. Both beams sell

50 mm

50 mm

50 mm

25 mm

100 mm

100 mm 100 mm

25 mm

(a) (b)

Glue
joints

P6.11-3

b

t

t

Cover plate

Glue layer

d

P6.11-4 and P6.11-5

*Prob. 6.11-5. Solve Prob. 6.11-4 for a beam that has a 3 	 8

wood-beam core (b � 2.5 in., d � 7.5 in., Ew � 2 	 103 ksi),

to which are glued two aluminum cover plates with dimen-

sions b � 2.5 in., t � 0.25 in. and modulus Ea � 10 	 103 ksi.

The beam is required to handle a vertical shear force 

V � 1400 lb.

SHEAR FLOW IN BUILT-UP BEAMS

DProb. 6.11-6. A steel plate girder is fabricated by the weld-

ing of two 16 in. 	 1 in. flange plates to a 70 in. 	 in. web

plate using fillet welds whose allowable shear strength is 

qallow � 2 kips/in. Determine the allowable vertical shear

force, V, for this plate girder if the four fillet welds run con-

tinuously along the length of the girder.

3
8

▼

454

for the same price and are made of the same type and grade

of lumber. On the basis of shear strength of the beams (i.e.,

the allowable transverse shear force V), which one would

you choose? How much stronger (in shear) is it than its

competitor?
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DProb. 6.11-7. A steel plate girder is fabricated by the weld-

ing of two 300 mm 	 25 mm flange plates to a 1 m 	 12 mm

web plate using fillet welds whose allowable shear strength

is qallow � 500 kN/m. If the four fillet welds run continuously

along the length of the girder, what is the allowable vertical

shear force, V, for this plate girder?

D*Prob. 6.11-9. A W18 	 60 steel wide-flange beam is

strengthened and stiffened by capping the flanges with C10 	
20 steel channels that are bolted to the flanges as shown in Fig.

P6.11-9. If each bolt has an allowable (direct) shear strength of

2.0 kips and the bolts are spaced at 12 in. longitudinally, what is

the maximum allowable vertical shear force V for this modified-

section beam? (Hint: Use Table D. 4 to obtain the area and cen-

troidal location for the channel for use in calculating its Q.)

C

y

16 in.

70 in.

Fillet
weld

1 in.

1 in.

in.

z

3–
8

P6.11-6

C

y

300 mm

1 m

25 mm

25 mm

tw = 12 mm

z

P6.11-7

DProb. 6.11-8. A W200 	 71 steel wide-flange beam is

strengthened and stiffened by the addition of 175 mm 	
10 mm steel plates that are welded to the flanges of the wide-

flange beam by continuous fillet welds, as shown in Fig.

P6.11-8. (a) Determine the moment of inertia I and the sec-

tion modulus S for the modified beam. (Neglect the contri-

bution of the weld area to these section properties.) (b) If

the allowable shear flow for the weld heads is qallow �
400 kN/m, determine the maximum shear force, V, allowed

for this modified section.

Cover plate

Fillet weld

Wide-flange beam

C

y

z

Fillet weld

P6.11-8

y

z C

W18 × 60

C10 × 20

C10 × 20

DProb. 6.11-10. Four 2 	 6 boards (nominal dimensions) are

nailed together to form the box beam shown in Fig. P6.11-10.

If the nails are spaced at regular intervals of �x � 6 in. along

the beam, and if each nail has an allowable force in shear of

Vnail � 300 lb, what is the maximum vertical shear force. V,

for this built-up beam? (d � 5 in., and t � 1 in.)1
2

1
2

P6.11-9

t

t

d

t td

y

z C

P6.11-10

DProb. 6.11-11. Four 30 mm 	 180 mm (actual dimensions)

boards are attached together by wood screws to form a box

beam (Fig.P6.11-11). If each screw has an allowable shear-force

t t

t

t

d

d

y

z
C

P6.11-11
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capacity of Vs � 1 kN and the beam is to be subjected to a

vertical shear force V � 5 kN, what is the maximum permis-

sible longitudinal spacing, �x, of the screws? (t � 30 mm and

d � 180 mm.)
DProb. 6.11-12. A wood box beam is constructed of four

boards (t1 � 30 mm, d � 250 mm; t2 � 40 mm, b � 150 mm)

in the configuration shown in Fig. P6.11-12. The boards are

joined by placing wood screws at regular intervals, �x, in the

four locations indicated.The screws have an allowable shear-

force capacity of Vs � 1.2 kN. Determine the maximum

longitudinal screw spacing, �x, if the beam is to be designed

for a maximum vertical shear force V � 10 kN.

equally spaced on a total span of L � 16 ft, as shown in Fig.

P6.11-12a. Consider the end conditions at A and E to be

“pinned.” (a) Determine the maximum horizontal shear

stress in the beam. (b) If the nails used to assemble the beam

have an allowable shear-force capacity of Vnail � 500 lb. what

is the maximum allowable spacing of the nails in each seg-

ment of the beam, that is, �xAB, �xBC, and so on?
DProb. 6.11-15. A wood box beam is fabricated by attaching

four boards together in the configuration shown in Fig.

P6.11-15a (see Prob. 6.11-12). The dimensions of the boards

are: t1 � 30 mm, d � 250 mm; t2 � 40 mm, b � 150 mm. Each

screw has an allowable shear capacity of 1.5 kN. If the box

beam is to be loaded and supported as indicated in Fig.

P6.11-15b, calculate the maximum allowable longitudinal

spacing of the screws for each interval along the beam; that

is, determine �xAB, �xBC, and �xCD.

y

z
C

d

t2

t2

t1bt1

P6.11-12, P6.11-13, and P6.11-15a

DProb. 6.11-13. A wood box beam is fabricated by placing

wood screws at regular intervals, �x, in the four locations in-

dicated in Fig. P6.11-13. The vertical boards are 2 	 10’s (ac-

tual dimensions: t2 � 1 in., d � 9 in.) and the horizontal

boards are 2 	 6’s (actual dimensions: t2 � 1 in., b � 5 in.),

and the screws have an allowable shear-force capacity of 

Vs � 360 lb. Determine the maximum longitudinal spacing,

�x, if the beam is to be designed for a maximum vertical

shear force V � 4 kips.
DProb. 6.11-14. A box beam is constructed of four 2 	 6

planks that are nailed together in the configuration shown in

Fig. P6.11-14b.The beam supports three equal loads P � 500 lb

1
2

1
2

1
2

1
2

5   in.1–
2

1   in.1–
2

1   in.1–
2

1   in.1–
2

2   in.1–
2

A

B

P P P

D

E

C

4 ft 4 ft4 ft4 ft

(a) (b)

P6.11-14

1 m 2 m 2 m

8 kN 16 kN

A

B

C
D

P6.11-15b

DProb. 6.11-16. Two 2 	 8 boards are attached together by

screws that are spaced at regular intervals �x � 12 in. along

the length of the beam to form the inverted tee beam shown

in Fig. P6.11-16b. Each screw has an allowable shear-force

capacity of Vs � 480 lb. If the beam supports a single concen-

trated load P at the center and is simply supported, what is

the maximum allowable load P?

3 in. 3 in.

C

1   in.1–
2

1   in.1–
2

7   in.1–
2

z
x

P

y

L/2 L/2

y

(a) (b)

P6.11-16
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For Problems 6.12-1 through 6.12-16, assume that the
thickness t is much smaller than other cross-sectional
dimensions, so that t2, t3, and so on may be neglected in
comparison with t (e.g., in the moment of inertia 1). Use
centerline dimensions for all derivations and calculations.

10.0 in.

0.60 in.

0.40 in.

0.40 in.

3.0 in.

e
y

z O
S

P6.12-1

250 mm

6 mm

12 mm

12 mm

80 mm

e
y

z O
S

e
y

z O
S

C12 × 30
Channel
section

P6.12-2 P6.12-3

Prob. 6.12-4. The “hat” section in Fig. P6.12-4 has a constant

wall thickness t. (a) Determine expressions for the shear

flows q1(y) and q2(z). Express your answers in terms of the

total shear force V and the dimensions of the cross section.

V

S

b

eh–
4

h–
4

h–
4

h–
4

z
O

t = const

q1(y)

q2(z)

y

V

S

b

e

z
A

3 in.

3 in.

0.5 in.

0.5 in.

0.25 in.

3 in.

3 in.

3 in.

y

B

τB

τA

P6.12-4 P6.12-5

S
z

e

y

V

h–
2

h–
2

t = const

O

q2(z)q1(z)

b 2b

P6.12-6

Prob. 6.12-5. (a) Locate the shear center S of the “hat” sec-

tion in Fig. P6.12-5 by determining the eccentricity, e. (b) If a

vertical shear force V � 10 kips acts through the shear cen-

ter of this hat section, what are the values of the shear

stresses �A and �B at the locations and in the directions indi-

cated in Fig. P6.12-5?

Prob. 6.12-6. Consider the cross section shown in Fig. P6.12-

6. (a) Determine expressions for the flange shear flows q1(z)

and q2(z), as indicated on the figure. (b) Determine expres-

sions for the resultant shear forces H1 and H2 corresponding

to the shear flows q1 and q2. (c) Determine an expression for

the eccentricity, e, of the shear center, S.

(b) Determine expressions for V1 and H2, the resultants of

q1(y) and q2(z), respectively. (c) Determine an expression for

the eccentricity, e, of the shear center, S.

457

Probs. 6.12-1 through 6.12-3. Determine the eccentricity,

e, of the shear center, S, of each channel section. The

eccentricity is measured, in each problem, from the center-

line of the web, which is taken as the y axis for these

problems.
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Prob. 6.12-8. Determine the eccentricity, e, of the shear center,

S, for the thin-wall box beam having a very thin longitudinal

slit along one side, as shown in Fig. P6.12-8.

t = 12 mm

120 mm

120 mm

150 mm
e

V

OS
z

y

P6.12-8

locate the shear center by determining an expression for the ec-

centricity, e. Express your answer in terms of the dimension a.

y

z

e

q2(y)
q1(y)

t = const

aaaaaa

a

V

P6.12-11

Prob. 6.12-7. Determine the shear-center location (i.e.,

the eccentricity e) for the open-box section shown in Fig.

P6.12-7.

y

z

e

s

qf(s)

aaaa

a
t = const

V

O

P6.12-10

V

S

t = const

Oz
a

a

4a

4a

t << a

y
e

4a

P6.12-7

9.0 in.

9.0 in.

6.0 in.

tf

tf

0.50 in.

e = 0.90 in.

S

P6.12-9

*Prob. 6.12-12. Vertical extension plates with cross-

sectional dimensions 0.400 in. 	 2.00 in. are welded to the

flanges of a W8 	 21 wide-flange beam to form the cross sec-

tion illustrated in Fig. P6.12-12a. (a) Determine an expres-

sion for the shear flows q1(z) and q2(z) in the two sections of

flange, and determine an expression q3(y) for the shear flow

458

D*Prob. 6.12-9. A channel beam is to be fabricated from a

web plate and two flange plates as shown in Fig. P6.12-9.

The total depth is to be d � 18.0 in., the web thickness tw �
0.50 in., and the flange width bf � 6.0 in. If, for structural

reasons, it is necessary for the shear center to lie 0.90 in.

from the web plate, what is the required thickness, tf , of the

flange plates?

Prob. 6.12-10. Consider the constant-thickness (t a)

channel section shown in Fig. P6.12-10. (a) Determine an ex-

presion for the shear flow qf (s) in the sloping flange, and (b)

V

*Prob. 6.12-11. Consider the modified hat section shown

in Fig. P6.12-11. (a) Determine an expression for the

shear flows q1(y) and q2(y), and (b) determine an expres-

sion relating the shear-center eccentricity, e, to the di-

mension a.
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in the vertical flange extensions, as indicated in Fig. P6.12-

12b. (b) Determine the eccentricity, e, of the shear center of

this modified wide-flange beam.

V

S

t = const

Longitudinal
slit

q(θ)

θ
O

e

r

P6.12-13

α

θ

α

q(θ)

t = const

r

OS

V

z

e

y

P6.12-14

50 mm50 mm

50 mm

50 mm

e

t = 6 mm

qf(s)

s

S O

V

Prob. 6.12-15. The special thin-wall channel section shown in

Fig. P6.12-15 is formed by bending a 6-mm-thick steel plate.

(a) Determine an expression for qf (s), the shear flow in the

flanges. (b) Determine the location of the shear center, S.

P6.12-15

45°

t

s

b
b

V

S

q(s)

P6.12-16

*Prob. 6.12-13. A pipe-beam has a very thin longitudinal slit

along one side that makes it an open, thin-wall beam. The

thickness t is much less than the mean radius r. (a)

Determine an expression for the shear flow q(�). (b)

Determine the location of the shear center, S, by determin-

ing its eccentricity, e, from the center of the circular cross

section.

S
O

tw = 0.250 in.

q3(z)

q2(z)

tf = 0.400 in.

te = 0.400 in.

te = 0.400 in.

V

z

y

2.00 in.

(a) (b)

2.00 in.

d = 8.28 in.

bf = 5.270 in.

e
q1(z)

y

Oz

P6.12-12

*Prob. 6.12-14. A segment of a thin-wall pipe, having an

excluded angle 2	, acts as a beam, with loading parallel to

the xy plane and passing through the shear center, S. (a)

Determine an expression for the shear flow q(�). (b)

Determine the location of the shear center, S, by determin-

ing its eccentricity, e, from the center of the circular cross

section.

Prob. 6.12-16. An equal-leg, thin-wall angle section is sub-

jected to a transverse shear force V at an angle of 45� to the

legs of the angle, as shown in Fig. P6.12-16. (a) Determine an

expression for q(s), the shear flow in the legs of the angle. (b)

By integration, show that the resultant of this shear flow is the

shear force V passing through the point S shown in the figure.

(c) Determine an expression for the maximum shear stress.
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Section
Suggested

Review

Problems

C H A P T E R  6  R E V I E W — S T R E S S E S  I N  B E A M S

6.1

6.2

The flexural stress, �x, can be visualized, as

acting on individual fibers that are parallel

to the axis of the beam.

The simplest form of beam bending is

called pure bending.

The longitudinal plane of symmetry, LPS,
the neutral surface, NS, and the deflection
curve, v(x), are identified in Fig. 6.3b.

The four kinematic assumptions of Bernoulli-
Euler Beam Theory are:

1. The beam has a longitudinal plane of
symmetry—LPS, call it the x-y plane,

and it is loaded and supported symmet-

rically with respect to this plane of

symmetry.

2. There is a plane, call it the x-z plane,

that is free of extensional strain, i.e.,

where �x � 0. This is called the neutral
surface—NS.

3. Plane cross sections remain plane and
remain perpendicular to the deformed
axis of the beam.

4. Deformation in cross sectional planes

may be neglected.

Pure Bending (Fig. 6.3)

Review the strain-displacement analysis for
beams as presented in Section 6.2.

Strain-Displacement Derivation (Fig. 6.6)

(6.3)�x � � 

y

r(x)

Derive 

Eq. 6.3.

460

x

y

(b) The deformed beam segment.(a) The undeformed beam segment.

C* (Center of curvature)

P*

ρ Δθ*

Δx*

Δx
ΔxA*

B*

P Q y

x

A B
Q*

Deflection curve

(a) A beam represented as a “bundle” of longitudinal “fibers.”

Typical longitudinal “fibers”

Neutral surface (NS)
Deflection curve

Longitudinal
plane of symmetry (LPS)

(b) Illustration of some beam-deformation terminology.
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Section
Suggested

Review

Problems

Linear strain distribution (Fig. 6.10)

The strain-displacement equation, Eq. 6.3,

gives an extensional strain due to flexure

that is a linear function of distance y from
the neutral surface.

Sections 6.3 and 6.4 deal with flexural
stresses in homogeneous, linearly elastic
beams.

The neutral axis of a homogeneous, linearly

elastic beam passes through the centroid of

the cross section.

Two of the most important equations of

Bernoulli-Euler Beam theory are:

• the moment-curvature equation,
and

• the flexure formula
Memorize these two equations!

The design of beams for strength is based

on selecting a beam cross section that will

limit the flexural stress in the beam to some

value of allowable stress.

Section 6.5 discusses flexural stress in non-
homogeneous, linearly elastic beams. Two

analysis methods are presented:

• the direct method, and

• the transformed-section method.
The key assumption is that plane sec-
tions remain plane.

(b)

( x negative)�
Compression

( x positive)�
Tension

(x, y)�

y

x

(a)

y
Compression

Tension

ρ (x)

x

6.2–1
6.2

xσ

y

x

x

M

y

z′

(a) Cross section. (b) Profile view.

Neutral 
surface
(xz plane)

Centroid of
cross section

Compression
above NA

Tension
below NA

Neutral axis
of the cross
section (z′ axis)

O
C

(a) Location of the neutral axis, (b) distribution of

flexural stress for homogeneous, linearly 

elastic beam (Fig. 6.13)

6.3

6.4

6.5

(6.12)

(6.13)

where I is the moment of inertia of the cross section

about its neutral axis.

sx � � 

My

I

M �
EI
r

Derive 

Eqs. 6.12

and 6.13

6.3–5

6.3–13

6.3–17

6.3–33

6.3–35

(6.17)

where S is the elastic section modulus, defined by

(6.15)

Tables D.1–D.10 list S values for various shapes of

beams.

S �
I
c

Sdesign �
Mmax

sallow

6.4–1 

6.4–7 

6.4–13

You should review the two methods as they are ap-

plied to a beam that is made of two linearly elastic

materials. See Eqs. 6.18–6.24 and Eqs. 6.25–6.29.

6.5–1 

6.5–5 

6.5–7

6.5–15

6.5–19
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Section
Suggested

Review

Problems

6.8

6.9

6.10

6.11

Sections 6.6 and 6.7 are optional sections.

Sections 6.8–6.12 deal with shear stress in
beams.

The key idea is that shear stress �xy at loca-

tion y on the cross section at x is equal to

the shear stress �yx at that (x, y) location,

and equilibrium can be used to determine

the latter (Fig. 6.13c).

Shear flow q is defined as the shear force

per unit length along the beam.

Shear stress � is shear flow q divided by the

local thickness t(y).

Review the Limitations on the Shear Stress
Formula in Section 6.9.

Section 6.10, Shear Stress in Thin-Wall
Beams, and Section 6.11, Shear in Built-Up
Beams, treat shear stress in two very

important classes of beams. These sections

illustrate how

is calculated in these special situations.

Q � A¿y¿

 (b) The distribution of flexural stress.

Δx

Shear stress
at “b”

c

a b

d

b
τb

τb

 (a) An element of length Δx.

M(x + Δx)M(x)

V(x + Δx)V(x)

Δx

 (d) The flexural stress
 contributing to F2.

 (c) A free body diagram (minus
 vertical shear on ac and bd).

A′dA′

NA

e
fc

d
a

b t

dη

η⏐σ⏐

c

a
y

b
ΔH y

x

d
F2F1

Use of equilibrium to calculate shear stress 

(Fig. 6.43)

(6.65)

where 

(6.67)t(x, y) �
V(x)Q(y)

It

Q � A¿y¿

q(x, y) �
V(x)Q(y)

I

Derive 

Eq. 6.65 

State the

meaning 

of Q

6.8–1 

6.8–5

6.8–13

Sections 6.6, 6.7, and 6.12 are optional sections.

6.10–1

6.10–9

6.10–13

6.10–19

6.11–1

6.11–7

6.11–15
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DEFLECTION OF BEAMS 7

7.1 INTRODUCTION

Couples and transverse forces applied to beams cause them to deflect (i.e., become

curved), as illustrated in Fig. 6.1 and in Fig. 7.1. In Chapter 6 we determined a rela-

tionship between the curvature of the deflection curve of a beam and the bending

moment at a cross section. In this chapter we will relate the deflection and slope of

beams to their loading and support. As indicated in Fig. 7.1a, the deflection curve is

characterized by a function (x) that gives the transverse displacement (i.e., dis-

placement in the y direction) of the points that lie along the axis of the beam. The

slope of the deflection curve is labeled �(x).

There are several reasons for considering the deflection of beams. For example,

we may need to know the maximum deflection of a given beam under a given set 

of loads. As illustrated in Fig. 7.2, the maximum deflection might occur at an

y

463

P*

P

x

y, v(x)

v(x) = Deflection
           (i.e., displacement)

Deflection curve

(a)

(b)

x

θ(x) = Slope

FIGURE 7.1 Examples of the deflection of beams and shafts (deflection is exaggerated).
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unsupported end of the beam, (�C), or it might occur at an interior section where the

slope vanishes, (�D). For example, the beams of the equipment trailer in Fig. 7.3a
must not deflect so much under load that the clearance between the trailer and the

ground becomes unacceptably small. Also, the beams that support a bridge deck

should be designed to have just the right initial upward camber (deflection) (Fig.

7.3b) so that they become straight when they are loaded (Fig. 7.3c).

Statically indeterminate beams provide another important reason for studying

beam deflection. If a beam is statically indeterminate, its reactions and its internal

stresses cannot be determined without considering deflections. Analysis of statically

indeterminate beams is discussed in Sects. 7.4 through 7.7. Finally, we will need to

relate the transverse deflection (x) to axial loads when we study the buckling of

columns (Chapter 10).

Starting with the moment-curvature equation that was derived in Chapter 6,

Eq. 6.12, we will develop differential equations that relate the deflection (x) to the

bending moment M(x), the transverse shear force V(x), and the transverse load

p(x). Then we will discuss the boundary conditions and continuity conditions that

must accompany these differential equations. Next, we will solve for the deflection

and slope of statically determinate and statically indeterminate beams by integra-
tion of the differential equations, incorporating the given loads and the given bound-

ary and continuity conditions (Section 7.3 and 7.4). Discontinuity functions are

introduced in Section 7.5 to facilitate the integration of the differential equations

for beams having several loads and/or supports. Finally, we will use superposition of
known solutions to solve beam deflection problems, first using a Force-Method
approach (Section 7.6) and then a Displacement-Method approach (Section 7.7).

y

y

464
Deflection of Beams

BD

A

 Dδ 

δC

xC

FIGURE 7.2 Points of maximum deflection.

1For nonhomogeneous, linearly elastic beams, Eq. 6.22 or Eq. 6.27 of Section 6.5 must be used.

Moment-Curvature Equation. The moment-curvature equation that we de-

rived in Section 6.3, Eq. 6.12, is the starting point for an analysis of the deflection of

linearly elastic beams.

(7.1)

where (x) is the radius of curvature of the deflection curve at section x.1 The

product EI in this equation is referred to as the flexural rigidity. The sign conven-

tions for M(x), (x), and (x) are reviewed in Fig. 7.4. Since the moment-curvature

equation relates a force-type quantity, M(x), to a displacement-type quantity, (x),

it is very important for these sign conventions to be observed at all times.

r

ry

r

M(x) �
E(x)I(x)

r(x)

7.2 DIFFERENTIAL EQUATIONS OF THE DEFLECTION CURVE

Heavy load

(a)

Low clearance

FIGURE 7.3 Illustrations

of beam deflection.

(b)

(c)

Deflection exaggerated
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Before actually calculating the slope and deflection of a beam, it is helpful to

sketch the anticipated deflection curve of the beam. This can be done with the

help of Eq. 7.1 and a moment diagram. In fact, we did this in Chapter 5 as a means

of checking moment diagrams. Figure 7.5 is taken from Example 5.9. First, there

can be no deflection of the beam at supports A and B, but the slope of the beam

is unrestricted at the supports and everywhere else along the beam. At any section

where the moment is negative, that is, to the right of section D, the center of the

curvature is on the �y side of the beam, that is, the beam is concave downward.

There is an inflection point at D, where the moment changes from positive to

negative.

The inclination angle, �(x), is related to the derivative of the deflection by

(7.2)u � arctan ady
dx
b

465
Differential Equations of the

Deflection Curve

x

x

y, v(x)

ρ(x)

 +M ⇒ compression
 in +y fibers.

 +ρ ⇒ center of curvature
 on +y side of beam.

 +v ⇒ displacement
 in +y direction.

M(x)

v(x)

Center 
of 

curvature

y

FIGURE 7.4 The sign convention for beam deflection analysis.

M

M
x

BA

D

C
x

y, v(x)

M positive

(Deflection exaggerated)

Inflection point

M negative

1–ρ

1–ρ

M––
EI

=

FIGURE 7.5 Use of the

moment-curvature equation 

in sketching the deflection

curve.
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The slope of a beam is typically very small (i.e., , so the approximation

(7.3)

may be treated as an equality. Deflection (x), slope �(x), and radius of curvature

(x) are illustrated in Fig. 7.6. From calculus, the radius of curvature is related to the

derivatives of the deflection by

(7.4)

Again, where the slope is small compared with unity, the approximation

(7.5)

can be treated as an equality. Then the moment-curvature equation (Eq. 7.1)

becomes

(7.6)

To simplify the equations in this chapter, we will adopt the notation of using

primes to denote differentiation with respect to x. Thus,

(7.7)

With the above prime notation, Eq. 7.6 may be written as

(7.8)
Moment-Curvature
EquationEIy– � M

y¿ �
dy
dx

, y– �
d2y

dx2
, M¿ �

dM
dx

, etc.

d2y(x)

dx2
�

M(x)

E(x)I(x)

1

r
�

d2y

dx2

1

r
�

d2y

dx2

c1 � ady
dx
b2 d 3/2

r

y

u �
dy
dx

dy
dx

V 1)
466
Deflection of Beams

x

y, v(x)

ρ(x) = Radius of curvature

θ(x) = Slope

v(x) = Deflection 

Deflection
curve

Center of curvature

FIGURE 7.6 Geometric relationships of the deflection curve.
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Although the curvature, , does not appear explicitly in it, we will refer to

this equation as the moment-curvature equation. It is a second-order, ordinary
differential equation that we can integrate to determine the slope and deflection,

given an expression for M(x) and appropriate boundary conditions and continuity

conditions.

Load-Deflection Equation. Equations relating load, transverse shear force,

and bending moment were derived in Chapter 5. Equations 5.3 and 5.2, repeated

here, are

(7.9)

(7.10)

The sign conventions for p, V, and M are reviewed in Fig. 7.7.

Combining Eqs. 7.8, 7.9, and 7.10, we get the shear-deflection equation

(7.11)

and the load-deflection equation

(7.12)

The load-deflection equation, which is a fourth-order, ordinary differential equation,

is especially useful. Although it must be integrated four times, this is a very straight

forward process, one that can be readily programmed for computer solution (see

Section 7.5).

If the flexural rigidity, EI, is constant, then Eqs. 7.11 and 7.12 become the fol-

lowing third-order and fourth-order differential equations, respectively.

(7.13)

(7.14)

We will refer to Eq. 7.11 (or 7.13) as the shear-deflection equation, and to Eq. 7.12

(or 7.14) as the load-deflection equation.
A beam that requires more than one expression for bending moment because

of the presence of concentrated loads, discontinuities in distributed loads, or interior

supports will be referred to as a multi-interval beam. Consider the two-interval

beam in Fig. 7.8 (repeated from Example Problem 5.2). Each interval has its own

differential equations, and each interval will have its own expression for the deflection

 EIy‡¿ � p

 EIy‡ � V

Load-Deflection
Equation(Ely–)– � p

Shear-Deflection
Equation(EIy–)¿ � V

 V¿(x) � p(x)

 M¿(x) � V(x)

k � 1/r 467
Differential Equations of the

Deflection Curve

y p(x)

x

x

x

y
p(x)

M(x)

V(x) V(x)

FIGURE 7.7 The sign conventions for positive load, shear, and moment.
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curve. As indicated in Fig. 7.8, we will use numerical subscripts to indicate the range

of validity of each variable.2

Boundary Conditions and Continuity Conditions. When the above differ-

ential equations are integrated, there will be constants of integration that must be

evaluated. For each (second-order) moment-curvature equation, there will be two

constants of integration; for each (fourth-order) load-deflection equation, there will

be four constants of integration. These constants of integration are evaluated by

making use of boundary conditions (BC), which are listed in Table 7.1. In the case

of multi-interval beams (e.g., Fig. 7.8), there will also be continuity conditions (CC)

that apply where two intervals meet. Table 7.2 lists the possible continuity

conditions.

We will use only the second-order equation and the fourth-order equation, so

let us consider the specific boundary and continuity conditions that apply to each.

Recall from your study of differential equations that the constants of integration of

a certain order ODE can only be evaluated using known values, or relationships of

values, of the lower derivatives, including the function itself. Hence, only values of 

and can be used in boundary conditions and continuity conditions for evaluating

constants of integration for a second-order equation. Values of , , M, and V are

used to evaluate constants of integration when the load-deflection equation (a

fourth-order ODE) is used. Tables 7.1 and 7.2 list the various boundary conditions

and continuity conditions that may arise.

In the next two sections we integrate differential equations to solve for the

deflection and slope of statically determinate beams (Section 7.3) and of statically

indeterminate beams (Section 7.4).We will use the same basic procedure to solve all

y¿y

y¿
y

468
Deflection of Beams

2Some texts employ shifting of the origin and/or reflection of the coordinate reference frame. A shift of

origin necessitates the use of more than one independent variable (e.g., x1, x2). In the case of a reflected

x axis (i.e., right-to-left instead of left-to-right), “tricky” changes of signs are required. To simplify matters,

in this text the same xy reference frame is used for the entire beam; so no change of sign convention

is required, and no subscript is needed on the independent variable x. (See Fig. 7.8 and Example

Problem 7.3.)

B
A

x

x

6 ft

40 ft/lb

(0 < x < 6ft)
p1(x) = –40 lb/ft

V1(x) = (220 – 40x) lb
M1(x) = (220x – 20x2) lb · ft

v1(x) = deflection in interval 1

6 ft

y, v(x)

1 2

(6ft < x < 12ft)
p2(x) = –40           lb/ft

V2(x) =   –140 +   5(12 – x)2   lb
M2(x) =   140(12 – x) – 5  (12 – x)3   lb · ft

v2(x) = deflection in interval 2

12 – x–––––
6

10––
3

10––
9

(  (

C

FIGURE 7.8 A two-interval beam.
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469
Differential Equations of the

Deflection Curve

T A B L E  7 . 1 Boundary Conditions

Type Symbol* 2nd Order 4th Order

y � 0 y � 0

y� � 0 y� � 0

y � 0
y � 0

M � 0

No BC
V � 0

M � 0

No BC
V � P0

M � 0

No BC
V � 0

M � �M0

Fixed end

Simple 

support

Free end

Concentrated

force

Concentrated

couple

BC

*These boundary conditions also apply if the boundary under consideration is

the other end of the beam (i.e., x � L).

T A B L E  7 . 2 Continuity Conditions*

Type Symbol 2nd Order 4th Order

y1 � y2 � 0 y1 � y2 � 0
y�1 � y�2 y�1 � y�2

M1 � M2

y1 � y2 y1 � y2

y�1 � y�2 y�1 � y�2
V1 � V2

M1 � M2

y1 � y2 y1 � y2, y�1 � y�2
y�1 � y�2 V2 � V1 � P0

M1 � M2

y1 � y2 y1 � y2, y�1 � y�2
y�1 � y�2 V1 � V2

M2 � M1 � �M0

y1 � y2

y1 � y2

V2 � V1 � P0

M1 � M2 � 0

21

Roller

Discontinuity

in load

function

Concentrated

force

Concentrated

couple

Pin, with

force

CC

*The displacement (y) and slope ( ) continuity conditions that are listed in Table 7.2 are

obtained by inspection, that is, by simply looking at the figures in the “Symbol” column.

The continuity conditions on shear force (V) and bending moment (M) are obtained by

taking a local free-body diagram of the “joint” that is common to beam segments 

(1) and (2).

y¿

P0

M0

P0

P0

M0
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beam-deflection problems, with only a minor modification required in the treatment

of statically indeterminate problems.
470
Deflection of Beams

7.3 SLOPE AND DEFLECTION BY INTEGRATION—STATICALLY
DETERMINATE BEAMS

Let us now illustrate the solution of slope and deflection problems by integration of

either the second-order differential equation, Eq. 7.8, or the fourth-order differen-

tial equation, Eq. 7.12. Since all solutions follow a straightforward procedure, we will

outline that procedure here and will dispense with the Plan the Solution discussion

of each problem.

PROCEDURES FOR DETERMINING SLOPE AND DEFLECTION OF STATICALLY DETERMINATE BEAMS 
BY INTEGRATION

1. Sketch the anticipated deflection curve. In some cases this

can be done by reference to the original load diagram. In

other situations, a moment diagram is very helpful (e.g.,

Fig. 7.5).

2. Second-order method—Sketch free-body diagrams and

develop a moment function Mi(x) for each interval of the

beam. Fourth-order method—From the load diagram,

develop a load function pi(x) for each interval of the

beam. (This includes pi(x) � 0 for intervals that have no

distributed loading.)

In Step 2 the Sign conventions in Fig. 7.7 must be

rigorously adhered to.

3. Second-order method—Using Eq. 7.8 and the expressions

for Mi(x) developed in Step 2, write down a moment-
curvature equation for each interval.

(7.8)

repeated

Fourth-order method—Using Eq. 7.12 and the expres-

sions for pi(x) developed in Step 2, write down a load-
deflection equation for each interval.

(7.12)

repeated

4. Integrate the differential equations developed in Step 3.

Include appropriate constants of integration.

5. Write down the appropriate boundary conditions and

continuity conditions using Tables 7.1 and 7.2 as a guide.

Second-order method—Use the 2nd Order” columns of

(EIy–)–i � pi(x)

(EIy–)i � Mi(x)

Tables 7.1 and 7.2 as a guide in setting up boundary con-

ditions and continuity conditions. Note that all bound

ary conditions involve only the slope, , or the deflec-

tion, , since Eq. 7.8 is a second-order differential equa-

tion. Fourth-order method—Use the “4th Order”

columns of Tables 7.1 and 7.2 as a guide. In addition to

conditions on and , boundary and continuity condi-

tions on the shear. V, and the bending moment, M, may

also apply.

6. Use the boundary and continuity conditions of Step 5

to evaluate the constants of integration introduced in

Step 4.

In the fourth-order method, the first integral of Eq.

7.12 leads to an equation of the form

Since (EI �)� � V (Eq. 7.11), boundary and continuity

conditions on the shear, V, are appropriate. A second in-

tegration leads to an equation of the form

From Eq. 7.8, El � is just the bending moment, M, so

boundary and continuity conditions on M apply. Tables

7.1 and 7.2 list these conditions on V and M.

7. Complete the solution by evaluating the slope and deflec-

tion at points where they are required, by evaluating

deflection maxima, etc.

y

(EIy–)i � � c �pi(x)dx � C1 ddx � C2

y

(EIy–)¿i � �pi(x) dx � C1

yy¿

y

y¿

Example Problem 7.1 is solved by both the second-order method and the

fourth-order method. Others are solved by only one of the two methods.
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E X A M P L E  7 . 1

A uniform cantilever beam is subjected to a transverse load PB and a

couple MB at its “free” end, as shown in Fig. 1. Using the second-order

method and the fourth-order method: (a) Determine expressions for the

slope, �(x), and the deflection, (x). (b) Determine expressions for the

deflection and slope at B.

yy

A B

y, v(x)

EI = const MB

PB

x

L

Fig. 1

Solution A (2nd-Order Method)

(A.a) Determine formulas for slope and deflection.

Sketch the Deflection Curve: Both loads in Fig. 1 will bend the beam

upward. Therefore, the deflection should resemble the deflection curve

in Fig. 2.

Determine M(x): The free-body diagram in Fig. 3 can be used to deter-

mine an expression for M(x).

(1)

Write the Moment-Curvature Equation: From Eqs. 7.8 and (1),

(2)

Integrate the Differential Equation: We need to integrate Eq. (2) twice.

(3a)

(3b)

Identify the Boundary Conditions: End A is “fixed.” That is, the slope

and the deflection must be zero at x � 0. So, from Table 7.1,

(4a,b)

Evaluate the Constants of Integration: From Eqs. (3a) and (4a),

(5a)

and, from Eqs. (3b), (4b), and (5a),

(5b)EIy|x�0 � C2 � 0

EIy¿|x�0 � C1 � 0

y¿(0) � y(0) � 0

 EIy � MB ax2

2
b � PBL ax2

2
b � PB ax3

6
b � C1x � C2

 EIy¿ � MBx � PBLx � PB ax2

2
b � C1

EIy– � M(x) � MB � PB(L � x)

aaMb
a

� 0: M(x) � PB(L � x) � MB � 0

δB ≡ v(L)

θB ≡ v'(L)

x

x

v(x)

L

x L – x

MBM(x)

V(x) PB

a

Fig. 2 The anticipated deflection curve.

Fig. 3 A free-body diagram.
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Therefore,

Ans. (A.a) (6)

(A.b) Determine the tip deflection and slope. We can now evaluate the

tip deflection and slope using Eqs. (6).

Ans. (A.b) (7)

For example, due to PB alone, we get

(8a,b)

These results, together with the results that are obtained when MB is

applied alone, are listed in Table E.1 of Appendix E.

Solution B (4th-Order Method)

Sketch the Deflection Curve: See Fig. 2.

Determine p(x): From the load diagram, Fig. 1,

(9)

Write the Load-Deflection Equation: From Eqs. 7.12 and (9),

(10)

Integrate the Differential Equation: We need to integrate Eq. (10) four

times. We can also make use of Eqs. 7.11 and 7.8.

(11a)

(11b)

(11c)

(11d)

Identify the Boundary Conditions: We can refer to Table 7.1. We know

the displacement and slope at x � 0 and the moment and shear at x � L.

 EIy � D1 ax3

6
b � D2 ax2

2
b � D3x � D4

 EIy¿ � D1 ax2

2
b � D2x � D3

 EIy– � M(x) � D1x � D2

 (EIy–)¿ � V(x) � D1

(EIy–)– � 0

p(x) � 0

dB �
PBL3

3EI
,  uB �

PBL2

2EI

  uB � y¿(L) �
1

EI
 cMB (L) � PB aL2

2
b d

  dB � y(L) �
1

EI
 cMB aL2

2
b � PB aL3

3
b d

 y(x) �
1

EI
cMB ax2

2
b � PBL ax2

2
b � PB ax3

6
b d

 y¿(x) �
1

EI
cMBx � PBLx � PB ax2

2
b d

472

x

x

c07DeflectionOfBeams.qxd  9/15/10  7:34 PM  Page 472



Therefore, observing all sign conventions, we get

(12a,b)

(12c,d)

(Note: The minus sign in Eq. (12a) results from the sign convention 

for shear, Fig. 7.7.)

Evaluate the Constants of Integration: Combining Eqs. (11) and (12),

we get

(13a)

(13b)

(13c,d)

Finally, combining Eqs. (11) and (13), we get

Ans. (B.a)

as we did in the second-order solution, Eqs. (6).

Review the Solution A check of the dimensionality of each term in the

slope and deflection expressions shows that each term has the proper

dimensions.

To get some idea of the magnitude of the slope and the deflection

that might occur in an actual beam in service, consider a cantilever beam

of length L � 10 ft that supports a load PB � 4.5 kips. Let the beam be

an A-36 steel wide-flange beam that has been sized with a factor of

safety FS � 2. For A-36 steel � 36 ksi and E � 29(103) ksi. Based on

Eq. 6.17, the required section modulus is

From Table D.1, a suitable wide-flange beam would be a W10 � 30, with

moment of inertia I � 170 in4. Then, from Eqs. (8), the deflection and

slope at the end of the cantilever beam are given by

Clearly and, even more so, , so it is valid to treat the

approximations in Eqs. 7.3 and 7.5 as equalities and use Eq. 7.8 as the

basis for solving for the deflection of beams.

�uB�2 V 1�uB� V 1

 uB �
PBL2

2EI
�

(4.5 kips)(120 in.)2

2(29 � 103 ksi)(170 in4)
� 0.00657 rad

 dB �
PBL3

3EI
�

(4.5 kips)(120 in.)3

3(29 � 103 ksi)(170 in4)
� 0.526 in.

Sdesign �
Mmax

sallow

�
PBL
sYP

FS

�

(4.5 kips) c (10 ft)a12 
in.

ft
b d

36 ksi

2

� 30.0 in3

sYP

 y¿(x) �
1

EI
cMB ax2

2
b � PBL ax2

2
b � PB ax3

6
b d

 y¿(x) �
1

EI
cMBx � PBLx � PB ax2

2
b d

D3 � 0, D4 � 0

D1L � D2 � MB S D2 � MB � PBL

D1 � �PB

y¿(0) � 0, y(0) � 0

V(L) � �PB, M(L) � MB
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The results that were obtained in Example Problem 7.1 can be quite useful in

solving beam deflection problems by superposition (Sections 7.6 and 7.7). For the

cantilever beam of Fig. 7.9, Eqs. (7) of Example Problem 7.1 may be written in the

form:

(7.15)

On the other hand, we can solve these equations for P and M in terms of and 

and get

(7.16)

The next example problem illustrates the usefulness of the fourth-order method

when a beam is subjected to a distributed loading that is not simply constant or

linear. Observe that by using the fourth-order method we avoid having to determine

an expression for M(x) at the outset.

 M � �a6EI

L2
b d � a4EI

L
b u

 P � a12EI

L3
b d � a6EI

L2
b u

ud

 u � a L2

2EI
b P � a L

EI
b M

 d � a L3

3EI
b P � a L2

2EI
b  M

474
Deflection of Beams P

M

L

θ

δ

FIGURE 7.9 Load-deflection relationships for a uniform cantilever beam.

E X A M P L E  7 . 2

Use the fourth-order method to analyze the uniform, simply supported

beam in Fig. 1. (a) Determine expressions for the slope and deflection of

the beam. (b) Determine the maximum deflection of the beam.

Solution (a) Determine formulas for the slope and deflection of the
beam.

Sketch the Deflection Curve: The beam will obviously deflect downward

over its entire length, as sketched in Fig. 2. The maximum deflection

should occur to the left of the center of the beam.

Determine p(x): The load distribution, p(x), is given in Fig. 1. There is a

negative sign because the load acts in the �y direction.

(1)

Write the Load-Deflection Equation: From Eqs. 7.12 and (1),

p(x) � �w0 cos apx
2L
b

L

B

w0 cos

A

w0

x

x

y, v(x)
πx___
2L(      )

EI = const

Fig. 1 A simply supported beam with 

cosine load.
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Write the Load-Deflection Equation: From Eqs. 7.12 and (1).

(2)

Integrate the Differential Equation: We need to integrate Eq. (2) four

times, making use of Eqs. 7.11 and 7.8 and introducing constants of

integration.

(3a)

(3b)

(3c)

(3d)

Identify the Boundary Conditions: The moment vanishes at both ends,

and the displacement is also zero at both ends (see Table 7.1). Therefore,

(4a,b)

(4c,d)

Evaluate the Constants of Integration: Combining Eqs. (3) and (4) we get

(the source equations are cited in square brackets at the left margin):

[4a, 3b]

so

(5a)

[4b, 3b]

so

(5b)

[4c, 3d] EIy(0) � �w0 a2L
p
b4

� C4 � 0

C1 �
w0

L
 a2L
p
b2

M(L) � C1L � C2 � 0

C2 � �w0 a2L
p
b2

M(0) � w0 a2L
p
b2

� C2 � 0

 y(0) � y(L) � 0

 M(0) � M(L) � 0

EIy � �w0 a2L
p
b4

cos apx
2L
b � C1 ax3

6
b � C2 ax2

2
b � C3x � C4

EIy¿ � w0 a2L
p
b3

sin apx
2L
b � C1 ax2

2
b � C2x � C3

M(x) � EIy– � w0 a2L
p
b2

cos apx
2L
b � C1x � C2

V(x) � (EIy–)¿ � �w0 a2L
p
b sin apx

2L
b � C1

(EIy–)– � p(x) � �w0 cos apx
2L
b

475

L/2

B
A

xm

δmax
x

y, v(x)

Fig. 2 The expected deflection curve.
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so

(5c)

[4d, 3d]

(5d)

Finally, from Eqs. (3) and (5),

(6a)

Ans. (a) (6b)

(b) Determine the maximum deflection of the beam. The maximum de-

flection occurs where the slope is zero. Figure 2 suggests that this should

occur in the interval 0 � xm � L/2. This means that we must set the ex-

pression in square brackets in Eq. (6a) equal to zero and find a root xm

for which �(xm) � 0. We can do this by trial and error or by using some

root-finder, and we get

Using Eq. (6b) to evaluate (xm), we get

Ans. (b) (7)

Review the Solution The dimensionality of all terms is correct. We get

the correct signs by spot-checking �(0), �(L) and (L/2). We can use

Table E.2 to check the magnitude of max in Eq. (7), since the cosine load

is between a triangular load (Fig. 3a) and a uniform load (Fig. 3b).

Therefore, the answer seems to be correct.

d

yyy

dmax � |y(0.485L)| � 8.70(10�3) 

w0L4

EI

y

xm � 0.485L

y

� a4p2

3
� 16b a x

L
b � 16 d

 y �
w0L4

p4EI
c�16 cos apx

2L
b �

2p2

3
  a x

L
b3

� 2p2 a x
L
b2

 y¿ �
w0L3

p4EI
c8p sin apx

2L
b � 2p2 a x

L
b2

� 4p2 a x
L
b �

4

3
 p2 � 16 d

C3 �
w0L3

3p4
 (4p2 � 48)

EIy(L) � C1 aL3

6
b � C2 aL2

2
b � C3L � C4 � 0

C4 � w0 a2L
p
b4

Example Problems 7.1 and 7.2 are single-span problems involving only one

loading interval; the first is a cantilever-beam problem, and the second is a simply

supported beam problem. To solve single-interval problems by the second-order

method or by the fourth-order method, we need to incorporate the appropriate

boundary conditions, which are catalogued in Table 7.1.

Let us now solve a two-interval problem by integrating the second-order mo-

ment-curvature equation and applying the appropriate boundary conditions from

Table 7.1 and the appropriate continuity conditions as catalogued in Table 7.2. From

Fig. 3 Comparison deflections.

w0

(a)

δmax = 6.52(10–3)
w0L4
____

EI

w0

(b)

δmax = 13.02(10–3)
w0L4
____

EI
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this example you will observe that multi-interval problems can become very tedious

to solve because of the large number of constants of integration that must be eval-

uated. For this reason, multi-interval problems are most often solved by one of the

methods discussed in Sections 7.5–7.7.

3See Footnote 2.

E X A M P L E  7 . 3

A uniform, simply supported beam has a uniform load over half of its

length, as shown in Fig. 1. (a) Using the second-order integration

method, determine expressions for the slope and deflection in load inter-

vals AB and BC. (b) Determine the maximum deflection.

Solution

(a) Determine formulas for the slope and deflection of the beam.

Sketch the Deflection Curve: The deflection will be downward over the

entire length, with the maximum deflection occurring between A and B,

as illustrated in the deflection diagram, Fig. 2.

Equilibrium—Determine M1(x) and M2(x): Since this beam has two load

intervals, we need two moment equations. First, however, we need an

overall free-body diagram in order to determine the reactions at A and C.

From the free-body diagram in Fig. 3a, we get the equilibrium equations

From the free-body diagrams in Figs. 3b and 3c, respectively, we get3

(1a)

(1b)aaMb
b

� 0:  M2(x) �
w0L

8
 (L � x)

aaMb
a

� 0:  M1(x) �
3w0Lx

8
�

w0x2

2

aaMb
C

� 0:       Ay �
3w0L

8

aaMb
A

� 0:       Cy �
w0L

8

y, v(x)

w0

A C
B

x

L/2 L/2

Fig. 1 The load diagram of a simply

supported beam.

L/2 L/2

CBA

xm

δmax δB

θB

y, v(x)

Fig. 2 The expected deflection curve.

(a) Overall free-body diagram.

w0L____
2L /4

L /2 L /2

A B C
Ay Cy

w0x

3w0L____
8

x

(b) Free-body diagram for load
interval 1 – (0 < x < L/2).

a
A M1(x)

V1(x)

(c) Free-body diagram for load
interval 2 – (L/2 < x < L).

w0L____
8

b

x L – x

CM2(x)

V2(x)

Fig. 3 Free-body diagrams.
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Slope and Deflection By

Integration—Statically
Determinate Beams
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Write the Moment-Curvature Equations: There is a moment-curvature

equation (Eq. 7.8) for each interval.

(2a)

(2b)

Integrate the Differential Equations

(3a)

(3b)

(4a)

(4b)

Identify the Boundary Conditions and Continuity Conditions: For the

simply supported beam in Fig. 1, the deflection is zero at the two ends,

A and C. From Table 7.1,

(5a,b)

The displacement and slope are continuous at B, where the loading 

is discontinuous, since the beam is not broken there. Therefore, from

Table 7.2,

(5c,d)

Evaluate the Constants of Integration: Using the source equations indi-

cated in brackets, we get:

[4a, 5a] (6a)

[4b, 5b] (6b)

[3a, 3b, 5c] (6c)

[4a, 4b, 5d, 6a]

(6d)�
w0L
48

 aL
2
b3

� C2 aL
2
b � D2

w0L
16

 aL
2
b3

�
w0

24
 aL

2
b4

� C1aL
2
b

3w0L
16

 aL
2
b2

�
w0

6
 aL

2
b3

� C1 � �
w0L
16

 aL
2
b2

� C2

EIy2(L) � C2L � D2 � 0

EIy1(0) � D1 � 0

y¿1 aL
2
b � y¿2 aL

2
b, y1 aL

2
b � y2 aL

2
b

y1(0) � 0, y2(L) � 0

 EIy2 �
w0L
48

(L � x)3 � C2x � D2

 EIy1 �
w0Lx3

16
�

w0x4

24
� C1x � D1

 EIy¿2 � �
w0L
16

(L � x)2 � C2

 EIy¿1 �
3w0Lx2

16
�

w0x3

6
� C1

 EIy–2 � M2(x) �
w0L

8
 (L � x)

 EIy–1 � M1(x) �
3w0Lx

8
�

w0x2

2
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Combining Eqs. (6b), (6c), and (6d), we get

(7a)

(7b)

(7c)

Finally, inserting the constants of integration into Eqs. (3) and (4),

we get the following expressions for the slope and deflection in load in-

tervals 1 and 2:

(8a)

(8b)

(8c)

(8d)

(b) Determine the maximum deflection of the beam. As observed in 

Fig. 2, the maximum deflection occurs in the loaded interval, AB.

Therefore, we let (xm) � 0 to determine the location where the slope

is zero. This gives the cubic equation

The value of xm can be found by trial and error or by some other root-

finding method. It is

Then, the maximum deflection is

Ans. (b)

Review the Solution The answers have been written in terms of a

dimensionless length (x/L) so that all dimensional quantities can be

collected into one coefficient term. The coefficient terms:

y¿ � aw0L3

EI
b and y � aw0L4

EI
b

dmax � |y1(0.460L)| � 6.56(10�3) 

w0L4

EI

xm � 0.460L

�64 axm

L
b3

� 72 axm

L
b2

� 9 � 0

y¿1

 y2 �
w0L4

384EI
 c1 � 17 a x

L
b � 24  a x

L
b2

 � 8 a x
L
b3 d

 y1 �
w0L4

384EI
 c�9 a x

L
b � 24  a x

L
b3

 � 16 a x
L
b4 d

 y¿2 �
w0L3

384EI
 c�17 � 48 a x

L
b � 24 a x

L
b2 d

 y¿1 �
w0L3

384EI
 c�9 � 72 a x

L
b2

� 64 a x
L
b3 d

 D2 � �
7

384
 (w0L4)

 C2 �
7

384
 (w0L3)

 C1 � �
9

384
 (w0L3)

Ans. (a)x
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are dimensionally correct. As with many beam-deflection problems, the

answers to this problem can be found in Appendix E. If they were not,

we could check the value of �max by comparing it with the midpoint de-

flection of a uniformly loaded beam. From Table E.2, that value is

The value of �max should be slightly greater than half of this, which it is.

|y(L/2)| �
5

384
 aw0L4

EI
b

E X A M P L E  7 . 4

Use the fourth-order integration method to determine expressions for

slope and deflection in intervals AB (interval 1) and BC (interval 2) of

the uniform cantilever beam in Fig. 1. Also, determine specific expres-

sions for the slope and deflection at x � L.

A CB

P
y, v(x)

EI = const

x

L

a b

Fig. 1 A concentrated load on a cantilever beam.

Solution

Sketch the Deflection Curve: As sketched in Fig. 2, the deflection will be

upward along the entire length of the beam. Since there is no load to the

right of point B, the beam will remain straight from B to C.

Determine p1(x) and p2(x): There are no distributed loads on this beam,

so for interval 1 and interval 2, respectively,

(1a,b)

Write the Load-Deflection Equations: Combine Eqs. (1) with Eq. 7.12 

to give

(2a)

(2b)

Integrate the Differential Equations: For interval 1, the four integrals of

Eq. (2a) are:

(3a)V1(x) � (EIy–1)¿ � C1

(EIy–2)– � 0

(EIy–1)– � 0

p1(x) � p2(x) � 0

y, v(x)

x

a b
L

A
B

C

Fig. 2 The expected deflection curve.
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(3b)

(3c)

(3d)

For interval 2, the integrals of Eq. (2b) are:

(4a)

(4b)

(4c)

(4d)

Identify the Boundary Conditions and Continuity Conditions: Since there

are eight constants of integration to be evaluated, we need a total of eight

boundary and/or continuity conditions.The deflection and slope vanish at

x � 0 and the moment and shear vanish at x � L. Therefore,

(5a,b)

(6a,b)

There is slope continuity and displacement continuity at x � a, so

(7a)

(7b)

The final two conditions are the shear and moment conditions that

result from equilibrium of the “joint” at B. (They are also listed in Table

7.2.) From the free-body diagram in Fig. 3,

(8a)

(8b)M2(a) � M1(a)

V2(a) � V1(a) � P

 y1(a) � y2(a)

 y¿1(a) � y¿2(a)

 V2(L) � M2(L) � 0

 y1(0) � y¿1(0) � 0

 EIy2 � C2 ax3

6
b � D2 ax2

2
b � E2x � F2

 EIy¿2 � C2 ax2

2
b � D2x � E2

 M2(x) � EIy–2 � C2x � D2

 V2(x) � (EIy–2)¿ � C2

 EIy1 � C1 ax3

6
b � D1 ax2

2
b � E1x � F1

 EIy¿1 � C1 ax2

2
b � D1x � E1

 M1(x) � EIy–1 � C1x � D1

P

M1(a) M2(a)

V1(a)

V2(a)

B

Fig. 3 Equilibrium of the node at B.
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Evaluate the Constants of Integration: Combining Eqs. (3) through (8)

we get the following constants of integration:

(9a–d)

(10a–d)

Finally, the above constants can be inserted into Eqs. (3c,d) and

(4c,d) to give the following slope and deflection equations:

(10a)

(10b)

(10c)

(10d)

Determine the Slope and Deflection at the Tip of the Beam: Evaluating

Eqs. (10c) and (10d) at x � L, we get

(11a)

(11b)

Review the Solution This example problem could have been solved

easily by the second-order integration method that was illustrated in

Example Problems 7.1 and 7.3. Note that no overall free-body
diagrams are needed for a fourth-order solution. The boundary condi-

tions and continuity conditions for fourth-order solutions may be

obtained from local “joint” free-body diagrams, as in Fig. 3. Table 7.1

lists various types of boundary conditions; continuity conditions are

listed in Table 7.2.

The above results in Eqs. (11a) and (11b) can be checked by consult-

ing #4 in Table E.1 of Appendix E. These equations will be utilized in

Section 7.6 to obtain expressions for the deflection of beams with gen-

eral distributed loading.

 y2(L) �
Pa2

6EI
 a3L

a
� 1b

 y¿2(L) �
Pa2

2EI

 y2(x) �
Pa3

6EI
 c3 ax

a
b � 1 d

 y¿2(x) �
Pa2

2EI
 

 y1(x) �
Pa3

6EI
 c�ax

a
b3

� 3 ax
a
b2 d

 y¿1(x) �
Pa2

2EI
 c�ax

a
b2

� 2 ax
a
b d

C2 � D2 � 0, E2 �
Pa2

2
, F2 � � 

Pa3

6

C1 � �P, D1 � Pa, E1 � F1 � 0

Ans.

Ans.

x

Next, we will use the second-order method and the fourth-order method to

solve slope and deflection problems for statically indeterminate beams.

∂
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7.4 SLOPE AND DEFLECTION BY INTEGRATION—STATICALLY
INDETERMINATE BEAMS

In Section 7.3 we solved for the slope and deflection of statically determinate

beams. In this section we will extend the solution procedures of Section 7.3 to solve

for the slope and deflection of statically indeterminate beams.
For example, compare the simply supported beam in Example Problem 7.3 with

the beam in Fig. 7.10. Since the simply supported beam in Example Problem 7.3 is

statically determinate, it is possible to determine all reactions using equilibrium

equations alone. In Fig. 7.10 there are four reactions, but only three independent

equations of equilibrium can be written, so this beam is statically indeterminate. The

addition of the rotation constraint at A gives rise to a redundant moment reaction,
MA. Alternatively, we could consider the beam in Fig. 7.10 to be a statically determi-

nate cantilever beam to which an additional support has been added at end B, mak-

ing the beam statically indeterminate and leading to the name propped cantilever
beam.

w0

A

Ay

Ax B

MA

x

y, v(x)

L
By

Each additional constraint, beyond those needed to prevent collapse of a beam,

gives rise in an additional redundant reaction, whose value can only be determined

by considering the deflection of the entire beam. For example, the redundant reac-

tion MA in Fig. 7.10 results from the addition of the constraint equation �(0) � 0.

That is, in order to maintain a slope of zero at end A of this specific beam with this

specific loading, a specific moment MA is required.

In the example problems that follow, it will be demonstrated that each redun-
dant constraint, which is expressed by an auxiliary boundary condition or continu-
ity condition, leads to a corresponding redundant reaction. Thus, for statically inde-

terminate beams there is a slight modification of the procedure given at the

beginning of Section 7.3:

• In Steps 2 and 3, redundant reactions must be included on the free-body

diagram(s) and in the equation(s) of equilibrium.

• In Step 5, the redundant constraint conditions must be included along with

the other boundary conditions and continuity conditions.

• In Step 6, along with the constants of integration, redundant reactions are

evaluated by enforcing boundary conditions and continuity conditions, in-

cluding the redundant constraint conditions.

y

FIGURE 7.10 A statically

indeterminate beam.

E X A M P L E  7 . 5

A couple, MB, is applied to a uniform, propped cantilever beam, as shown

in Fig. 1. Use the second-order integration method: (a) to determine
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expressions for the slope and deflection of the beam; and (b) to deter-

mine the reactions at A and B. (c) Sketch the shear-force and bending-

moment diagrams for the beam.

Solution (a) Determine expressions for the slope and deflection of the
beam.

Sketch the Deflection Curve: The couple MB will tend to rotate end B
counterclockwise. Therefore, the beam should take the shape indicated

in Fig. 2.

Equilibrium—Determine an Expression for M(x): If we take the free-

body diagram shown in Fig. 3, we will get an expression for M(x) that

includes the given end couple (moment) and the unknown reaction at B.

We can let this reaction at B, which arises due to the added constraint at

B, be the unknown redundant.

(1)

Write the Moment-Curvature Equation: From Eq. 7.8 and Eq. (1),

(2)

Integrate the Differential Equation: The two integrations of Eq. (2) give

(3a)

(3b)

Identify the Boundary Conditions: Since we have three unknowns in

Eqs. (3), two constants of integration plus the unknown redundant reac-

tion force By, we need a total of three boundary conditions. They are

(Table 7.1):

(4a,b,c)

Evaluate the Constants: The source equations are identified in brackets.

[4a, 3a] (5a)

[4b, 3b, 5a] (5b)

[4c, 3b, 5a, 5b]

or (5c)By � �
3

2
 
MB

L

EIy(L) � MBaL2

2
b � ByaL3

3
b � 0

EIy(0) � C2 � 0

EIy¿(0) � C1 � 0

y¿(0) � y(0) � y(L) � 0

EIy � MB ax2

2
b � ByL ax2

2
b � By ax3

6
b � C1x � C2

EIy¿ � MBx � ByLx � By ax2

2
b � C1

EIy– � M(x) � MB � By(L � x)

aaMb
a

� 0:  M(x) � MB � By(L � x)

L

A
EI = const

B
MB

x

y, v(x)

L

A

xm

Bδmax θB
x

v(x)

Fig. 1 A uniform, propped-cantilever

beam with specified end couple.

Fig. 2 The expected deflection curve.

L – xx

a
MB

By

V(x)M(x)

Fig. 3 A free-body diagram.
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The above solution of Example Problem 7.5 differs little from the second-order

solution of statically determinate problems in Section 7.3. The presence of one con-

straint (boundary condition) beyond the minimum required to prevent collapse 

of the beam led to an additional unknown constant to be evaluated. To every addi-
tional degree of redundancy there is a corresponding additional boundary condition
to use in evaluating the unknowns.

The next example problem illustrates how to use the fourth-order integration

method to solve a statically indeterminate problem of a beam with a distributed

load. The beam is clamped at both ends, leading to a fixed-end solution. Fixed-end

solutions like this enter into the superposition solutions discussed in Section 7.7;

several are tabulated in Table E.3 in Appendix E.

485

Combining Eqs. (5) with Eqs. (3), we get the following expressions

for the slope and deflection of this propped-cantilever beam.

(6a)y¿(x) �
MBL
4EI

 c3 a x
L
b2

� 2 a x
L
b d

(6b)

(b) Determine the reactions at A and B. We found the redundant reaction

in Eq. (5c). To determine the reactions at x � 0, we can use a free-body

diagram of the entire beam (Fig. 4).

Equilibrium:

(7a)

(7b)

In summary,

Ans. (b)

(c) Sketch V and M diagrams. Since p(x) � 0, V(x) is constant (Eq. 5.2);

and since V(x) is constant, the slope of the moment diagram is constant

(Eq. 5.3). Note that the sign of the moment in Fig. 5 is in agreement with

the curvature of the beam as sketched in Fig. 2, that is, the momentcur-

vature equation, M � El �, is satisfied.

Review the Solution The deflection and slope expressions in Eqs. (6)

have the proper dimensions. From Eq. (6a), the slope at x � L is positive,

which is correct. The couple MB would lift end B up, were it not for the

constraint. Therefore, By has the correct sign. Finally, MA has the correct

sign according to our preliminary sketch in Fig. 2.

y

Ay �
3

2
 

MB

L
,  MA � �

MB

2

MA � MB �
3

2
 aMB

L
b L � �

MB

2
aaMb

A
� 0:

Ay �
3

2
 

MB

La Fy � 0:

 y(x) �
MBL2

4EI
 c a x

L
b3

� a x
L
b2 d

v Ans (a)

Fig. 4 A free-body diagram.

Fig. 5 Shear-force and bending-

moment diagrams.

L

A B
MBMA

Ay

x

y

MB

L
–––3–

2

MB–––
L

3–
2

MB–––
2

–

MB

x

V(x)

x

M(x)

L
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E X A M P L E  7 . 6

The uniform, linearly elastic beam in Fig. 1 supports a triangularly dis-

tributed load. Use the fourth-order integration method: (a) to determine

expressions for the shear, the bending moment, the slope, and the deflec-

tion of the beam; and (b) to determine the reactions at A and B. (c)

Sketch shear-force and bending-moment diagrams.

Solution (a) Determine expressions for the shear, the bending moment,
the slope, and the deflection of the beam.

Sketch the Deflection Curve: The beam will deflect upward, as sketched

in Fig. 2.

Determine an Expression for p(x): From similar triangles in Fig. 1, we

get

or

(1)

Write the Load-Deflection Equation: From Eq. 7.12 and Eq. (1), we

get

(2)

Integrate the Differential Equation: We need to integrate Eq. (2) four

times, incorporating Eqs. 7.11 and 7.8.

(3a)

(3b)

(3c)

(3d)

Identify the Boundary Conditions: The fixed-fixed boundary conditions

are (Table 7.1):

(4a–d)y¿(0) � y(0) � y¿(L) � y(L) � 0

EIy � p0 a x5

120L
b � C1 ax3

6
b � C2 ax2

2
b � C3x � C4

EIy¿ � p0 a x4

24L
b � C1 ax2

2
b � C2x � C3

EIy– � M(x) � p0 a x3

6L
b � C1x � C2

(EIy–)¿ � V(x) � p0 a x2

2L
b � C1

(EIy–)– � p(x) � p0 a x
L
b

p(x) � p0 a x
L
b

p(x)

x
�

p0

L

Fig. 1 A fixed-fixed beam with trian-

gular load.

Fig. 2 The expected deflection curve.
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L

A BEI = const
RB

MB
MA

RA x

y, v(x) p(x) p0

xm

x

v(x)

δmax
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Evaluate the Constants: The source equations are in brackets.

[4a, 3c] (5a)

[4b, 3d, 5a] (5b)

[4c, 3c, 5a]

[4d, 3d, 5a, 5b]

From these last two equations we get

(5c)

(5d)

We can combine the constants in Eqs. (5) with the expressions in

Eqs. (3) to obtain the answers to Part (a).

(6a)

Ans. (a)
(6b)

(7a)

(7b)

(b) Determine the reactions at A and B. Taking note of the relationship

between V(x) and M(x) and the symbols used in Fig. 1, and using Eqs.

(6a) and (6b), we get the following reactions:

(8a)

Ans. (b)

(8b)

(8c)

(8d)

By showing these reactions on the sketch in Fig. 3 we can see if they

look reasonable.The reactions satisfy overall equilibrium, with the larger

moment and shear at the more heavily loaded end, B. Therefore, our 

solution seems to be correct.

 MB � M(L) �
1

20
 p0L2

 RB � V(L) �
7

20
 p0L

 MA � M(0) �
1

30
 p0L2

 RA � �V(0) �
3

20
 p0L

 y(x) �
p0L4

120EI
 c a x

L
b5

� 3 a x
L
b3

� 2 a x
L
b2 d

 y¿(x) �
p0L3

120EI
 c5 a x

L
b4

� 9 a x
L
b2

� 4 a x
L
b d

 M(x) �
p0L2

60
 c10 a x

L
b3

� 9 a x
L
b � 2 d

 V(x) �
p0L

20
 c10 a x

L
b2

� 3 d

C2 �
1

30
 p0L2

C1 � �
3

20
 p0L

20C1L � 60C2 � �p0L2

12C1L � 24C2 � �p0L2

C4 � 0

C3 � 0

Fig. 3 The reactions.

p0L21––
20

p0L21––
30

p0L7––
20

p0L3––
20

A B

v

v
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(c) Sketch V and M diagrams. Equations (6a) and (6b) can be used to

plot the shear-force and bending-moment diagrams, respectively. Note

that the sign of the moment M(x) in Fig. 4 is in agreement with the cur-

vature of the beam as sketched in Fig. 2, that is, the moment-curvature

equation, M � , is satisfied. From Eq. (6a), the shear force is zero

when . That is where the moment has its most

negative value, M(x*/L) � �0.0214 p0L
2.

Review the Solution The reactions obtained in Part (b) were shown to

be reasonable, and the moment diagram in Part (c) is consistent with the

assumed deflection shape in Fig. 2. Therefore, the solution seems to be

correct.

(See Homework Problems 7.6-37 and 7.6-38 for superposition solu-

tions of this problem.)

(x*/L) � 20.3 � 0.5477

Ely–

Fig. 4 Shear-force and bending-moment diagrams.

*7.5 USE OF DISCONTINUITY FUNCTIONS TO DETERMINE
BEAM DEFLECTIONS

In Section 7.2 the moment-curvature differential equation, Eq. 7.8, and the load-
deflection differential equation, Eq. 7.12, were derived, and in Sections 7.3 and 7.4

they were integrated to determine the slope and deflection of beams. In this section,

M(x)
–––––
p0L2

0.2

–0.2

0.4

0

1.00.80.60.40.20
(x/L)

(x/L)–0.04

0.06

1.00.80.60.40.20

V(x)
––––
p0L

3––
20

–

7––
20

1––
20

0.3

0.04

0.02

0

–0.02

1––
30
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beam-deflection solutions will be based on the load-deflection equation

(7.12)

repeated

In Example Problems 7.3 and 7.4 you discovered that it is a very lengthy process to

solve deflection problems when there are discontinuities in loading and/or support

along the length of the beam. Such cases required the writing of an expression for

the bending moment for each interval of the beam and the use of continuity condi-

tions at points of discontinuity due to loading or supports. Discontinuity functions
were introduced in Section 5.5 and were used there to obtain concise expressions

for load, shear, and moment for beams. In this section we will illustrate how the use

of discontinuity functions greatly simplifies the solution of multi-interval beam-

deflection problems.4 The procedure outlined below applies both to statically deter-

minate beams and to statically indeterminate beams.

One question that arises is, Are constants of integration needed when expres-

sions involving discontinuity functions are integrated? The answer is, Yes, constants

of integration are needed to represent the shear at x � 0, V(0); the moment at x �
0, M(0); the slope of the beam at x � 0, (0); and the displacement at x � 0, (0).

When these constants of integration are introduced, they are introduced with the

unit step function in the form , as indicated in Eqs. 7.17.5 In subsequent inte-

grals, the Macaulay bracket is then integrated in the usual manner, that is, by using

Eqs. 5.11.

(7.17)

The shear-deflection equation, Eq. 7.11, has been incorporated in the first of Eqs.

7.17; the moment-curvature equation, Eq. 7.8, in the second equation. Note that the

lower limit of the integrals in Eqs. 7.17 is x � 0�, meaning that integration starts to

the right of any load or reaction at the left end of the beam. The constants of inte-

gration in Eqs. 7.17 take care of loads and reactions at x � 0.

The following straightforward procedure may be used to solve slope/deflection

problems for either statically determinate beams or statically indeterminate beams.

Therefore, it is a very good method to use either for pencil-and-paper solutions or

for computer solutions. However, the displacement-method procedure described in

Section 7.7 leads to the more powerful and more generally applicable finite element

method.

 y(x) � �
x

0�
 
y¿(j)dj � y(0)HxI0

 y¿(x) � �
x

0�
 
aM(j)

EI(j)
b dj � y¿(0)HxI0

 M(x) � EIy– � �
x

0�
 
V(j)dj � M(0)HxI0

 V(x) � EI(y–)¿ � �
x

0�
 
p(j)dj � V(0)HxI0

CHxI0
yy¿

(EIy–)– � p(x)

489
Use of Discontinuity

Functions to Determine Beam
Deflections

Load-Deflection
Equation

4This method of solving beam deflection problems is called Clebsch’s Method after its developer, the

German mathematician A. Clebsch (1833–1872) who proposed the method. An excellent review of the

method and its applications may be found in “Clebsch’s Method for Beam Deflection,” by W. D. Pilkey,

[Ref. 7-1].
5It is not essential to include the unit step when introducing the constants of integration, but it is done

here in order to maintain uniformity of notation among the various discontinuity terms being integrated.

HxI0
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As the following examples will illustrate, the shear and moment closure equa-
tions automatically enforce overall equilibrium of the beam. Nevertheless, a free-

body diagram of the entire beam should be drawn so that unknown reactions can be

labeled clearly.

PROCEDURE FOR USING DISCONTINUITY FUNCTIONS TO DETERMINE BEAM DEFLECTION

1. Sketch the expected deflection curve. Draw a free-body

diagram of the entire beam, labeling all reactions appro-

priately.

2. Using information from the Load column of Table 5.2,

write a discontinuity-function expression for the load

p(x). Introduce all reactions as unknowns.

3. Integrate the load expression four times, using informa-

tion from Table 5.2 or using Eqs. 5.11. Introduce a con-

stant of integration in the form with each integral,

as indicated in Eq. 7.17.

CHxI0

4. Identify the force-type (shear and moment) and

displacement-type (displacement and slope) boundary

conditions. Use these, together with the shear and
moment closure equations

(7.18)

to evaluate all constants of integration.

V(L�) � 0, M(L�) � 0

E X A M P L E  7 . 7

Use discontinuity functions to solve for the deflection of the beam in

Example Problem 7.3 (see Fig. 1).

Solution We will follow the procedure outlined above. The sketch of

the expected deflection curve may be found as Fig. 2 of Example

Problem 7.3.

Free-body Diagram and Load Equation: This is a statically determinate

problem, so we could immediately use equilibrium to solve for the reac-

tions. However, these will be provided “automatically” by the shear and

moment closure equations as we carry out the steps outlined above in

the procedure. Using the discontinuity functions listed under Cases 2 and

3 in Table 5.2 together with the free-body diagram in Fig. 2, we can write

the following discontinuity-function expression for p(x).

(1)

Integration of the Discontinuity Equations: From the load-deflection

equation, Eq. 7.12,

(2)

Therefore, we can combine Eqs. (1) and (2) and integrate once to get

(3a)

In this case there is an unknown reaction at x � 0, giving a term , so

we do not need an additional constant of integration . ContinuingV(0)HxI0
AyHxI0

� CyHx � LI0
V(x) � (EIy–)¿ � AyHxI0 � w0[ HxI1 � Hx � L/2I1]

(EIy–)– � p(x)

p(x) � AyHxI�1 � w0[ HxI0 � Hx � L/2I0] � CyHx � LI�1

Fig. 1

Fig. 2 A free-body diagram.

y, v(x)

EI = const

w0

B
A

C x

L/2 L/2

x

w0

Ay CyL/2 L/2
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the integrations,

(3b)

Since M(0) � 0, we can immediately eliminate the last term in Eq. (3b)

and proceed to integrate two more times.

(3c)

(3d)

Since (0) � 0, we can immediately eliminate the last term in Eq. (3d).

Boundary Conditions and Closure Conditions: We have one remaining

force-type boundary condition and one remaining displacement-type

boundary condition. They are:

(4a,b)

In addition, we have the shear closure equation

(4c)

(We do not need to use M(L�) � 0 since Eq. (4a) takes care of moment

closure.)

Let us first apply Eq. (4c), the shear closure equation. Combining

Eqs. (3a) and (4c), we get

(5a)

Note that this is just the equilibrium equation 	Fy � 0. Next, let us 

satisfy Eq. (4a) using M(x) from Eq. (3b). We just get the equilibrium

equation (	M)C � 0. That is,

from which

(5b)Ay �
3w0L

8

M(L) � AyL �
w0

2
 cL2 � aL

2
b2 d � 0

V(L�) � Ay � w0(L/2) � Cy � 0

V(L�) � 0

M(L) � 0,  y(L) � 0

y

 � 
Cy

6
 Hx � LI3 � EIy¿(0)HxI1 � EIy(0)HxI0

 EIy �
Ay

6
 HxI3 �

w0

24
[ HxI4 � Hx � L/2I4]

�
Cy

2
 Hx � LI2 � EIy¿(0)HxI0

EIy¿ �
Ay

2
 HxI2 �

w0

6
 [ HxI3 � Hx � L/2I3]

� CyHx � LI1 � M(0)HxI0
M(x) � EIy– � AyHxI1 �

w0

2
[ HxI2 � Hx � L/2I2]
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Beam Deflections: Discontinuity-Function Method

Let us now use discontinuity functions to solve a statically indeterminate, multi-

interval deflection problem. Note how the discontinuity-function approach simplifies

the solution.

MDS7.1 & 7.2

Combining Eqs. (5a) and (5b), we get

(5c)

(Note that only force-type boundary conditions plus the shear and

moment closure conditions are required in order for us to solve for all

reactions, even though this is a two-interval beam.)

Equation (4b) can now be evaluated to obtain the constant y�(0).

Thus,

so,

(5d)

Inserting Eqs. (5b), (5c), and (5d) into Eq. (3d), we get

Ans. (6)

The term is, of course, zero throughout the length of the beam,

so it could be dropped.

Review the Solution By evaluating the Macaulay brackets in Eq. (6)

for interval 1 (0 � x � L/2) and for interval 2 (L/2 � x � L) we see that

the resulting expressions are the same as the expressions obtained in

Example Problem 7.3, namely

y2 �
w0L4

384EI
 c1 � 17 a x

L
b � 24 a x

L
b2

� 8 a x
L
b3 d , (L/2 
 x 
 L)

y1 �
w0L4

384EI
 c�9 a x

L
b � 24 a x

L
b3

� 16 a x
L
b4 d , (0 
 x 
 L/2)

Hx � LI

 �
w0L
48

 Hx � LI3 �
3w0L3

128
 HxI1

 EIy(x) �
w0L
16

 HxI3 �
w0

24
 aHxI4 � Hx � L/2I4b

EIy¿(0) � �
9

384
 w0L3

EIy(L) �
w0L
16

 L3 �
w0

24
 cL4 � aL

2
b4 d � EIy¿(0)L � 0

Cy �
w0L

8
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E X A M P L E  7 . 8

(a) Use discontinuity functions to obtain expressions for the reactions

and for the deflection of the propped cantilever beam in Fig. 1. (b)

Sketch shear-force and bending-moment diagrams for the beam. (c)

Obtain expressions for the displacement in intervals AB and BC.

Solution We will follow the procedure outlined on page 490 for solving

this type of problem.

(a) Determine the reactions at A and C.

Sketch the Deflection Curve: If end B were not restrained against vertical

displacement, the moment M0 would cause the beam to deflect upward

all along its entire length. Therefore, we can expect a deflected shape

similar to the curve sketched in Fig. 2.We need a moment diagram to tell

just how the curvature changes in going from A to C, but the deflection

curve in Fig. 2 should be approximately correct.

Free-body Diagram and Load Equation: Utilizing Cases 1 and 2 of Table

5.2, and referring to the free-body diagram in Fig. 3, we can write the fol-

lowing discontinuity-function expression for the load p(x), including the

unknown reactions.

(1)

Integration of Discontinuity Equations: Integrating Eq. (1), with the aid

of Eq. 7.17a, we get

(2a)

where the Ay term represents the total shear reaction at A and serves as

the constant of integration.The moment terms in Eq. (2a) are underlined

because they are singularity terms, not true shear forces. They are

nonzero only at the locations where the couples MA and M0 are applied.

Continuing with the integrations (as in Eqs. 7.17),

(2b)

(2c)

(2d)

 � 
Cy

6
 Hx � LI3 � EIy¿(0)HxI1 � EIy(0)HxI0

EIy �
MA

2
 HxI2 �

Ay

6
 HxI3 �

M0

2
 Hx � L/2I2

 �
Cy

2
 Hx � LI2 � EIy¿(0)HxI0

EIy¿ � MAHxI1 �
Ay

2
HxI2 � M0Hx � L/2I1

 � CyHx � LI1
 M(x) � EIy– � MAHxI0 � AyHxI1 � M0Hx � L/2I0

 � CyHx � LI0
V(x) � (EIy–)¿ � MAHxI�1

� AyHxI0 � M0Hx � L/2I�1

p(x) � MAHxI�2 � AyHxI�1 � M0Hx � L/2I�2 � CyHx � LI�1

Fig. 1

Fig. 2 The expected deflection curve.

Fig. 3 A free-body diagram.

B

x

y, v(x)

A

x

M0
C

(Support can exert
either a +y or –y

reaction)EI = const

L/2 L/2

x

y, v(x)

xm

δmax

Inflection point
(curvature changes sign)

L/2 L/2

M0MA

L/2L/2

Ay

Cy

A B

C
x

y, v(x)
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Boundary Conditions and Closure Conditions: We have five un-

knowns—Ay, Cy, MA, �(0), and (0)—and we have five equations—

three displacement-type boundary conditions and two closure equations.

The displacement-type boundary conditions are:

(3a,b,c)

and the closure equations are:

(3d,e)

The y�(0) and y(0) terms in Eqs. (2) are zero because of the fixed bound-

ary at A (Eqs. (3a,b)). Since x � a �1 � 0 except at x � a, Eq. (2a) can

be combined with Eq. (3d) to give

(4a)

which is just the force-equilibrium equation, Fy � 0. From Eq. (2b) and

the moment closure equation, Eq. (3e),

(4b)

which is just the moment-equilibrium equation, ( M)C � 0. From Eqs.

(2d) and (3a) through (3c),

(4c)

Finally, combining Eqs. (4a) through (4c) we get

Ans. (a) (5)

In summary, the reactions are shown in Fig. 4.

(b) Sketch V and M diagrams.

Figures 5a,b show sketches of the shear diagram and the moment

diagram, respectively.

Ay �
9

8
 

M0

L
, Cy � �

9

8
 

M0

L
, MA � �

1

8
M0

EIy(L) �
MA

2
L2 �

Ay

6
L3 �

M0

2
(L/2)2 � 0

g

M(L�) � MA � AyL � M0 � 0

g

V(L�) � �Ay � Cy � 0

IH

V(L�) � 0,  M(L�) � 0

y¿(0) � 0, y(0) � 0, y(L) � 0

yy

Fig. 4 The reactions to a couple M0

at x � L/2.

Fig. 5 (a) Shear diagram, (b) moment dia-

gram, and (c) revised deflection curve.

M0

9M0––––
8L

9M0––––
8L

M0–––
8

L/2 L/2

C

BA

M(x)

7M0––––
16

–M0––––
8

–9M0–––––
16

x

x

(Deflection highly
exaggerated)

(b)

(c)

V(x)
9M0––––
8L

L/2 L
x

(a)
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7.6 SLOPE AND DEFLECTION OF BEAMS: 
SUPERPOSITION METHOD

Introduction. In Sections 7.3 through 7.5 we solved for the slope and deflection

of beams by integration, starting with the second-order moment-curvature equation

(Eq. 7.8) or with the fourth-order load-deflection equation (Eq. 7.12). These equa-

tions are linear differential equations, since the deflection function (x) and its

derivatives appear linearly, that is, only to the first power. Therefore, the slope and
deflection of a beam that simultaneously supports several different loads can be
obtained by linear superposition, that is, by addition of the effects of the loads act-
ing separately. For example, the simply supported beam in Fig. 7.11a may be ana-

lyzed by adding the solutions for the two separate loads shown in Figs. 7.11b and

7.11c. Single-load solutions like these are available in Table E.2. Superposition holds

for all quantities: reactions, internal shear and bending moment, slope, deflection,

etc. Example Problems 7.9 and 7.10 illustrate this type of superposition applied to

statically determinate beams.

Superposition can also be applied in another useful way, as illustrated by Fig.

7.12. The effect of the distributed load can be obtained by summing up the effects

of differential loads dP. This may be referred to as differential-load superposition.

y

(c) Obtain expressions for 1(x) and 2(x). The deflection equation in

discontinuity-function form is obtained by substituting Eqs. (5) into 

Eq. (2d). Thus,

(6)

Evaluating Eq. (6) for intervals AB, (0 � x � L/2), and for BC, (L/2 

� x � L), we get

(7a)

Ans. (c)

(7b)

Review the Solution Obviously, the curvature of the beam near x � 0

in our “expected deflection” sketch in Fig. 2 does not agree with the neg-

ative value that we got for MA. Either the sketch is not entirely correct,

or our solution is not correct, or both! The revised deflection curve in 

Fig. 5c, which has been drawn with the aid of the moment diagram in Fig. 5b,

, is certainly feasible, and is similar to our original estimate in

Fig. 2, so our solution is probably correct.

aM �
EI
r
b

y2(x) �
M0L2

16EI
 c3 a x

L
b3

� 9 a x
L
b2

� 8 a x
L
b � 2 d

y1(x) �
M0L2

16EI
 c3 a x

L
b3

� a x
L
b2 d

 �
3

16L
 Hx � LI3 d

 y �
M0

EI
 c� 1

16
 HxI2 �

3

16L
 HxI3 �

1

2
 Hx � L/2I2

yy

v
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In Fig. 7.12 we can say that a differential load dP(�) at location � produces a corre-

sponding differential displacement d (x, �) at every location x along the beam, and

we can determine the total displacement (x) by summing up the effect of the en-

tire distributed load by integrating (with respect to �) over the loaded portion of

the beam. In Example Problem 7.4 we obtained expressions for the slope and de-

flection of a cantilever beam with a single concentrated load applied at an arbitrary

location along the beam. The differential displacement d (x, �) depends on the

magnitude and point of application of the differential load, dP(�), and also on the

point x where d is being evaluated. Example Problem 7.11 illustrates this super-

position procedure.

Finally, the Method of Superposition can be applied to statically indeterminate

problems as well as to statically determinate problems. In this case there will be

constraints on slope and/or displacement (boundary conditions and/or continuity

conditions) that must be satisfied. These compatibility equations are used to solve

for the unknown redundant reactions.6 Example Problems 7.12 through 7.15 illus-

trate the use of the Method of Superposition to solve statically indeterminate beam

problems.

Statically Determinate Beams. Example Problems 7.9 and 7.10 illustrate the

linear superposition of known solutions to solve statically determinate beam–

deflection problems. The following solution procedure is suggested.

y

y

y

y

6We can refer to the superposition procedure described here as a Force-Method procedure because the

expressions that are used in the superposition process are displacements and slopes expressed in terms

of force-type quantities (distributed forces, concentrated forces, and couples). A Displacement-Method
solution procedure is presented in Section 7.7.

FIGURE 7.11 Superposition of two load cases: .y(x) � ya(x) � yb(x) � yc(x)

P

w0

vb(x)

(b)

vc(x)

(c)

P

w0

v(x) = va(x)

x

(a)

= +

SUPERPOSITION PROCEDURE—STATICALLY DETERMINATE BEAMS

1. Carefully study the boundary conditions and the loading

given in the problem statement, and sketch the expected

deflection curve of the beam.

2. Break the given problem down into statically determinate
subproblems. The solution of each subproblem must be

given in Table E.1 (Cantilever Beams) or in Table E.2

(Simply Supported Beams), or must be obtained directly

by integration. Sketch the deflection curve of each of

these subproblems.

3. Write superposition equations for any quantities that are

required by the problem statement, for example, slope,

deflection, etc., using subproblem information referred to

in Step 2 to express slope and displacement in terms of

force-type quantities.

4. Complete the solution (e.g., if requested, determine the

maximum deflection).

FIGURE 7.12 Superposit-

ion of differential loads.

dP = p(ξ)dξ

y, v(x)

x

L
ξ

dξ
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E X A M P L E  7 . 9

Determine the maximum deflection of the uniform, linearly elastic cant-

ilever beam in Fig. 1.

Solution

Sketch the Deflection Curve: Since both loads push the beam downward,

the maximum deflection occurs at x � L, as indicated in the deflection

diagram, Fig. 2.

Select the Subproblems: We only need to examine the cantilever beam

candidate solutions in Table E.1, specifically E.1(3) and E.1(4).

Write the Superposition Equation: We only need an equation for the

total deflection at B. Thus, from Fig. 3,

(1)

where, from Table E.1(4)

(2a)

and, from Table E.1(3)

(2b)

Complete the Solution: From Eqs. (1) and (2),

Ans. (3)

Review the Solution The deflection at the tip of a cantilever beam due

dmax �
21PL3

48EI
� 0.438

PL3

EI

dc �
PL3

3EI

db �
5PL3

48EI

dmax � �y(L)� � db � dc � �yb(L)� � �yc(L)�

Fig. 1 A cantilever beam with two 

concentrated loads.

Fig. 2 The expected deflection curve.

L/2 L/2

CA B

P P

x

v(x)

L/2 L/2

A
δmax ≡ ⎥v(L)⎥

B

L/2

δmax ≡ ⎥va(L)⎥

P

A C B

P

x

va(x)
vb(x)

=
δb ≡ ⎥vb(L)⎥

P

(a) (b) (c)

x +

L

vc(x)

δc ≡ ⎥vc(L)⎥

P

x

Fig. 3 The superposition of subproblems.

to a concentrated tip load is , as given in Eq. (2b). This is a d �
PL3

3EI
frequently used expression, and it is useful in estimating the accuracy of

answers of many problems, including this one. For example, the deflec-

tion of the beam in Fig. 1 should be greater than the deflection of the

same beam without the load at x � L/2, but less than the deflection

would be with both loads at x � L. Equation (3) satisfies this inequality:

PL3

3EI
6

21PL3

48EI
6

2PL3

3EI
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E X A M P L E  7 . 1 0

A uniform simply supported beam similar to the one in Fig. 7.11 is sub-

jected to a uniform distributed load and a concentrated load as shown in

Fig. 1. Consider the particular case: a � L/2, b � 3L/4, P � w0L/2. Use

superposition of solutions from Table E.2 to solve for the maximum

deflection of this beam.

Solution

Sketch the Deflection Curve: The beam will deflect downward through-

out its entire length, as shown in Fig. 2. The loads in Fig. 1 divide the

beam into three intervals: AC, CD, and DB. Certainly, the maximum de-

flection will not occur in interval DB. If P were zero, xm would definitely

fall in interval AC, but, if there were no distributed load on the beam, xm

would fall between C and D. Therefore, as a part of our solution, we will

have to examine an expression for the slope at C to determine whether

the beam slopes upward at C, as shown in Fig. 2, or whether it actually

slopes downward at C.

Select the Subproblems: Obviously, we only need to examine solutions

for simply supported beams. We will use the letter subscripts, like a and

b, to denote the constituent subproblems, and we will use number sub-

scripts, progressing from left to right, to denote the interval of validity.

For example, b1(x) denotes the deflection in interval 1 of the beam

loaded as shown in Fig. 3b, and so on.

Write the Superposition Equations: Since we are to solve for the maxi-

mum deflection, we must first locate the point x � xm where the total

slope vanishes, that is where (xm) � 0.7 From Table E.2(6) and

E.2(4), respectively, we can write down the following superposition

equations, taking proper account of the signs.

(1)

� 
PL2

384EI
c�48 a x

L
b2

� 15 d

 �
�w0 L

3

384EI
c64 a x

L
b3

� 72 a x
L
b2

� 9 d
 y¿a1(x) � y¿b1(x) � y¿c1(x)

y¿ay¿a

y

y, v(x)
EI = const

w0

C D

a
b

L

A
B

P

x

Fig. 1 A simply supported beam 

with two applied loads.

7It is the total deflection that is to be maximized. The maximum deflections for the subproblems cannot

be superimposed because, in general, they do not occur at the same beam location.

xm

δmax
A

C D
B

Fig. 2 The expected deflection curve.

y, va(x)

w0

L/2 L/4

P = P =
w0L
–––
2

w0L
–––
2

x

L/4
1 2 3

(a)

vb(x)

w0

L/2

x

L/2

(b)

vc(x)

3L/4

x

L/4

(c)

= +

Fig. 3 Superposition of deflection subproblems.
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Setting , we get

(2)

If (L/2) � 0, we know that the point of zero slope lies in interval 1.

Therefore, before writing other superposition equations, let us check

the value of . Evaluating Eq. (2) at , we obtain

(3)

Since � 0, the beam must become horizontal in interval 2. So, we

use information from Table E.2(4) and E.2(6) to write expressions for

the slope and deflection in interval 2. The slope is given by

(4a)

The deflection in interval 2 is given by

(4b)

Setting in Eqs. (4), we get

(5a)

(5b)  ya2(x) �
w0L4

768EI
c48 a x

L
b2

� 49 a x
L
b � 2 d

   y¿a2(x) �
w0L3

768EI
 c96 a x

L
b � 49 d

P �
w0L

2

�
PL3

384EI
c16 a x

L
b3

� 15 a x
L
b d

 �
�w0L4

384EI
 c8 a x

L
b3

� 24 a x
L
b2

� 17 a x
L
b � 1 d

 ya2(x) � yb2(x) � yc2(x)

� 
PL2

384EI
 c�48 a x

L
b2

� 15 d
 �

�w0L3

384EI
 c24 a x

L
b2

� 48 a x
L
b2

� 17 d
 y¿a2(x) � y¿b2(x) � y¿c2(x)

aL
2
by¿a1

 y¿a1 aL
2
b �

�w0L3

768EI

 y¿a1 aL
2
b �

�w0L3

768EI
 c128 a1

2
b3

� 192 a1

2
b2

� 33 d

x �
L
2

y¿a1 aL
2
b

y¿a1

y¿a1(x) �
�w0L3

768EI
c128 a x

L
b3

� 192 a x
L
b2

� 33 d

P �
w0L

2
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Complete the Solution: We can now evaluate Eq. (5a) to determine the

value of xm at which (xm) � 0. The maximum deflection occurs at this

point.

(6a)

Then, since xm falls in interval 2,

or

Ans. (6b)

Review the Solution Since we have a total load of w0L on the beam,

half of which is distributed, a good check on our answer in Eq. (6b)

would be to determine the midspan deflection of a simply supported

beam with a uniform distributed load over its total length. From Table

E.2(5) we get

Thus, our answer in Eq. (6b) appears to be correct, and we will, therefore,

assume that we have made no “error” [except that we originally mis-

guessed the location of the point of maximum deflection (Fig. 2)].

dmax �
5w0L4

384EI
� 1.302(10�2) 

w0L4

EI

dmax �
w0L4

768EI
(10.51) � 1.368(10�2) 

w0L4

EI

dmax � �ya2(xm)� �
w0L4

768EI
` 48 a49

96
b2

� 49 a49

96
b � 2 `

y¿a2(xm) � 0 S xm �
49

96
L

y¿a2

Beam Deflections: Superposition Method

Next, let us illustrate the differential-load superposition approach introduced

earlier in Fig. 7.12.

Differential-Load Superposition. As indicated earlier in the discussion of 

Fig. 7.12, we can superpose differential-load solutions if we have a solution for the

desired quantity due to a concentrated load at an arbitrary position on the beam.

The steps that may be used are as follows.

MDS7.3

PROCEDURE FOR DIFFERENTIAL-LOAD SUPERPOSITION

1. Sketch the load diagram and the deflection curve.

2. In the tables of slopes and deflections of uniform beams,

Table E.1 or Table E.2, identify the solution that will

provide the desired quantity due to a concentrated force

at an arbitrary location on the beam.

3. Form an expression for the distributed load as a function

of position along the beam, that is, form an expression for

p(x).

4. Use an integral to sum up the effect of the differential

load dP, as indicated in Fig. 7.12.

Example Problem 7.11 illustrates the above procedure.
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E X A M P L E  7 . 11

Use the differential-load superposition approach to determine expres-

sions for the deflection and slope at the tip of a uniform, linearly elastic

cantilever beam with triangular load, as illustrated in Fig. 1.

Solution

Sketch the Deflection Curve: The deflection curve is shown in Fig. 2. x
B

A

p(x)

EI = const

y, v(x)

p0

x
L

θmax = θB ≡ v′(L)

δmax = vB ≡ v(L)

L
A B

Fig. 1 A cantilever beam with triangu-

lar loading.

x
B

A

p(x)
p0

x
L

Fig. 3 Load diagram.

dv′(L, x)

dv(L, x)

dP

x

L

Fig. 4 Deflection due to differential

load dP.

Fig. 2 The expected deflection curve.

Form the Load Expression: Since we only need �(L) and (L) and not

functions of position like �(x) and (x), we do not need to use a dummy

variable, like the variable � (Greek xi) shown in Fig. 7.12. From similar

triangles in Fig. 3, we get

or

(1)

Form the Deflection Expression and Integrate: We can use the results in

Eqs. (10c) and (10d) of Example Problem 7.4. These are also given in

Table E.1(4), and illustrated in Fig. 4.

(2a)

(2b)

In Fig. 4 the increment of load is dP � p(x)dx, and since the load extends

from x � 0 to x � L, we have the integrals

(3a)

(3b) y(L) �
1

6EI �
L

0

(3Lx2 � x3)[p(x)dx ]

 y¿(L) �
1

2EI �
L

0

x2[p(x)dx ]

dy(L, x) �
dP
6EI

 (3Lx2 � x3)

dy¿(L, x) �
dPx2

2EI

p(x) � p0 a1 �
x
L
b

p(x)

L � x
�

p0

L

yy

yy
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or, combining Eqs. (1) and (3),

(4a)

(4b)

Finally,

Ans. (5a, b)

Review the Solution We can obviously check the above answer by

referring to Table E.1(8). But, if the table did not have this particular trian-

gular load, it would undoubtedly have the solution for a uniformly distrib-

uted load on a cantilever beam [Table E.1(5)].We could expect the answer

in Eq. (5b) to be somewhat less than half the deflection at the tip

of a uniformly loaded cantilever beam, namely . In fact, our 

answer is about one-fourth of this value, which seems reasonable.

d �
p0L4

8EI

y¿(L) �
P0L3

24EI
,  y(L) �

P0L4

30EI

 y(L) �
P0

6EIL �
L

0

(3L2x2 � 4Lx3 � x4)dx

 y¿(L) �
P0

2EIL �
L

0

(x2L � x3)dx

v(x) ≡ va(x)

A

B

(a) Original
       problem.

(b) Applied load on
         released structure.

(c) Redundant
  reaction.

x

vb(x)

A

B=
(δB)b

vc(x)

A B

+ (δB)c

RB

RB

RA

MA

Statically Indeterminate Beams. As noted earlier in this section, if a beam, or

a system of beams, is statically indeterminate, there are more boundary conditions

or other constraints than the minimum that is required to prevent collapse of the

beam or beam system. For each additional constraint, there will be a redundant force
or moment that can be determined by satisfying the constraint equation(s).The pro-

cedure for analyzing statically indeterminate beams by superposition is very similar to

the procedure used in Section 3.5 to solve statically indeterminate axial–deformation

problems and in Section 4.6 to solve statically indeterminate torsion problems.

Consider the propped cantilever beam in Fig. 7.13a.

• The first step is to determine the degree of statical indeterminacy of the

beam and select the redundant(s) to be used. That is, determine how many

constraints must be released to make the beam statically determinate, and

decide which specific constraints to release. In Fig. 7.13b the support at B has

been removed to form the released structure, and in Fig. 7.13c the correspon-

ding redundant force is the reaction that is labeled RB.

FIGURE 7.13 The superposition of cantilever-beam subproblems.
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503
Slope and Deflection of

Beams: Superposition Method

• The next step is to obtain the appropriate force-deformation equations for

each statically determinate subproblem. This can be accomplished either by

using one of the integration methods of Section 7.3 or 7.5, or by consulting

Table E.1 (cantilever beam solutions) or Table E.2 (simply supported beam

solutions). Each subproblem solution satisfies equilibrium and is based on

linearly elastic material behavior. Therefore, any superposition of these sub-

problem solutions will also satisfy equilibrium and will incorporate linearly

elastic behavior.

• Finally, the constraints that were released must be reinstated. This involves

writing compatibility equations in terms of the unknown redundants and

solving them for the redundants.

• Once the redundants have been determined, free-body diagrams and equi-

librium equations can be used to determine other reactions. Other quantities

that are required can then be obtained by superposition of the subproblem

solutions.

The above steps are summarized in the following superposition procedure.8

8This is a Force-Method procedure, because the primary unknowns are forces and/or moments.

In many cases there are alternative ways to construct a superposition solution

for a statically indeterminate problem. That is, there may be alternative ways to

select the redundant(s) to be used, so long as the required solutions are available

(e.g., in Appendix E). The next two example problems illustrate alternative ways

to select the redundant and solve a statically indeterminate propped-cantilever-

beam problem. In planning a superposition solution, you should mentally explore

alternatives and try to solve the problem in the most efficient manner (i.e., Plan

the Solution).

SUPERPOSITION PROCEDURE—STATICALLY INDETERMINATE BEAMS

1. Carefully study the boundary conditions and the loading

given in the problem statement, and sketch the expected

deflection curve of the beam.

2. Determine the degree of statical indeterminacy, NR, of

the beam (or system), and select and label NR redundant
forces and/or moments.

3. Break the given problem down into statically determi-
nate subproblems, one for each load on the beam and

one for each of the selected redundants. The solution

of each selected subproblem must be given in Table E.1

(Cantilever Beams) or in Table E.2 (Simply Supported

Beams), or must be obtained directly by integration.

Sketch the deflection curve of each of these

subproblems.

4. Write compatibility equations, one equation for the de-

flection (slope) corresponding to each redundant force

(moment). These express the boundary conditions and/or

continuity conditions that are not automatically satisfied

by the constituent subproblems.

5. Write force-deformation equations that relate the deflec-

tion (slope) at each redundant to each load and to each

redundant force (moment).

6. Substitute these force-deformation equations into the

compatibility equations, and solve for the unknown 

redundants.

7. Write superposition equations for any additional quanti-

ties that are required by the problem statement, for ex-

ample, slope, deflection, etc., using information from the

tables to express slope and displacement in terms of

force-type quantities.

8. Complete the solution (e.g., if requested, determine the

maximum deflection).
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E X A M P L E  7 . 1 2

Solve for the reactions on the beam shown in Fig. 1. Use information on

cantilever beams from Table E.1.

Solution

Sketch the Deflection Curve: The expected deflection curve is shown in

Fig. 2.

Select the Subproblems: We are to select subproblems from the can-

tilever-beam table, Table E.1. This means that By is to be considered the

redundant reaction. The constituent subproblems are shown in Fig. 3.

Write the Superposition Equation: The reaction By is obtained by first

writing a compatibility equation for deflection at support B.

(1)

Write the Subproblem Force-Deformation Equations: From entries

E.1(6) and E.1(3) in Appendix E, we get the following equations for the

deflection at B due to the distributed load, and the deflection at B due

to the redundant reaction, respectively:

(2a, b)

Write the Compatibility Equation in Terms of Forces: We can eliminate

the �’s by substituting Eqs. (2a,b) into Eq. (1), which gives the following

compatibility equation written in terms of forces:

(1�)� 

7w0 
L4

384EI
�

By 
L3

3EI
� 0

 (dB)c �
ByL3

3EI

 (dB)b �
7w0 

L4

384EI

y(L) � �(dB)b � (dB)c � 0 

C
x

y, v(x)

A
MA

Ay
w0

EI = const

B

By
L/2 L/2

Fig. 1 A propped-cantilever beam.

x

v(x)

A B

C

v(x) ≡ va(x)

A

w0

B

(a) Original
       problem.

(b) Applied load on
released structure.
[Table E.1(6)]

(c) Redundant
reaction.
[Table E.1(3)]

L/2 L/2

C
x

vb(x)

A

w0

B=

L/2 L/2

vc(x)

A B

+ (δB)c

By

(δB)b

Fig. 2 The expected deflection curve.

Fig. 3 The superposition of cantilever-beam subproblems.
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Fig. 4 A free-body diagram.

Fig. 5 Summary of reactions on the

propped-cantilever beam.

E X A M P L E  7 . 1 3

Solve for the moment at A on the propped-cantilever beam in Example

Problem 7.12. This time, use information for simply supported beams

from Table E.2.

Solution Figures 1 and 2 from Example Problem 7.12 will not be re-

peated here.

Select the Subproblems: If we select subproblems from the table of

simply-supported-beam displacement functions, the moment MA be-

comes the redundant reaction. The constituent subproblems are shown

in Fig. 1.

Write the Superposition Equation: The reaction MA is obtained by first

writing a compatibility equation for the slope (rotation) at A.

(1)

Write the Subproblem Force-Deformation Equations: From entries

E.2(6) and E.2(1) in Appendix E, we get the following equations for the

slope at A due to the distributed load acting on the released beam, and

Compatibilityy¿(0) � �(uA)b � (uA)c � 0

Finally, we can solve Eq.(1�) for the redundant reaction By.

Ans. (3)

Complete the Problem: To solve for the reactions at A we need the free-

body diagram (Fig. 4) and equilibrium equations.

Therefore, the shear-force and bending-moment reactions at A are

Ans. (4)

The reactions are shown in Fig. 5.

Review the Solution If the support at B were to be removed, the reac-

tions at A would be Ay � w0L/2, MA � w0L
2/8. The presence of a “prop”

at B should reduce these values. The amount of reduction exhibited by

our answers in Eqs. (4) seems reasonable.

Ay � a 57

128
b w0L,  MA � a 9

128
b w0L2

MA � �
7w0L2

128
�

w0L2

8
� a 9

128
b w0L2aaMb

A
� 0:

Ay �
w0L

2
�

7w0L
128

� a 57

128
b w0La Fy � 0:

By � a 7

128
b  w0L

505

x

y

AMA

Ay
w0

w0L
–––
2

L––
4

B

L
7–––

128 w0L

L/2

w0

L/2

9–––
128 w0L2

57–––
128 w0L

7–––
128 w0L
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The next example problem illustrates how to solve statically indeterminate

beam problems that have more than one redundant.

Fig. 1 The superposition of simply-supported-beam subproblems.

Subproblem
Force-
Deformation
Behavior

the slope at A due to the redundant moment reaction, respectively:

(2a,b)

(The word “force” means a force-type quantity, including a concentrated

force, a distributed force, or a moment.)

Write the Compatibility Equation in Terms of Forces: We can eliminate

the �’s by substituting Eqs. (2a,b) into Eq. (1), which gives the following

compatibility equation written in terms of forces:

(1�)

Finally, we can solve Eq. (1�) for the redundant moment reaction MA.

Ans.

Review the Solution This is the same expression for MA that we got in

Example Problem 7.12. Other reactions could be obtained from a free-

body diagram like Fig. 4 in Example Problem 7.12.

MA �
9w0L2

128

� 
3w0L3

128EI
�

MAL
3EI

� 0

 (uA)c �
MAL
3EI

 (uA)b �
3w0L3

128EI

A

=

+

B
C

w0

A
C

(θA)b

w0

MA

(a) Original
      problem.

(b) Applied load on
     released structure.
     [Table E.2(6)]

A(c) Redundant reaction.
     [Table E.2(1)]

B

B

(θA)c
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E X A M P L E  7 . 1 4

Fig. 1 A fixed-fixed uniform beam.

Fig. 2 The expected deflection curve 

(for a � b).

Fig. 3 Statically indeterminate superposition involving two

redundant reactions.

A concentrated load P is applied to a uniform fixed-fixed beam, as illus-

trated in Fig. 1. Determine the reactions RB and MB.

Solution

Sketch the Deflection Curve: The deflection will be upward, and the

slope and deflection are zero at A and B, as indicated in the deflection

diagram (Fig. 2).

Select the Subproblems: The results of Example Problem 7.4 [see also

Table E.1(4)] can be used, along with the deflection and slope informa-

tion of Example Problem 7.1 [see also Table E.1(3) and E.1(1)]. These

statically determinate cantilever-beam subproblems are shown in Fig. 3.

Write the Superposition Equations: The displacement constraint and the

slope constraint must be enforced at end B.The two relevant compatibility
equations are

(1a)

(1b)y¿B � y¿(L) � (uB)b � (uB)c � (uB)d � 0

yB � y(L) � (dB)b � (dB)c � (dB)d � 0

b
RA

MA MB

RB

A C EI = const B

P

a

L

(a) Original
      problem.

(b) Applied load on
     a released structure.
     [Table E.1(4)]

(c) Redundant force.
     [Table E.1(3)]

b

A BC

=

P
v(x) ≡ va(x)

a

x

b

A B

C

+

P

a

(δB)b

(θB)b

A B
RB

MB

+

(δB)c

(θB)c

(d) Redundant moment.
     [Table E.1(1)] A B

(δB)d

(θB)d

b

A B
C

v(x)

a

x
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The statically indeterminate problems in Example Problems 7.12 through 7.14

had displacement and slope constraints of the type (L) � 0, �(0) � 0, and so on.

That is, the displacement and slope were zero at certain points along the beam.

Figure 7.14 illustrates two situations where the constraint is provided by another

flexible structure. The next problem illustrates the solution of statically indetermi-

nate problems of this type.

yy

With subproblem force-deformation information from Table E.1, these

two compatibility equations become

(2a)

(2b)

Solving Eqs. (2) simultaneously, we get the following expressions for the

two redundant reactions:

(3a)

Ans.

(3b)

Review the Solution The above expressions for RB and MB have the

proper dimensions, F and F 	 L, respectively. If Eqs. (3) are evaluated for

a � 0, we get RB � MB � 0, which makes sense. If we evaluate Eqs. (3)

at a � L, we get RB � P, MB � 0, which also makes sense. Finally, if we

evaluate Eq. (3a) at a � L/2, we get RB � P/2, which is the correct an-

swer. It appears that our solution is correct.

A similar problem, but for a nonuniform beam, is solved by the

Displacement Method in Example Problem 7.16.

 MB � P a a
L
b2 

(L � a)

 RB � 3P a a
L
b2

� 2P a a
L
b3

 
Pa2

2EI
�

RBL2

2EI
�

MBL
EI

� 0

 
Pa3

6EI
 a3L

a
� 1b �

RBL3

3EI
�

MBL2

2EI
� 0

E X A M P L E  7 . 1 5

As shown in Fig. 1a, a steel beam, AB, is designed to be cantilevered

from a rigid wall at A and supported by a steel hanger rod, BC, that is

pinned to a rigid support at C. The beam is a W10 
 12, and the rod 

(a)  The redundant support supplied
       by a second beam.

(b)  The redundant support supplied
       by an axial-deformation member.

FIGURE 7.14 Beams with flexible supports.
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diameter is d � in. Use Esteel � 30 
 106 psi. (a) If the rod is manufac-

tured in. too short, how much stress will be induced in the rod by

stretching it, inserting the pin at B, and then releasing the external forces

required to mate the parts? (b) How much additional stress is induced in

the rod by a uniformly distributed load of 100 lb/ft subsequently applied

to the beam, as shown in Fig. 1b? What is the final displacement of B?

Plan the Solution The rod BC is an axial-deflection member that can

be treated as the members in Section 3.7 were treated. In Part (a) the

beam will be loaded only by the force of the rod at B. This is a “misfit”

problem similar to the ones in Section 3.7. For Part (b) we will have to

add the distributed load by superposing another subproblem for the

beam. We can follow the same steps that were used in Example 7.12,

except for adding the rod at B. We should find that the rod is in tension

in Part (a), and that the tension becomes greater in Part (b).

Solution (a) Determine the initial stress induced in the rod when the rod-
beam system is assembled. Let us follow the same steps used previously

in solving statically indeterminate problems by superposition (Force

Method).

Sketch the Deflection Curve: As illustrated in Fig. 2, the rod will pull the

beam upward, and the beam will stretch the rod. Note:The short distance

between B and the end of the beam is neglected, and the dimension B

is treated as the deflection at the end of the beam.

Select the Subproblems: Here we can choose a cantilever beam sub-

problem from Table E.1(3), and we also have an axial-deformation (rod)

subproblem. Let T0 be the “initial force” in the rod, that is, the force in

the rod in Fig. 3. Subscript 1 refers to the beam AB, and subscript 2 refers

to the rod BC.

Write the Superposition Equation: For the rod and beam to be con-

nected together by a pin at B, we have the following deformation-
compatibility equation. (The terminology is defined in Figs. 2 and 3.)

(1)yB � y (L1) � (dB)1 �
1

16
 in. � (dB)2

y

1
16

5
8

Fig. 1 A beam-rod system.

Fig. 2 The deflection curve for Part (a).

Fig. 3 The subproblems for Part (a).

C

L2 = 8 ft

L1 = 10 ft

BA

C

(a) The beam and rod before assembly.

(1)
W10x12 in.1––

16

in.d = 5–
8

B

100 lb/ft

A

(b) The beam-rod system with
      uniform load.

C

8 ft

A

B

v(x)

vB
x

L2 = 8 ft

L1

T0 
A

B B

C

T0 
v(x)

(1)

(a) The beam
      subproblem.

(b) The rod
      subproblem.

(2)

(δB)2

(δB)1
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From Table E.1(3) we get the following force-deformation equation for

the released cantilever-beam subproblem:

(2a)

and, from Eq. 3.13, the force-deformation equation for the rod is

(2b)

Complete Part (a): Combining Eqs. (1) and (2), we get the following

compatibility equation in terms of forces:

(3a)

or

(3b)

Therefore, the “initial force” in the rod is

(4)

so the “initial stress” in the rod will be

Ans. (a) (5)

(b) Determine the effects of adding the distributed load. We can follow

the same steps used in Part (a), adding a distributed-load subproblem for

the beam.

Sketch the Deflection Curve: At this point, we do not know whether the

beam will still be deflected upward, as it was in Part (a), or whether the

distributed load will cause the final deflection at B to be downward. In

Fig. 4 we have assumed that the beam deflects upward.

s0 �
T0

A2

�
170.2 lb

p( 5
16 in.)2

� 555 psi

T0 � 170.2 lb

T0 c (120 in.)3

3(30 
 106 psi)(53.8 in4)
�

96 in.

p( 5
16 in.)2(30 
 106 psi)

d �
1

16
 in.

T0L3
1

3E1I1

�
T0L2

A2E2

�
1

16
 in.

(dB)2 � e2 �  a L
AE
b

2 

T0

(dB)1 � a L3

3EI
b

1 

T0

510

Fig. 4 The deflection curve for Part (b).

C

A
L1

B

v(x)

vB v(L1)≡
x
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Select the Subproblems: To the two subproblems in Fig. 3 we need to add

a beam with distributed load. Let T (without subscript) be the tension in

the rod in Part (b). The subproblems are shown in Fig. 5.

Write the Superposition Equations: Again, for the rod and the beam to

be connected by a pin at B, we must satisfy the compatibility equation

(6)

From Table E.1(3) and E.1(5) we get

(7a)

(7b)

and from Eq. 3.13 we get

(7c)

Complete Part (b): Combining Eqs. (6) and (7) we get the following

compatibility equation in terms of forces:

(8a)
TL3

1

3E1I1

�
w0L4

1

8E1I1

�
1

16
 in. �

TL2

A2E2

(dB)2 � e2 �
TL2

A2E2

 (dB)1b �
w0L4

1

8E1I1

 (dB)1a �
TL3

1

3E1I1

yB � y (L1) � (dB)1a � (dB)1b �
1

16
 in. � (dB)2

Fig. 5 The beam subproblems (a, b) and the rod subproblem (c).

v(x)

L2 = 8 ft

L1 = 10 ft

w0 = 100 lb/ ft

T
A

B B

C

T

(a)

(c)x

(δB)2

(δB)1a

(δB)1b

(b)
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or

(8b)

Therefore,

(9)

so the stress in rod BC is

Ans. (b) (10)

We can use Eq. (6) to evaluate the tip deflection.

(11)

Therefore,

Ans.(b)

Review the Solution If all of the distributed load (i.e., 1000 lb) were to

be applied directly to the rod, it would elongate

which is much less than 1/16-in. (� 0.0625 in.). Therefore, the rod is so

stiff that it acts almost like a rigid support. By comparison, if the full 1000 lb

were to be hung from the cantilever beam at B, the deflection of the tip

of the beam would be

Thus, we can see that this beam is very flexible in comparison with the

rod. As we can see by examining the terms on the left-hand side of Eq.

(3b), most of the 1/16-in. gap is closed by deflection of the beam, not by

stretching of the rod.

d �
PL3

3EI
�

(1000  lb)(120 in.)3

3(30 
 106 psi)(53.8 in4)
� 0.357 in.

e � aPL
AE
b

2

�
(1000 lb)(96 in.)

p( 5
16 in.)2(30 
 106 psi)

 � 0.01043 in.

yB �
1

16
 in. �

(535 lb)(96 in.)

p( 5
16 in.)2(30 
 106 psi)

� 0.0569 in.

yB �
1

16
 in. � (dB)2 �

1

16
 in. �

TL2

A2E2

s � 1742 psi

s �
T
A2

�
535 lb

p( 5
16 in.)2

� 1742 psi

T � 535 lb

�
1

16
 in . � c (100 lb/bf)(10 ft)(120 in.)3

8(30 
 106 psi)(53.8 in4)
d

T c (120 in.)3

3(30 
 106 psi)(53.8 in4)
�

96 in.

p( 5
16 in.)2(30 
 106 psi)

d
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*7.7 SLOPE AND DEFLECTION OF BEAMS: 
DISPLACEMENT METHOD

As beam-deflection problems get more difficult, solution by the Method of
Superposition, as described in Section 7.6, may get quite lengthy and tedious, and a

solution by the Displacement Method is preferable. Stress-analysis and structural-

analysis computer programs are generally based on the Displacement Method.

In the Force-Method solutions of the previous section, as with Force-Method

solutions in Chapters 3 and 4, deflections (and slopes) were expressed in terms of
forces, and the deflection (and slope) expressions were superposed. In the case of

statically indeterminate structures, displacement (and slope) constraint equations

were solved to obtain the redundants. In this section you will discover that, when the

Displacement Method is applied to beams, nodal equilibrium equations are 
expressed in terms of displacements, just as was done in Chapters 3 and 4 for axial-

deformation and torsion problems, respectively.

Force-Deformation Equations for a Uniform Bernoulli-Euler Beam
Element with Linearly Varying Distributed Load. The first step in formu-

lating a Displacement-Method solution procedure for transversely loaded beams is

to establish the force-deformation relations for a single beam element (Fig. 7.15).9

Unlike the force-deformation equation for a uniform axial-deformation ele-

ment, with its single axial force F (Eqs. 3.14 and 3.15), or the torque-twist equation

for a uniform torsion element with its single torque T (Eqs. 4.20 and 4.21), the

shear forces Vi and Vj acting at the ends of the beam element in Fig. 7.15 are not

necessarily equal, and neither are the moments Mi and Mj. Therefore, it is first 

necessary to give distinct “names” to the two ends. We will use the names “i” and 

“j” to distinguish, respectively, the left end of the beam element and its right end,

as indicated in Fig. 7.15a. The sign convention adopted for Vi, Mi, Vj, and Mj is that

9This parallels Section 3.4 for the uniform axial-deformation element and Section 4.5 for a uniform

element subjected to pure torsion.

FIGURE 7.15 A uniform beam element with transverse loading.

y

y

x

(a) The distributed load and the stress resultants V and M.

EI = const

(b) The deflection curve v(x).

v(x)

x

δj
δi

θi

θj

MjMi

VjVi

pi pj

x
ji

L
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positive stress resultants act in the same directions as the corresponding displace-

ments �i, �i, �j, and �j,
10 Figures 7.15a and b illustrate these sign conventions.

Combining the force-deformation results in Eqs. 7.16 and the fixed-end reac-

tions given in Eqs. (8) of Example 7.6, we can write the following force-deformation
relations for the uniform Bernoulli-Euler beam element in Fig. 7.15:

(7.19)

The � and � terms in Eqs. 7.19 form the force-deformation relations of a uniform

beam with only nodal loads, that is, with no distributed loading.11 The pi and pj terms

in Eqs. 7.19 are called fixed-end forces. As in Example 7.6, these are the shear and

moment reactions of a uniform beam whose ends are fixed (i.e., y(0) � y�(0) � y(L) �
y�(L) � 0).

The deflection curve y(x) along the beam can be expressed in terms of the end

displacements (�i and �j), the end slopes (�i and �j), and the distributed-load 

amplitudes (pi and pj) by the following equation:12

(7.20)

 � 
pjL

4

120EI
 c2 a x

L
b2

� 3 a x
L
b3

� a x
L
b5 d

 � 
piL

4

120EI
 c2 a1 �

x
L
b2

� 3 a1 �
x
L
b3

� a1 �
x
L
b5 d

 �dj c3 a x
L
b2

� 2 a x
L
b3 d � Luj c� a x

L
b2

� a x
L
b3 d

 y(x) � di c1 � 3 a x
L
b2

� 2 a x
L
b3 d � Lui c a x

L
b2

� 2 a x
L
b2

� a x
L
b3 d

 Mj �
EI

L2
 (6di � 2Lui � 6dj � 4Luj) �

piL
2

30
�

pjL
2

20

 Vj �
EI

L3
 (�12di � 6Lui � 12dj � 6Luj) �

3piL

20
�

7pjL

20

 Mi �
EI

L2
 (6di � 4Lui � 6dj � 2Luj) �

piL
2

20
�

pjL
2

30

 Vi �
EI

L3
 (12di � 6Lui � 12dj � 6Luj) �

7piL

20
�

3pjL

20

514
Deflection of Beams

10The sign conventions for Vj and Mi are opposite to the shear and moment sign conventions in Chapter

6. That is, V(L) � �Vj, and M(0) � �Mi. For small displacements it is permissible to equate the slope

y�(x) with the rotation angle �. Thus, �i � y�(0) and �j � y�(L).
11See Homework Problems 7.7-16 and 7.7-17.
12See Homework Problem 7.7-17 for a derivation of the �i term in Eq. 7.20.

Force-
Deformation
Equation
with 
Fixed-End
Forces

SUPERPOSITION PROCEDURE—DISPLACEMENT METHOD

1. Sketch the expected deflection curve.

2. Consider the beam to consist of uniform elements con-

nected together by nodes, or joints. Sketch each element

and each node, and label the forces and couples that act

on each.

3. Element Force-Deformation Relations: Express the shear

force and bending moment at the element-to-node inter-

face in terms of the nodal transverse displacement and

slope. These are given by Eqs. 7.19.

(continued on p. 515)
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4. Fixed-End Forces: If there are distributed loads on an 

element, include the appropriate fixed-end force terms

from Eqs. 7.19. (Additional fixed-end forces are given in

Table E.3.)

5. Nodal Equilibrium: Write force and moment equilibrium

equations for each node. Include the external concen-

trated force and/or couple (if either acts on the node) and

the shear and moment from the adjoining beam elements

(from Steps 3 and 4).

6. Geometry of Deformation; Compatibility: Where an ele-

ment attaches to a node, express all element end-displace-

ment and slope quantities in terms of the transverse 

displacement and slope of the node itself.

7. Solve the equilibrium equations for the unknown nodal

displacements and slopes.

8. Solve for any other required quantities (reactions, deflec-

tion-curve formula, etc).

E X A M P L E  7 . 1 6

A fixed-fixed beam has a stepped cross section, as indicated in Fig. 1. A

concentrated load P is applied at the point where the cross-sectional

properties change from (EI)1 to (EI)2. Using the Displacement Method,
(a) determine the displacement and slope at node C, and (b) determine

the reactions RB and MB.

Solution (a) Determine the displacement and slope at node C.

Sketch the Deflection Curve: The beam will obviously deflect upward

from end A to end B. The point of maximum deflection may be to the

left of C or to the right of C, depending on the EI values and the L values.

In Fig. 2 we assume that the maximum deflection occurs to the right of

C, so �C > 0.

Separate the Nodes and Elements: Since the key step in a Displacement-

Method solution is writing nodal equilibrium equations in terms of the

displacement and slope at each node and the external loads applied to

the node, let us treat the beam as two elements, (1) and (2), connected

together by a node at C, as indicated in Fig. 3.

Fig. 1 A stepped, fixed-fixed beam.

Fig. 3 The elements and connecting node.

Fig. 2 The expected deflection curve.

L1

MBMA (EI)1 (EI)2

RB

P

C BA

L2
RA

L1

δC ≡ v(L1)

v(x)

C

θC

B
xA

L2

L1

MBMA

(2)

(1)

(1)

(a)

(c) (d)(b)

(2)

RB

P

C BA

L2

RA

P

δC

(δj)1 (δi)2

(θj)1
(θi)2

(Vj)1 (Vj)1 (Vi)2 (Vi)2

(Mj)1

θC

A

(Mi)2
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Next we directly apply the three fundamentals of deformable-body

mechanics—equilibrium, force-deformation behavior, and geometry of
deformation.

Nodal Equilibrium: Write force and moment equilibrium equations for

the node at C, where the transverse displacement and slope are unknown.

The free-body diagram of node C is shown in Fig. 3c.

(1a)

(1b)

Beam Element Force-Deformation Behavior: Here we want the force-

type quantities, that is V and M, to be expressed in terms of displacement-

type quantities, that is � and �. For this, we can use Eq. 7.19 (or see 

Table E.3). From Eqs. 7.19 we get

(2a)

(2b)

(2c)

(2d)

Geometry of Deformation: The � and � quantities in Eqs. (2) and in 

Figs. 3b and 3d can be related to the displacement and slope at node C,

shown in Fig. 3a. Thus,

(3a)

(3b)

Combining Eqs. (1) through (3) in the order (3) (2) (1), we get the

equilibrium equations expressed in terms of displacement and slope at
node C.

(4a)

(4b)

Complete Part (a): Equations (4) are two simultaneous, algebraic equa-

tions for the unknown joint displacement �C and slope �C. This is called

�6 c aEI

L2
b

1

� aEI

L2
b

2

d  dC � 4 c aEI
L
b

1

� aEI
L
b

2

d  uC � 0

12 c aEI

L3
b

1

� aEI

L3
b

2

d  dC � 6 c aEI

L2
b

1

� aEI

L2
b

2

d  uC � P

SS

(dj)1 � (di)2 � dC

(uj)1 � (ui)2 � uC

 (Mi)2 � aEI

L2
b

2

[6(di)2 � 4L2(ui)2]

 (Vi)2 � aEI

L3
b

2

[12(di)2 � 6L2(ui)2]

 (Mj)1 � aEI

L2
b

1

[�6(dj)1 � 4L1(uj)1]

 (Vj)1 � aEI

L3
b

1

[12(dj)1 � 6L1(uj)1]

(Mj)1 � (Mi)2 � 0aaMb
C

� 0:

(Vj)1 � (Vi)2 � Pa Fy � 0:
Equilibrium

Force-
Deformation
Behavior

Geometry of
Deformation
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If all of the loads on a beam appear as concentrated loads (forces and/or cou-

ples) at nodes (joints), the problem is called a nodal-load problem. The preceding

example problem is a typical nodal-load beam problem solved by the Displace-

ment Method.

The next example illustrates how distributed loads are treated in a Displace-

ment-Method solution. A key ingredient of a distributed-load solution is the inclu-

sion of appropriate fixed-end forces for each individual element (Step 4 in the 

procedure on p. 515).

a Displacement-Method solution because the unknowns in Eqs. (4) are

displacements. Given numerical values of P, (EI)i, and Li, we could eas-

ily solve for numerical values of these joint displacements.

(b) Solve for the reactions RB and MB. We can use Eqs. 7.19(c) and

7.19(d) to solve for RB and MB using the nodal displacements obtained

from the solution of Eqs. (4). Thus,

(5a)

(5b)

Review the Solution As one check to verify that the above solutions

will lead to correct answers for �C, �C, RB, and MB, let us take the special

case of the symmetrical problem, with EI � const, and L1 � L2 � L/2.

This should lead to the result �C � 0. Substituting the above values into

Eq. (4b) we get

which is the result that we would expect.

16 aEI
L
b uC � 0 S uC � 0

 MB � (Mj)2 � aEI

L2
b

2

 (6dC � 2L2uC)

 RB � �(Vj)2 � �aEI

L3
b

2 

(�12dC � 6L2uC)

E X A M P L E  7 . 1 7

The two-span continuous beam in Fig. 1 has a uniform distributed load

over span AB. Use the Dsplacement Method: (a) to determine the un-

known slopes �B and �C, and (b) to determine the reactions RA and MA

at the fixed end A.

Plan the Solution We need to write moment equilibrium equations for

the joints at B and C, where the beam is free to rotate. Equations 7.19

can be used to relate element end moments to the corresponding ele-

ment end rotations and to the fixed-end moment due to the distributed

load on element (1).

Solution (a) Determine the nodal slopes (rotations) �B and �C.

517

Fig. 1 A two-span continuous beam

with uniform distributed loading over

span AB.

(2)

(1)
(EI)1 = 2EI (EI)2 = EI

CB
A

MA
RA

RCRB

w0

θB θC

L L
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Sketch the Deflection Curve: The angles �B and �C are taken positive

counterclockwise, as illustrated in Fig. 1. Therefore, the magnitude of the

expected clockwise angle at node C is labeled |�C| in Fig. 2.

Show the Elements and Nodes Separately: All of the reactions, shear

forces, and bending moments are shown on the nodes and elements in

Fig. 3. As in Example Problem 7.16, we will apply equilibrium, force-

deformation behavior, and geometry of deformation to complete our

solution.

Nodal Equilibrium: Referring to the free-body diagrams of nodes B and

C, we can write the following two moment-equilibrium equations; these

correspond to the unknown rotations at B and C.

(1a)

(1b)

Element Force-Deformation Equations with Fixed-End Forces: Equation

7.19(d) is used to express (Mj)1 in terms of the unknown slope (�j)1 and

the fixed-end moment due to the uniform distributed load (pi)1 �
(pj)1 � �w0. Then Eqs. 7.19(b) and (d) are used to write expressions for

the moments (Mi)2 and (Mj)2, respectively. Observe that (EI)1 � 2EI and

that L1 � L2 � L.

(2a)

(2b)

(2c)(Mj)2 �
2EI
L

[(ui)2 � 2(uj)2]

(Mi)2 �
2EI
L

[2(ui)2 � (uj)2]

(Mj)1 �
8EI
L

(uj)1 �
w0L2

12

(Mj)2 � 0aaMb
C

� 0:

(Mj)1 � (Mi)2 � 0aaMb
B

� 0: 

Fig. 2 The expected deflection curve.

Fig. 3 The continuous beam separated into elements and nodes.

Forces-
Deformation
Equation
with 
Fixed-End
Forces

Equilibrium

θB
|θC|

w0

w0

MA

MA ≡ (Mi)1

RA ≡ (Vi)1

(1)

(a)

(c) (d) (e)(b)

(2)

RC

RA

RB

(θj)1

(Vj)1
(Vj)1 (Vi)2 (Vi)2

(Mj)1

(Mj)2

i j i j

(Vj)2 (Vj)2

(Mi)2

(2)

(1)
CBA

θB

θB

θC

(θj)2(θi)2 θC
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Geometry of Deformation; Compatibility: In Fig. 1 the rotation angles �B

and �C are taken positive counterclockwise in order to be consistent with

the sign convention for �i and �j in Fig. 7.15b. Therefore,

(3a)

(3b)

Equation (3a) is a compatibility equation that expresses the continuity of

slope at B.

Complete Part (a): Finally, we substitute Eqs. (3) (2) (1), in Dis-

placement-Method fashion, and get the equilibrium equations in terms of
unknown displacements:

(4a)

(4b)

Finally, solving Eqs. (4) simultaneously, we get

Ans. (a) (5)

(b) Determine the reactions RA and MA. As noted in Fig. 3, RA (Vi)1

and MA (Mi)1. Also, (pi)1 � (pj)1 � �w0. Using Eqs. 7.19(a) and 7.19(b),

together with Eqs. (3) above, we get

(6a)

(6b)

Substitution of Eq. (5a) into Eqs. (6) gives

(7a)

(7b)

or

Ans. (b) (8)

Review the Solution If we consider element (1), we can see that the right

end of element (1) is somewhere between fully clamped (no rotation) and

propped (no moment). The solutions to the reactions for these two stati-

cally indeterminate problems are shown in Fig. 4. It can be seen that the

reactions RA and MA obtained in Eq. (8) do, indeed, lie between the val-

ues of the reactions for these two beams.

RA �
13

22
 w0L, MA �

15

132
 w0L2

MA �
1

33
 w0L2 �

1

12
 w0L2

RA �
1

11
 w0L �

1

2
 w0L

 MA � (Mi)1 �
2EI
L

 (2uB) �
1

12
 w0L2

 RA � (Vi)1 �
2EI

L2
 (6uB) �

1

2
 w0L

�
�

uB �
w0L3

132EI
,   uC � � 

w0L3

264EI

2EI
L

 uB �
4EI
L

 uC � 0

c 8EI
L

�
4EI
L
d uB �

2EI
L

 uC �
w0L2

12

SS

 (uj)2 � uC

 (uj)1 � (ui)2 � uB Geometry of
Deformation

Fig. 4 Two beams related to element

(1) of this problem.

Beam Deflections: Displacement MethodMDS7.4

w0w0L
–—
2

w0L
–—
2

w0L2
—–—

12
w0L2
—–—

12L

EI = const

(a) A uniform fixed-fixed beam.

w05w0L
–—
8

w0L2
—––

8
3w0L
—––

8

L

EI = const

(b) A uniform propped-cantilever beam.
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7.8 PROBLEMS

For all problems in this section, the flexural rigidity of the
beam, EI, is constant.

Prob. 7.2-1. For the simply supported beam shown in Fig.

P7.2-1, the equation of the deflection curve is

(a) Determine an expression for the maximum deflection,

�max max |y(x)|; and (b) use Eqs. 7.8 and 7.13 to determine

expressions for the applied moment MA and for the reac-

tions RA and RB.

�

y(x) �
M0L2

3EI
c�2 a x

L
b3

� 3 a x
L
b2

� a x
L
b d

Prob. 7.2-4. The cantilever beam shown in Fig. P7.2-4 has a

downward distributed load that varies linearly from w1 at 

x � 0 to w2 at x � L. The equation of this beam’s deflection

curve is

(a) Determine expressions for w1 and w2; and (b) determine

expressions for the reactions RA and MA.

y(x) �
w0L4

12EI
 c�a x

L
b5

� 5 a x
L
b4

� 30 a x
L
b3

� 50 a x
L
b2 d

P72-1

Prob. 7.2-2. For the simply supported beam shown in Fig.

P7.2-2, the equation of the deflection curve is

(a) Determine an expression for the distributed load, p(x);

and (b) use Eq. 7.13 to determine expressions for the reac-

tions RA and RB.

y(x) �
P0L4

840EI
 c a x

L
b7

� 7 a x
L
b3

� 6 a x
L
b d

L

x

y, v(x)

A B
2M0

MA

RA RB

P7.2-3

v(x)

A

x 

B

L 

PA

x

MB

RB

P7.2-4

Prob. 7.3-1. For the uniform simply supported beam shown

in Fig. P7.3-1. (a) determine the equation of the deflection

curve, y(x); (b) determine the slope, �A, at the left end; and

(c) determine the maximum deflection, �max max |y(x)|.

Solve by integrating the second-order differential equation

(the moment-curvature equation).

�

x
BA

y, v(x)

L

MA
RA

w2w1

P7.3-1

L

x

y, v(x)

A
B

M0

P7.2-2

p(x)

x 

v(x)

xB
A

RA RB
L

Prob. 7.2-3. For the cantilever beam shown in Fig. P7.2-3,

the equation of the deflection curve is

(a) Determine an expression for the concentrated load, PA;

and (b) determine expressions for the reactions RB and MB.

y(x) �
w0L4

48EI
 c�2 a x

L
b4

� a x
L
b3

� 5 a x
L
b � 4 d

SECOND-ORDER INTEGRATION METHOD▼

Problems 7.3-1 through 7.3-17. These problems are to be
solved by integrating the second-order differential equation,
Eq. 7.8. Except for Prob. 7.3-17, the flexural rigidity, EI,
is constant for each beam.
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Prob. 7.3-2. For the uniform simply supported beam shown

in Fig. P7.3-2, (a) determine the equation of the deflection

curve, y(x); (b) determine the slope, �B, at the right end; and

(c) determine the maximum deflection, �max max |y(x)|.

Solve by integrating the second-order differential equation

(the moment-curvature equation).

�

Prob. 7.3-6. For the uniform beam with overhang of length

L shown in Fig. P7.3.6, (a) determine the equation, y(x), of

the deflection curve for the portion of the beam between the

supports A and B; and (b) determine the maximum (up-

ward) deflection between supports A and B, �max max

|y(x)|. Solve by integrating the second-order differential

equation for deflection (the moment-curvature equation).

�P7.3-2 and P7.3-31

Prob. 7.3-3. A W8 � 40 wide-flange beam made of A-36

structural steel (E � 29 � 103 ksi) is simply supported, as

shown in Fig. P7.3-3. The beam is subjected to a couple MA

that produces a maximum deflection of 0.10 in. (a) What is

the value of MA? (b) What is the maximum flexural stress in

the beam under this loading? Solve by integrating the second-

order differential equation for deflection, Eq. 7.8, and see

Table D.1 for the cross-sectional properties of the beam.

L

x

y, v(x)

A B
2M0

M0

P7.3-3

Prob. 7.3-4. For the uniform simply supported beam in Fig.

P7.3-4, (a) determine the equation of the deflection curve,

y(x); (b) determine the slope, �A, at the left end; and (c) deter-

mine the maximum deflection, �max max |y(x)|. Solve by

integrating the second-order differential equation for deflec-

tion. (Note: You may have to use a trial and error solution to

determine where the maximum deflection occurs.)

�

8 ft

0.1 in.
x

y, v(x)

A B
MA

P7.3-4 and P7.3-32

Prob. 7.3-5. The cantilever beam AB in Fig. P7.3-5 supports

a triangularly distributed load of maximum intensity w0. (a)

Determine an expression for the deflection curve, y(x), for

this beam; and (b) determine expressions for the slope, �B, and

the deflection, �B, at end B. Solve by integrating the second-

order differential equation for deflection.

L

x

y, v(x)

A B

w0

P7.3-5 and P7.3-33

y, v(x)

xA
B

L 

δB

θB

w0

P7.3-6

Prob. 7.3-7. A person standing at end C of a diving board

exerts a downward force P, as shown is Fig. P7.3-7.

(a) Determine expressions for the deflection curve y1(x) in

segment AB and the deflection curve y2(x) in the section

BC. Solve by integrating the second-order differential equa-

tions for deflection. (b) Determine the deflection �C where the

diver is standing, and (c) determine the maximum (upward)

deflection, �max max [y1(x)], in segment AB.�

L L

A B C

P

P7.3-7

Prob. 7.3-8. (a) For the (two-interval) simply supported

beam in Fig. P7.3-8, determine the equations of the deflection

curve, y1(x) for 0 � x � and y2(x) for � x � L. Solve

by integrating the second-order differential equations for

deflection. (b) Determine the location, , of the maximum

deflection of the beam, and determine an expression for this

maximum deflection, �max.

xm

L

L
3

L
3

B C
EI = const

W
A

x

y, v(x)

L/3 2L/3
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Prob. 7.3-9. A uniform shaft is supported by bearings at A
and C and is subjected to a downward load P through the

pulley at B. Neglect the width of the pulley and bearings, and

assume that the bearings provide only vertical support to the

shaft. (a) Determine expressions for the deflection curve

y1(x) in section AB and the deflection curve y2(x) in section

BC. Solve by integrating the second-order differential equa-

tions for deflection. (b) The maximum deflection of the

shaft between the bearings A and C will occur between B
and C, as shown in Fig. P7.3-9. Determine an expression for

�max max |y2(x)|.�

P7.3-8

x

y, v(x)

A
M0 C

B

L–
3

2L––
3

P7.3-11 and P7.3-36

Prob. 7.3-12. For the (two-interval) simply supported beam

in Fig. P7.3-12, (a) determine the equations of the deflection 

curve, y1(x) for 0 � x � and y2(x) for � x � L; and (b) 

determine the vertical displacement at the center of the

beam, �B |y(L/2)|. Solve by integrating the second-order

differential equation for deflection.

�

L
2

L
2

2L L

A B C

w0

x

y, v(x)

P7.3-12 and P7.3-34

Prob. 7.3-13. The uniform simply supported beam in Fig.

P7.3-8 has a symmetric linearly varying distributed load with

maximum value w0 at the center of the beam. From symme-

try it can be observed that the slope of the beam must be

zero at the center of the beam, that is, y�(L/2) � 0. Using this

fact, together with the boundary condition y(0) � 0, (a) de-

termine an equation for the deflection curve, y(x) for 0 � x �

. Solve by integrating the second-order differential equation

for deflection. (b) Determine an expression for the maxi-

mum deflection, �max |y(L/2)|.�

L
2

x

y, v(x)

A

B

C
w0

L/2 L/2

P7.3-13

x

y, v(x)

A

B

C
w0

L/2 L/2

P7.3-9 and P7.3-35

Prob. 7.3-10. An exercise bar with weights rests on a stand as

shown in Fig. P7.3-10. Assume that the bar is simply sup-

ported on a span of L � 40 in. and that each pair of weights

exerts a concentrated force W � 50 lb at a distance a � 8 in.

beyond the support points, but neglect the weight of the bar

itself. The solid steel bar (E � 30 � 106 psi) has a 1 in. diam-

eter. (a) Making use of symmetry of loading and support, and

starting with the second-order differential equation for de-

flection, derive an expression for the deflection curve, y(x),

for the portion AB of the bar. Express your answer in terms

of W, EI, L, a, and the coordinate x. (b) Determine an expres-

sion for the maximum (upward) deflection, �max y(0), and

evaluate the expression for the given physical parameters.

�

L 2L

BA C

P

x

y, v(x)

δmax

P7.3-10

Prob. 7.3-11. Bags of cement have been stacked on the over-

hanging segment, BC, of the beam in Fig. P7.3-11 producing

a uniform load of intensity w0 per unit length. (a) Determine

x

y, v(x)

stand

W
a

W

A B

C

aL/2L/2

expressions for the deflection curve y1(x) in segment AB and

the deflection curve y2(x) in segment BC. Solve by integrat-

ing the second-order differential equations for deflection.

(b) Determine the deflection �C at the right end of the beam.

(c) Determine the maximum (upward) deflection, �max

max [y1(x)], in segment AB.

�

522

  c07DeflectionOfBeams.qxd  9/15/10  8:17 PM  Page 522



*Prob. 7.3-14. A 10-ft-long W8 � 15 wide-flange steel beam

AB is supported by a roller support at end A and by a 6-ft-long

rod BC of cross-sectional area A � 1.0 in2. The beam sup-

ports a uniformly distributed load w0 � 1 kip/ft, as shown in

Fig. P7.3-14. (a) Neglecting the weight of the beam and the

weight of the rod BC, determine the elongation of the rod

that supports the beam at end B. Use E � 30 � 103 ksi for

the rod and the beam. (b) Determine the location xm (ft) of

the point of maximum deflection of the beam.

Prob. 7.3-17. For the (two-interval) cantilever beam in Fig.

P7.3-17, (a) determine the equations of the deflection curve,

y1(x) for 0 � x � and y2(x) for � x � L; and (b) deter-

mine the vertical displacement at the left end of the beam,

�A y(0). Note the change in flexural rigidity EI(x) at x �

. Solve by integrating the second-order differential equa-

tions for deflection.

L
2

�

L
2

L
2

P7.3-14

Prob. 7.3-15. For the (two-interval) cantilever beam in Fig.

P7.3-15, (a) determine the equations of the deflection curve,

y1(x) for 0 � x � and y2(x) for � x � L; and (b) deter-

mine the vertical displacement at the right end of the beam,

�C y(L). Solve by integrating the second-order differen-

tial equations for deflection.

�

L
2

L
2

x
A

C

B

w0
6 ft

10 ft

y, v(x)

P7.3-17

Prob. 7.3-18. The simply supported beam AB in Fig. P7.3-18

carries a uniformly distributed load of intensity w0 on a span

of L � 8 ft. Determine the maximum deflection, �max, if the

depth of the beam is h � 6 in., the maximum flexural stress

in the beam is �max � 12 ksi, and the beam is made of alu-

minum with E � 10 � 103 ksi.

BEAM-DEFLECTION APPLICATIONS

A B

P

C

P

y, v(x)

EI 2EI
x

L_
2

L_
2

P7.3-18, P7.3-19, and P7.3-20

DProb. 7.3-19. What is the depth h of a uniformly loaded,

simply supported beam (see Fig. P7.3-19) if the maximum

bending stress is �max � 8 ksi, the maximum deflection is 

�max � 0.20 in., the span is L � 10 ft, and the modulus of elas-

ticity is E � 30 � 103 ksi?

Prob. 7.3-20. A W360 � 39 wide-flange steel beam is simply

supported and carries a uniformly distributed load of w0 �
35 kN/m on a span of L � 5 m (see Fig. P7.3-20). For E �
200 GPa, (a) determine the maximum deflection of the

beam, and (b) determine the maximum flexural stress in the

beam. (See Table D.2 of Appendix D for the cross-sectional

properties of the beam.)
DProb. 7.3-21. A simply supported beam AC carries a con-

centrated load P at its midspan point B (see Fig. P7.3-21).

Determine the depth of the beam h in mm if the maximum

B
A

w0

h
δmax

L/2 L/2
P7.3-15

Prob. 7.3-16. Loads PA and PB are applied to a uniform can-

tilever beam AC, as shown in Fig. P7.3-16, causing deflec-

tions �A and �B at A and B, respectively. Using the second-
order integration method, determine expressions for PA and

PB in terms of E, I, L, �A, and �B.

A
B

xC

p0

L/2 L/2

y, v(x)

P7.3-16

A C

y, v(x)

δB

B

PBPA

x

δA

L/2 L/2

▼

Problems 7.3-18 through 7.3-26. In solving these prob-
lems, you may use deflection formulas given in Tables
E.1 and E.2 of Appendix E. The flexural rigidity, EI, is
constant for each beam in this group of problems.
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bending stress is �max � 50 MPa, the maximum deflection is

�max � 10 mm, the span is L � 4 m, and the modulus of elas-

ticity is E � 200 GPa.

P7.3-21 and P7.3-22

Prob. 7.3-22. A simply supported beam AC carries a con-

centrated load P at its midspan, B (Fig. P7.3-22). Determine

the maximum deflection, �max, if the span is L � 8 ft, the

depth of the beam is h � 6 in., the maximum flexural stress

is �max � 12 ksi, and the beam is made of aluminum with 

E � 10 � 103 ksi.

*Prob. 7.3-23. A W8 � 40 wide-flange steel beam AD is sim-

ply supported and carries two equal concentrated loads of 

P � 6 kips each, as shown in Fig. P7.3-23. The total span of

the beam is L � 12 ft, and its modulus of elasticity is E �
30 � 103 ksi. (a) Determine the maximum deflection of the

beam, and (b) determine the maximum flexural stress in the

beam. (See Table D.1 of Appendix D for the cross-sectional

properties of the beam, and see Table E.2 for appropriate

deflection formulas.)

B

P

CA
h

δmax

L/2 L/2

P7.3-23

Prob. 7.3-24. A cantilever beam AB carries a uniformly dis-

tributed load of intensity w0 on a span of L � 8 ft (Fig. P7.3-24).

Determine the maximum deflection, �max, if the depth of

the beam is h � 6 in., the maximum flexural stress in the

beam is �max � 12 ksi, and the beam is made of steel with E �
30 � 103 ksi.

C

P

B

P

DA

δmax

L/3 L/3L/3

P7.3-24 and P7.3-25

Prob. 7.3-25. What is the maximum bending stress in the

uniformly loaded cantilever beam in Fig. P7.3-25 if the depth

of the beam is h � 250 mm, the maximum deflection is �max �
5 mm, the span is L � 3 m, and the modulus of elasticity is 

E � 70 GPa?

w0

A
B

L 

h
δmax

P7.3-26

x

A

C D

B

w0
6 ft

10 ft

y, v(x)

P7.3-27

Prob. 7.3-28. The simply supported beam in Fig. P7.3-28 is

subjected to a distributed load of intensity p(x) � �w0

[Note: This load acts downward, so there is a minus sign in

the expression for p(x).] (a) Use the fourth-order method to

determine the equation of the deflection curve, y(x); and (b)

determine the maximum deflection, �max max |y(x)|, of

this beam. (c) Determine expressions for the reactions Ay

and By.

�

a x
L
b3

.

x 

w0 sin      πx––
L ))

BA

L

Prob. 7.3-27. The simply supported beam in Fig. P7.3-27 

is subjected to a distributed load of intensity p(x) �

�w0 sin [Note: This load acts downward, so there is a

minus sign in the expression for p(x).] (a) Use the fourth-

order method to determine an expression for the deflection

curve of this beam, and (b) determine the slope, �B, of the

beam at end B.

apx
L
b.

FOURTH-ORDER INTEGRATION METHOD▼

Problems 7.3-27 through 7.3-37. These problems are to be
solved by integrating the fourth-order differential equation,
Eq. 7.12. The flexural rigidity, EI, is constant for each
beam.

*Prob. 7.3-26. A 10-ft-long W6 � 15 wide-flange beam AB is

supported by two 6-ft-long rods AC and BD of cross-

sectional area Ar � 0.5 in2. The beam supports a uniformly

distributed load w0 � 1 kip/ft, as shown in Fig. P7.3-26.

Determine the maximum deflection of the beam, taking into

account the elongation of the two rods but neglecting the

weight of the beam and the rods. Use E � 30 � 103 ksi for

the rods and the beam. (Hint: Solve first for the elongation

of the rods, and then use these elongations as the boundary

conditions y(0) and y(L) for the beam.)
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Prob. 7.3-29. The cantilever beam in Fig. P7.3-29 is subjected 

to a distributed load of intensity p(x) � p0 . (a) 

Use the fourth-order method to determine an expression for

the deflection curve, y(x); and (b) determine the slope, �B, of

the righthand end of the beam. (c) Determine expressions

for the reactions RA and MA.

c1 � a x
L
b2 d

Prob. 7.3-33. Use the fourth-order method to solve the

problem as stated in Prob. 7.3-5.

Prob. 7.3-34. Use the fourth-order method to solve the

problem as stated in Prob. 7.3-12.

Prob. 7.3-35. Use the fourth-order method to solve the

problem as stated in Prob. 7.3-9.

Prob. 7.3-36. Use the fourth-order method to solve the

problem as stated in Prob. 7.3-11.
DProb. 7.3-37. For the cantilever beam in Fig. P7.3-37, (a)

use the fourth-order integration method to determine an ex-

pression for the tip deflection, �B; and then (b) determine an

expression for the length L that would make the maximum

tensile stress in the beam equal to �allow, and the correspon-

ding maximum deflection equal to �allow. Express your an-

swer in terms of E, �allow, �allow, and the depth of the beam, h.

P7.3-28

w0      3

w0

x–
L))

x 

B
A

Ay By
L

y, v(x)

P7.3-29

Prob. 7.3-30. The cantilever beam in Fig. P7.3-30 is subjected 

to a distributed load of intensity p(x) � �w0 . [Note:

This load acts downward, so there is a minus sign in the

expression for p(x).] (a) Use the fourth-order method to

determine the equation of the deflection curve, y(x); and 

(b) determine the slope, �B, of the righthand end of the

beam. (c) Determine expressions for the reactions RA and MA.

a x
L
b2

x
L

A
B

p(x) = p0 [1 –            
2]x––

L(   )
y, v(x)

x

MA

RA

P7.3-30

Prob. 7.3-31. Use the fourth-order method to solve the

problem as stated in Prob. 7.3-2.

Prob. 7.3-32. Use the fourth-order method to solve the

problem as stated in Prob. 7.3-4.

x
L

A
B

w0

p(x) = –w0          
2x––

L(   )

y, v(x)

x

MA

RA

P7.3-37

p0

y, v(x)

xA
B

L 

δB

θB

h

P7.4-1, P7.4-12, P7.6-31, and P11.3-40

Prob. 7.4-2. The propped cantilever beam in Fig. P7.4-2 has

a W8 � 40 cross section and supports a uniformly distributed

load of w0 � 4 kips/ft on a span of L � 10 ft. (a) Use the 

second-order integration method to solve for the reactions

at A and B. (Solve the problem using symbols, w0, EI, etc.,

w0

v(x)

A

x 

B

L 

RA

x

MB

RB

Prob. 7.4-1. For the uniformly loaded propped cantilever

beam in Fig. P7.4-1, use the second-order integration

method (a) to solve for the reactions at A and B; and (b) to

determine an expression for the deflection curve y(x).

SECOND-ORDER INTEGRATION METHOD▼

Problems 7.4-1 through 7.4-11. These problems are to be
solved by integrating the second-order differential equation,
Eq. 7.8. The flexural rigidity, EI, is constant for the
beams in Probs. 7.4-1 through 7.4-10.
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and then substitute numerical values for these quantities.)

(b) Sketch the shear and moment diagrams for this beam.

P7.4-2, P7.6-32, P11.5-18, and P11.5-42

Prob. 7.4-3. The propped cantilever beam AB in Fig. P7.4-3

supports a linearly varying load of maximum intensity w0.

(a) Use the second-order integration method to solve for the

reactions at A and B and for the deflection curve y(x).

(b) Determine an expression for the maximum deflection,

�max max |y(x)|. (c) Sketch the shear diagram, V(x).�

x

w0 = 4 kips/ft

v(x)

MA
RA

A
B

10 ft 

RBx 

P7.4-5, P7.6-37, P7.6-38, P11.3-41, and P11.5-46

*Prob. 7.4-6. At end B, the cantilever beam in Fig. P7.4-6 is

pinned to a uniform rod whose cross-sectional areas is A2,

whose length is L2, and whose modulus of elasticity is E2.The

beam supports a uniformly distributed load of intensity w0; its

flexural rigidity is E1I1 and its length is L1. (a) Use the second-

order integration method to determine the reactions RA and

MA at A, and the tension, F2, in the rod. (b) Determine an

expression for the deflection curve, y(x), of the beam.

x

y, v(x)

x 
A B

L 

w0

MA
RA MB

RB

P7.4-6, P7.4-14, P7.6-39, and P11.5-47

Prob. 7.4-7. The propped cantilever beam in Fig. P7.4-7 is

subjected to a concentrated load P at distance L/3 from end

A. (a) Use the second-order integration method to deter-

mine the reactions at A and C and the deflection curves

y1(x) and y2(x) for the segments of the beam to the left of

load P and to the right of load P, respectively. (b) Sketch the

shear diagram, V(x), and the moment diagram, M(x).

MA
RA

RC

A B

C

x

v(x)

w0
(2)

L2

L1

E1, I1x

P7.4-7, P7.6-40, and P11.5-19

x

P

C

B
A

L

L/3

x

v1(x)
v2(x)

RC

RA

MC

P7.4-3, P7.4-13, P7.6-33, P7.6-34, P11.5-17, and P11.5-41

Prob. 7.4-4. The uniformly loaded beam in Fig. P7.4-4 is

completely fixed at ends A and B. (a) Use the second-order

integration method to determine the reactions RA and MA

and to determine an expression for the deflection curve y(x).

(b) Sketch the shear diagram, V(x), and the moment dia-

gram, M(x).

RA

x

v(x)

x 

A
B

L 

w0

MB
RB

δmax

P7.4-4, P7.6-35, and P7.6-36

y, v(x)

x 
A B

L 

p0

MA
RA

x

MB
RB

(b) Determine an expression for the maximum deflection,

�max max |y(x)|. (c) Sketch the shear diagram, V(x).�

Prob. 7.4-5. The beam AB in Fig. P7.4-5 supports a linearly

varying load of maximum intensity w0. (a) Use the second-

order integration method to determine the reactions at A and

B and to determine an expression for the deflection curve y(x).
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Prob. 7.4-8. The fixed-fixed beam in Fig. P7.4-8 is subjected

to a concentrated couple M0 at location B, which is at dis-

tance a from end A. (a) Use the second-order integration

method to determine the reactions at A and C and the de-

flection curves y1(x) and y2(x) for the segments of the beam

to the left of B and to the right of B, respectively. (b) Letting

a � L/3, sketch the shear diagram, V(x), and the moment di-

agram, M(x), for this beam.

to determine the reactions at A, B, and C. (b) Determine ex-

pressions for the deflection curves y1(x) in span AB and

y2(x) in span BC. (c) Sketch the shear diagram, V(x), and the

moment diagram, M(x).

*Prob. 7.4-11. The beam AC in Fig. P7.4-11 is fixed to a rigid

wall at A and is supported by props at B and C. In span AB
the flexural rigidity is EI, but in span BC the flexural rigidity

is 2EI. The beam supports a uniformly distributed load over

span BC. (a) Use the second-order integration method to

determine the reactions at A, B, and C. (b) Determine ex-

pressions for the deflection curves y1(x) in span AB and

y2(x) in span BC. (c) Sketch the shear diagram, V(x), and the

moment diagram, M(x).

P7.4-8 and P11.5-20

*Prob. 7.4-9. The fixed-fixed beam in Fig. P7.4-9 is subjected

to a uniformly distributed load of intensity w0 over the inter-

val AB (i.e., 0 � x � a). (a) Use the second-order integration

method to determine the reactions at A and C and the 

deflection-curve expressions y1(x) (for 0 � x � a) and y2(x)

(for a � x � L). (b) Letting a � L/2, sketch the complete

shear diagram, V(x), for this beam.

x

a

CBA

L

x

v1(x)
v2(x)

RCRA MC
MA

M0

P7.4-9, P7.6-41, P7.6-42, P11.5-23, and P11.5-44

Prob. 7.4-10. The continuous beam in Fig. P7.4-10 is simply

supported at ends A and C and is propped at its midpoint B.

It supports a uniformly distributed load of intensity w0 on

the span AB. (a) Use the second-order integration method

x
a

CA B

L

x

v1(x), v2(x)

RCRA

w0

MCMA

P7.4-10, P7.6-43, P11.5-21, and P11.5-43

x

A
B C

x

RB

w0

RA RC
L/2 L/2

v1(x), v2(x)

P7.4-11, P7.6-44, and P11.5-22

x

B C
x

RB

w0

RC

L/2 L/2

v1(x), v2(x)

A
EIRAMA

2EI

P7.4-15

x

B

C
x

RB

RA
L

v(x)

A
MB

w0          
2x––

L(   )

Prob. 7.4-12. Solve Prob. 7.4-1 using the fourth-order inte-

gration method.

Prob. 7.4-13. Solve Prob. 7.4-3 using the fourth-order inte-

gration method.

Prob. 7.4-14. Solve Prob. 7.4-6 using the fourth-order inte-

gration method.

FOURTH-ORDER INTEGRATION METHOD▼

Problems 7.4-12 through 7.4-18. These problems are to be
solved by integrating the fourth-order differential equation,
Eq. 7.12. The flexural rigidity, EI, is constant for all
beams in this group of problems.

Problems 7.4-15 through 7.4-18. For each of these prob-
lems, use the fourth-order integration method to deter-
mine the reactions at ends A and B and to determine an
expression for the deflection curve v(x).
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Prob. 7.5-1. For the beam shown in Fig. P7.5-1, (a) deter-

mine discontinuity-function expressions for the slope �(x)

and the deflection y(x) for 0 � x � L; and (b) evaluate the

displacement at points B and C.

P7.4-16

Prob. 7.5-2. For the beam shown in Fig. P7.5-2, (a) deter-

mine discontinuity-function expressions for the slope �(x)

and the deflection y(x) for 0 � x � L; and (b) evaluate the

displacement at points B and C.

x

B

C
x

RBRA

L

v(x)

A
MBMA

w0          
3x––

L(   )

P7.5-2

Prob. 7.5-3. For the beam shown in Fig. P7.5-3, (a) deter-

mine discontinuity-function expressions for the slope �(x)

and the deflection y(x) for 0 � x � L; and (b) evaluate the

displacement at points B and C.

A
B

C

p0

L/2 L/2

P7.5-3

Prob. 7.5-4. For the beam shown in Fig. P7.5-4, (a) deter-

mine discontinuity-function expressions for the slope �(x)

and the deflection y(x) for 0 � x � L; and (b) evaluate the

displacement at points B and C.

5 ft 5 ft

2 kips

E = 29 × 103 ksi

4 kips/ft

W14 × 120

A

B
C

P7.5-4

Prob. 7.5-5. For the beam shown in Fig. P7.5-5, (a) deter-

mine discontinuity-function expressions for the slope �(x)

L/2 L/2

A B C

p0

p0L
––––

2
P =

P7.5-5

3 m 2.4 m

180 mm

90 mm

2 kN/m

2 kN

E = 11 GPa

A
B

C

P7.4-17 and P7.6-45

x

B
x

RBRA

L

v(x)

A

MBMA

p0 cos
πx––
2L(    )

P7.4-18 and P7.6-46

x

B
x

RBRA

L

v(x)

A

MBMA

p0 sin
πx––
L(    )

P7.5-1

L/2 L/2
A B

P02P0

C

BEAM DEFLECTIONS:
DISCONTINUITY-FUNCTION METHOD

Problems 7.5-1 through 7.5-20. Use the discontinuity-
function method of Section 7.5 to solve each of the follow-
ing problems. Let EI � const. for each beam.

MDS 7.1 & 7.2

▼
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and the deflection y(x) for 0 � x � L; and (b) evaluate the

displacement at points B and C.

Prob. 7.5-6. For the overhanging beam shown in Fig. P7.5-6,

(a) determine discontinuity-function expressions for the

slope �(x) and the deflection y(x) for 0 � x � 3L; (b) deter-

mine expressions for the slope and deflection at x � 0, that

is, for �(0) and y(0); and (c) determine an expression for the

maximum deflection between the supports B and C.

Probs. 7.5-10 through 7.5-12. For the propped cantilever

beams shown in Figs. P7.5-10 through P7.5-12, use the 

discontinuity-function method (a) to determine expressions

for the reactions RA, RB, MB; and (b) to determine expressions

for the slope �(x) and the deflection y(x) for 0 � x � L.

P7.5-6

Prob. 7.5-7. For the simply supported beam shown in Fig.

P7.5-7, (a) determine expressions for the end slopes �A

�(0) and �D � �(L); (b) determine discontinuity-function ex-

pressions for �(x) and y(x) for 0 � x � L; and (c) determine

an expression for the midspan deflection y( ).L
2

�

A
B

w0

C
x

y, v(x)

L 2L

P7.5-7

Prob.7.5-8. For the three-segment overhanging beam shown

in Fig. P7.5-8, (a) determine discontinuity-function expres-

sions for the slope �(x) and the deflection y(x) for 0 � x �
; and (b) determine the maximum upward deflection of the

beam.

3L
2

L/3 L/3 L/3

A
B

w0
P = w0L

C
D

P7.5-8

*Prob. 7.5-9. For the beam shown in Fig. P7.5-9, use the 

discontinuity-function method to determine an expression

for the end couple M0, in terms of P and L, such that the 

deflection at end D is zero.

L/4 L/4L

x

B

w0

v(x)

P =
w0L
–––
4

x
A

P7.5-9

L/2 L/2 L/2

A
B

P

C D

M0

P7.5-10

x

v(x)

w0

RA L

A
B

x

MB

RB

P7.5-11

x

v(x)

x

L

B
A

RA

MB
RB

w0

P7.5-12

Prob. 7.5-13. For the propped cantilever beam shown, use the

discontinuity-function method (a) to determine expressions

for the reactions RA, RB, and MB; and (b) to determine expres-

sions for the slope �(x) and the deflection y(x) for 0 � x � L.

L

RA

A
B

C
MC

RC

v(x)
P

a
x

x

P7.5-13

x

L

B

RB MB

A

RA

v(x)

x

w0          
2x––

L(   )
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Probs. 7.5-14 and 7.5-15. For the clamped-clamped beam

shown, use the discontinuity-function method (a) to deter-

mine expressions for the reactions at A and B, that is, RA,

MA, RB, and MB, and (b) to determine expressions for the

slope �(x) and the deflection y(x) of the beam.

P7.5-14

L

BA

MA
RA RB MB

x

x

v(x)
w0

P7.5-15

Probs. 7.5-16 through 7.5-18. For the clamped-clamped

beam shown, use the discontinuity-function method (a) to

determine expressions for the reactions at A and C, that is,

RA, MA, RC, and MC; (b) to determine discontinuity-function

expressions for the slope �(x) and the deflection y(x) for 0 �
x � L; and (c) to determine an expression for the deflection

at point B.

L

BA

MA
RA RB MB

x

x

v(x)
p0          

3x––
L(   )

P7.5-16

L

L/3

A B

P

C
MA

RA RC MC

x

x

v(x)

P7.5-17

L

L/2

A B

w0

C

MA
RA RC MC

x

x

v(x)

P7.5-18

L/2 L/2

A B

p0

C

MA
RA RC MC

x

v(x)

P7.5-19

v(x)

L/2 L/2
x

xA
B

w0

C

RA RB RC

P7.5-20

RB RC

L L

A B

RA

w0

C(1) (2)
x

v(x)

*Probs. 7.5-19 and 7.5-20. For the two-span continuous

beam shown, use the discontinuity-function method (a) to

determine the reactions RA, RB, and RC; (b) to determine 

discontinuity-function expressions for the slope �(x) and 

the deflection y(x) for the entire beam AC; and (c) to evalu-

ate the slope expression �(x) at support A.

Problems 7.5-21 through 7.5-24. A beam and its loading
are shown in the referenced figure. For each of these prob-
lems, you are to write a computer program that carries
out the following steps. Use the programming language
or math application software of your own choice, unless
your instructor indicates otherwise.
(a) Input the given problem data: L, E, etc.
(b) Use equilibrium to determine the reactions.
(c) Using discontinuity functions from the Load column

of Table 5.2, form an expression for the intensity p(x)
of the equivalent distributed load. Include the calcu-
lated reactions in your expression for the equivalent
load.
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P7.6-1

L/2 L/2
A

PL–––
2

M0 =

B

P

C

P7.6-2

L/2L/2
A

M0 = PL

B

P

C

P7.6-3

Prob. 7.6-4. Determine expressions for the slope y�A and the

deflection yA at end A.

L/2L/2
A

M0 = p0L2

P = p0L/2

p0

B C

P7.6-4

Probs. 7.6-5 and 7.6-6. Determine expressions for the slope

y�C and the deflection yC at end C. (Hint:You can subtract the

affect of loading indicated by the dashed lines.)

L
A

w0
w0L
–––
2

P =

B

P7.6-5 and P7.6-24

L/2 L/2
A B C

w0

Problems 7.6-1 through 7.6-57. Using Tables E.1 and E2,
Deflections and Slopes of Beams, apply the Force Method
of Superposition to solve each of the problems of this sec-
tion. Let the flexural rigidity, EI, be constant for each
beam, unless stated otherwise.

C*Prob. 7.5-21. (a) Write your computer program for the

simply supported beam in Fig. P7.5-21 (see Fig. P5.5-19). (b)

Illustrate the use of your computer program for the follow-

ing data: The beam is a W200 � 59 (see Table D.2 of

Appendix D) with E � 200 GPa, L � 10 m, and PB � 25 kN.
C*Prob. 7.5-22. (a) Write your computer program for the

simply supported beam in Fig. P7.5-22 (see Fig. P5.5-20). (b)

Illustrate the use of your computer program for the follow-

ing data: The beam is a W250 � 89 (see Table D.2 of

Appendix D) with E � 200 GPa, L � 10 m, xB � 2 m, xC �
4 m, and p0 � 12 kN/m.
C*Prob. 7.5-23. (a) Write your computer program for the

simply supported beam in Fig. P7.5-23 (see Fig. P5.5-21). (b)

Illustrate the use of your computer program for the following

data:The beam is a W10 � 60 (see Table D.1 of Appendix D)

with E � 29 (103) ksi, L � 12 ft, xB � 2 ft, xC � 5 ft, and p0 �
2 kips/ft.
C*Prob. 7.5-24. (a) Write your computer program for the

cantilever beam in Fig. P7.5-24 (see Fig. P5.5-22). (b)

Illustrate the use of your computer program for the follow-

ing data: The beam is a W12 � 50 (see Table D.1 of Appendix

D) with E � 29(103) ksi, L � 15 ft, xB � 3 ft, xC � 9 ft, PA �
�4 kips (i.e., 4 kips downward), and p0 � 2 kips/ft.

(d) Perform a term-by-term integration of the load ex-
pression obtained in Part (c) to form a discontinuity-
function expression for the shear force V(x). Then,
perform a term-by-term integration of the shear ex-
pression to obtain a discontinuity-function expres-
sion for the bending moment M(x). Plot the moment
diagram.

(e) Perform a term-by-term integration of the bending
moment expression obtained in Part (d) to form a 
discontinuity-function expression for the slope �(x).
Plot the slope diagram for the beam.

( f) Perform a term-by-term integration of the slope 
expression to obtain a discontinuity-function expres-
sion for the deflection v(x). Plot the deflection dia-
gram for the beam.

Probs. 7.6-2 and 7.6-3. Determine expressions for the slope

y�C and the deflection yC at end C.

SUPERPOSITION METHOD, STATICALLY
DETERMINATE BEAMS MDS 7.3

▼

Prob. 7.6-1. Determine expressions for the slope y�A and

the deflection yA at end A.
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Probs. 7.6-7 and 7.6-8. Determine expressions for the slope

y�A end A and the deflection yC at section C.

Prob. 7.6-11. For the antisymmetric loading in Fig. P7.6-11,

(a) determine expressions for the slope y�(x) and the deflec-

tion y(x) in the segment AB; and (b) determine the 

maximum upward deflection of the beam, which occurs in

segment AB.

P7.6-6 and P7.6-26

L/2 L/2
A B C

p0

P7.6-7

A B

2P P

C D E

L/4 L/4 L/4 L/4

P7.6-8

Probs. 7.6-9 and 7.6-10. (a) Determine expressions for the

slope y�(x) and the deflection y(x) in the segment AB; and

(b) determine the maximum upward deflection of the beam.

B CA D
x

y, v(x)

L/3 L/3 L/3 

w0
P = w0L/3

P7.6-9

L

x

x
BA

v(x)

M0 2M0

P7.6-11

Prob. 7.6-12. Determine expressions for the slope y�C and

the deflection yC at end C.

L/3 L/3 L/3

v(x)

A
B C

P P

D
x

x

P7.6-12

*Prob. 7.6-13. Beam AB (beam 1) is cantilevered from a

rigid wall at A. Through a roller at B, beam 1 supports one

end of simply supported beam BC (beam 2). Both beams

have the same flexural rigidity, EI, and both have the same

length, L. When there is no load on either beam, the beams

are both horizontal. For the two-beam system with a uniform

load on beam 2, as shown in Fig. P7.6-13, determine expres-

sions for the following: (a) the common deflection at B, (y1)B �
(y2)B; (b) the slope of beam 1 at end B, (y�1)B; and (c) the

slope of beam 2 and end C, (y�2)C.

L L

A
B

C

w0

P7.6-13

SUPERPOSITION APPLICATIONS—STATICALLY
DETERMINATE BEAMS

Prob. 7.6-14. An 8-in. (nominal) standard steel pipe acts as a

cantilever beam that supports two 5-kip loads from hanger

rods as shown in Fig. P7.6-14. (See Table D.7 for the cross-

sectional properties of the pipe.) Determine the deflections yB

at section B and yC at the right end. Let Esteel � 29 � 103 ksi.

L

(1)

(2)A BEI
EI

x2

w0

v1

v2

Cx1

L

P7.6-10

L/4 L/4L

x

x
A B

P =
w0L
–––

4

v(x)

w0
▼
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Prob. 7.6-15. Determine the slope y�C and deflection yC at

end C of the W14 � 120 wide-flange beam in Fig. P7.6-15.

(See Table D.1 for the cross-sectional properties of the

beam.) Let Esteel � 29 � 103 ksi.

P7.6-14 and P11.5-9

6 ft 6 ft

A B C

5 kips 5 kips

8 in.
American
standard

pipe

P7.6-15, P11.5-7, and P11.5-32

Prob. 7.6-16. Determine the slope y�C and deflection yC at

end C of the timber beam in Fig. P7.6-16. Let Ew � 1.60 �
103 ksi. (See Table D.8 for the cross-sectional properties of

the beam.)

W14 × 120

6 ft

2 kips/ft
5 kips

A B C
6 ft

P7.6-16, P11.5-8, and P11.5-33

Prob. 7.6-17. Determine the slope y�A at end A and the de-

flection yB at the midspan section B of the W310 � 143 steel

beam in Fig. P7.6-17. (See Table D.2 for the cross-sectional

properties of the beam.) Let Esteel � 200 GPa.

10 ft 8 ft

8 in. (nom)

4 in. (nom)

100 lb/ft

400 lb

A
B

C

P7.6-17, P7.6-18, and P11.5-11
5 m

A

B

P = 20 kN

C

M0 = 100 kN · m

5 m

W310 × 143

7.6-19 and P11.5-10

Prob. 7.6-20. An aluminum-alloy beam has a moment of in-

ertia I � 50 � 106 mm4 and is supported by a pin at A and a

3-m-long aluminum rod that is attached to the beam at C.

The cross-sectional area of the rod CD is 200 mm2. Let Ea �
70 GPa. (a) Determine the displacement of the beam at C.

(b) By superposing the deflection of a simply supported flex-

ible beam and the deflection that a “rigid” beam would ex-

perience due to the stretching of rod CD, determine the total

deflection at the load point, B.

8 in. (nom.)

6 in. (nom.)4 ft

A B C

4 ft

w0 = 200 lb/ft P = 1 kip

P7.6-20 and P11.5-35

*Prob. 7.6-21. A wide-flange beam supports a uniform load

of 2 kips/ft on a 14-ft span. The beam has a moment of inertia

of I � 300 in4, and at end B it is supported by a steel rod with

a cross-sectional area of 0.50 in2. Let Esteel � 29 � 103 ksi.

(a) Determine the deflection of the beam at B. (b) Determine

expressions for the slope y�(x) and deflection y(x) of the

beam by superposing the deflection of a simply supported

flexible beam and the deflection that a “rigid” beam would 

experience due to the stretching of rod BC. (c) Determine the

maximum deflection of the beam.

2 m

3 m

D

C

B

P = 25 kN

A

4 m

Prob. 7.6-18. Determine the maximum deflection of the

wide-flange beam AC in Fig. P7.6-18.

Prob. 7.6-19. A 6 in. � 8 in. (nominal) simply supported tim-

ber beam supports a uniformly distributed load of w0 � 200 lb/ft

from A to B and a concentrated midspan load of 1 kip. (See

Table D.8 for the cross-sectional properties of this beam.)

Calculate the slope y�A at end A and the deflection yB at

midspan. Let Ew � 1, 600 ksi.
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DIFFERENTIAL-LOAD SUPERPOSITION METHOD

Probs. 7.6-22 and 7.6-23. Determine expressions for the

slope y�B and deflection yB at end B.

P7.6-21 and P11.5-34

A
B

2 kips/ft

C

14 ft

8 ft

P7.6-22

x
L

A B

w0

p(x) = –w0          
2x––

L(   )

P7.6-23

Prob. 7.6-24. Determine expressions for the slope y�C and 

deflection yC for the cantilever beam in Fig. P7.6-24 (see

Prob. 7.6-5).

Prob. 7.6-25. Determine expressions for the slope y�D and

deflection yD at end D.

x
L

A B

p(x) = p0 cos
πx–––
2L(    )

P7.6-25

L/4 L/4L/2

w0

A B C D

P7.6-27

L/2 L/2

B

w0

A C

P7.6-28

L/2 L/2

B

w0

A C

P7.6-29

L/4 L/4L/2

B C

w0

A D

*P7.6-30 and P11.5-30

SUPERPOSITION METHOD—STATICALLY
INDETERMINATE BEAMS

Prob. 7.6-31. Use superposition of beam-deflection solutions

from Table E.1 to solve Prob. 7.4-1.

Prob. 7.6-32. Use superposition of beam-deflection solutions

from Table E.2 to solve Prob. 7.4-2.

Prob. 7.6-33. Use superposition of beam-deflection solutions

from Table E.1 to solve Prob. 7.4-3.

Prob. 7.6-34. Use superposition of beam-deflection solutions

from Table E.2 to solve Prob. 7.4-3.

Prob. 7.6-35. Use superposition of beam-deflection solutions

from Table E.1 to solve Prob. 7.4-4.

Prob. 7.6-36. Use superposition of beam-deflection solutions

from Table E.2 to solve Prob. 7.4-4.

Prob. 7.6-37. Use superposition of beam-deflection solutions

from Table E.1 to solve Prob. 7.4-5.

L/2 L/2

B

x

A

p(x) = p0 sin
πx–––
L(    )

Prob. 7.6-26. Determine expressions for the slope y�C and

deflection yC at end C. For Fig. P7.6-26 see Prob. 7.6-6.

Probs. 7.6-27 through 7.6-30. Determine expressions for the

slope y�A at end A and deflection yB at section B.

▼

Problems 7.6-22 through 7.6-30. Use the Differential-
Load Superposition Method of Example Problem 7.11 to
solve problems 7.6-22 through 7.6-30.

▼

534

  c07DeflectionOfBeams.qxd  9/15/10  8:17 PM  Page 534



Prob. 7.6-38. Use superposition of beam-deflection solutions

from Table E.2 to solve Prob. 7.4-5.

*Prob. 7.6-39. Use superposition of beam-deflection solutions

from Table E.1 to solve Prob. 7.4-6.

Prob. 7.6-40. Use superposition of beam-deflection solutions

from Table E.2 to solve Prob. 7.4-7.

Prob. 7.6-41. Use superposition of beam-deflection solutions

from Table E.1 to solve Prob. 7.4-9.

*Prob. 7.6-42. Use superposition of beam-deflection solutions

from Table E.1 to solve Prob. 7.4-9.

Prob. 7.6-43. Use superposition of beam-deflection solutions

from Table E.2 to solve Prob. 7.4-10.

Prob. 7.6-44. Use superposition of beam-deflection solutions

from Table E.2 to solve Prob. 7.4-11.

Prob. 7.6-45. Use superposition of beam-deflection solutions

from Table E.1 to solve Prob. 7.4-17.

Prob. 7.6-46. Use superposition of beam-deflection solutions

from Table E.2 to solve Prob. 7.4-18.

Prob. 7.6-47. The cantilever beam AC in Fig. P7.6-47 has ad-

ditional support from cable CD.The beam supports a uniform

load of intensity w0 over the left half of its length, as shown.

Before the load is applied, the beam is straight and the cable

is taut, but force-free. Determine an expression that relates

the deflection of the beam at end C, yC, to the load intensity,

w0; the flexural rigidity of the beam, EI; the axial rigidity of the

cable, EA; and the lengths of the beam and the cable.

P7.6-47

Prob. 7.6-48. The cantilever beam AC in Fig. P7.6-48 has a

moment of inertia I � 50 � 106 mm4 and is supported by rod

CD, whose cross-sectional area is A � 200 mm2. Let Ebeam �
Erod. A concentrated load P � 25 kN is applied to the beam

at B.The rod CD is force-free prior to application of the load

P. Determine the tension induced in rod CD.

H

D

C

B

A

MA

L/2

w0

L/2

RA

P7.6-48

2 m

3 m

D

CB

P = 25 kN

A

4 m

MA
RA

P7.6-49 and P7.6-50

*Prob. 7.6-50. (a) Let T be the tension in cable BD, and

draw shear and moment diagrams of the beam AC in Fig.

P7.6-50. (b) Determine the relationship between T and the

total load w0L that minimizes the maximum magnitude of

the moment in the beam AC. (c) If all values except H are

specified (i.e., EI, AE, and L are given), what value of H
would give the condition described in Part (b)?

*Prob. 7.6-51. For the two-span uniform beam with distrib-

uted loading as shown, use the superposition method of

Example Problem 7.14 to solve for the three redundant re-

actions RB, RC, and MC. Note that you can use subproblem

solutions for uniform cantilever beams from Table E.1. You

wilt have to solve three simultaneous equations for the three

unknown reactions.

L/2 L/2

A
B

C

D

H
w0

*P7.6-51, *P7.6-52, and P7.7-5

*Prob. 7.6-52. For the two-span uniform beam with distrib-

uted loading as shown, use the superposition method of

Example Problem 7.14 to solve for the three redundant re-

actions MA, RB, and MC. Note that you can use subproblem

solutions for simply supported uniform beams from Table

E.2. You will have to solve three simultaneous equations for

the three unknown reactions.

*Probs. 7.6-53 and 7.6-54. Each of these two-span continuous-

beam problems involves a nonuniform beam with one de-

gree of static indeterminacy.To solve these by Force-Method

Superposition you can treat each of these problems as two

B

w0

RB

A C(1)

MA
RA RC MC

LL

(2)

Prob. 7.6-49. The simply supported beam AC in Fig. P7.6-49

has additional support from a cable BD that is attached to

the beam at its midspan, B. The beam supports a uniform

load of intensity w0 over its entire length, as shown. Before

the load is applied, the cable is taut but force-free.

Determine an expression that relates the cable tension to

the load intensity, w0; the flexural rigidity of the beam, EI;

the axial rigidity of the cable, EA; and the lengths of the

beam and the cable.
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simply supported beams that have compatible slope where

they are joined together at B. One beam has flexural rigidity

EI, and the other has flexural rigidity 2EI. You can find the

necessary subproblem solutions in Table E.2. You will have

to consider carefully the internal shear force and bending

moment acting on each beam at joint B. The free-body dia-

grams below give you appropriate names for these internal

shear forces and bending moments.

For these nonuniform beams, (a) determine the internal

moments at B, (M1)B and (M2)B; and (b) determine the reac-

tions RA, and RB.

beam has flexural rigidity EI, and the other has flexural rigid-

ity 2EI. You can find the necessary subproblem solutions in

Table E.1. You will have to consider carefully the internal

shear force and bending moment acting on each beam at joint

B. The free-body diagram of joint B gives you appropriate

names for these internal shear forces and bending moments.

For this nonuniform beam, (a) determine the internal

moments at B, (M1)B � (M2)B, and the internal shear forces

at B, (V1)B and (V2)B; and (b) determine the reactions RA

and MA.

*P7.6-53, P7.7-12, and P11.5-49

L L

A (1) (2)B

B

C

RB RC
RA

M0

2EI EI

(a)

(b)

(M1)B

(V1)B (V2)B

(M2)B

RB

(2)(1)

M0

*P7.6-54, P7.7-13, and P11.5-50

*Prob. 7.6-55. This problem involves a nonuniform stati-

cally indeterminate beam that has two degrees of static

indeterminacy. To solve this problem by Force-Method

Superposition you can treat the nonuniform beam as two

cantilever beams that have compatible displacement and

compatible slope where they are joined together at B. One

L L

A (1) (2)B C

RB RC
RA

w0

2EI EI

B

(a)

(b)

(M1)B

(V1)B (V2)B

(M2)B

RB

(2)(1)

*P7.6-55, P7.7-3, P11.5-25, and P11.5-45

B

A C
2EIEI

(1) (2)

L

MA RCRA MC

P0

2L

B

(a)

(b)

(M1)B

(V1)B (V2)B

(M2)B

(2)(1)

P0

*P7.6-56, P7.7-4, and P11.5-52

*Probs. 7.6-56 and 7.6-57. Each of these problems involves

a two-span nonuniform beam with three degrees of static in-

determinacy. To solve these by Force-Method Superposition

you can treat each of these problems as two uniform can-

tilever beams that have compatible (zero) displacement and

compatible slope where they are joined together at B. One

beam has flexural rigidity EI, and the other has flexural

rigidity 2EI.You can find the necessary subproblem solutions

B

RB

A C
2EI

(1)

MA
RA RC MC

M0

LL

EI

(2)

B

M0

(a)

(b)

(M1)B

(V1)B (V2)B

(M2)B

RB

(2)(1)

536

  c07DeflectionOfBeams.qxd  9/15/10  8:17 PM  Page 536



in Table E.1. You will have to consider carefully the internal

shear force and bending moment acting on each beam at

joint B. The free-body diagrams below give you appropriate

names for these internal shear forces and bending moments.

(These problems are more easily solved by Displacement-

Method Superposition, and are among the homework prob-

lems for Section 7.7.)

Prob. 7.7-3. For the fixed-fixed beam shown in Fig. P7.7-3,

(a) determine the transverse displacement �B and the slope

�B at node B, and (b) determine the reactions RA and MA at

end A. (Note, the lengths are L1 � L and L2 � 2L.) For 

Fig. P7.7-3, see Fig. P7.6-55.

Prob. 7.7-4. An external couple M0 is applied at node B of

the two-span beam shown in Fig. P7.7-4. (a) Determine �B,

the angle of rotation at B, and (b) determine the reactions

RA, MA, and RB. For Fig. P7.7-4, see Fig P7.6-56.

Probs. 7.7-5 through 7.7-7. For the two-span beams with dis-

tributed loading as shown, (a) determine �B, the angle of 

rotation at B, and (b) determine the reactions RA, MA, and

RB. For Fig. P7.7-5, see Fig. P7.6-51. For Fig. P7.7-6, see Fig.

P7.6-57.

*P7.6-57 and P7.7-6

B

RB

A

C

2EI (1)

MA
RA RC MC

w0

LL

EI

(2)

B

(a)

(b)

(M1)B

(V1)B (V2)B

(M2)B

RB

(2)(1)

P7.7-1

Prob. 7.7-2 For the fixed-fixed beam shown, (a) determine

the transverse displacement �B and the slope �B at node B,

and (b) determine the reactions RA and MA at end A. (Note,

the lengths are L1 � L and L2 � 2L.)

AM0

RA

RB

MB

B

L

P7.7-2 and P11.5-24

B

A C

(1) (2)

L

MA
RA RC MC

M0

2L

P7.7-7

Probs. 7.7-8 and 7.7-9. For the uniform fixed-fixed beams

shown, (a) determine the transverse displacement �B and the

slope �B at node B, and (b) determine the reactions RA and

MA at end A.

L 2L

A (1) (2)B

RB

w0

C

MA
RA

RC

MC

P7.7-8

L L

A (1) (2)B C

MA
RA RC

p0

MC

P7.7-9

L L

A (1) (2)B C

MA
RA RC

p0

MC

Prob. 7.7-1. A couple M0 is applied at the propped end of

the uniform propped-cantilever beam in Fig. P7.7-1.

Determine the reaction RA.

BEAM DEFLECTIONS:
DISPLACEMENT METHOD

▼

Problems 7.7-1 through 7.7-15. The problems in this sec-
tion are to be solved by using Displacement-Method
Superposition. The key force-deformation equations are
Eqs. 7.19 and 7.20 (p. 514). For distributed-load prob-
lems, Table E.3 provides the basic fixed-end forces. The
bending stiffness, EI, is constant unless otherwise noted.

MDS 7.4
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Probs. 7.7-10 and 7.7-11. For the two-span beams with dis-

tributed loading as shown, (a) determine �A and �B, the angles

of rotation at nodes A and B, respectively, and (b) determine

the reactions RA and RB at the respective nodes.

Prob. 7.7-16. Starting with Eqs. 7.16 and using equilibrium

and superposition, show that, for a uniform beam with nodal
(end) displacements �A, �A, �B, and �B, the corresponding

nodal forces PA, MA, PB, and MB, are given by the equations:

 MB � aEI

L3
b (6LdA � 2L2uA � 6LdB � 4L2uB)

 PB � aEI

L3
b (�12dA � 6LuA � 12dB � 6LuB)

 MA � aEI

L3
b (6LdA � 4L2uA � 6LdB � 2L2uB)

 PA � aEI

L3
b (12dA � 6LuA � 12dB � 6LuB)

P7.7-10 and P11.5-48

L L

A (1) (2)B C

RBRA

w0

2EI EI

RC
MC

P7.7-11

Probs. 7.7-12 through 7.7-15. For the two-span continuous

beams shown, (a) determine the rotation angles at the three

supports: �A, �B, and �C; and (b) determine the reaction at A,

RA. For Fig. P7.7-12, see Fig. P7.6-53. For Fig. P7.7-13, see Fig.

P7.6-54.

L L

A B C

RBRA

w0

RC
MC

P7.7-14

RB RC

L L

A B

RA

w0

C(1) (2)

P7.7-15 and P11.5-51

L
EI 2EI

2L

A B

RBRA

w0

C

RC

(1) (2)

P7.7-16 and P7.7-17

Prob. 7.7-17. Starting with the second-order deflection

equation EIy�(x) � M(x), derive the four equations given in

Prob. 7.7-16 for the special case when only �A is nonzero, that

is, when �A � �B � �B � 0, but �A 0. (Hint: The boundary

conditions are: y(0) � �A, y�(0) � y�(L) � y(L) � 0.) What

is the expression for the deflection curve y(x) due to �A?

	

A

EI = const

x B
x

L

δA

PA

MA

θA

PB

MB θB

δB

v(x)
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C H A P T E R  7  R E V I E W — D E F L E C T I O N  O F
B E A M S

7.1

Transverse loads, either concentrated loads

or distributed loads, and bending couples

cause beams to deflect, that is, the beam

bends to form a curve that is called the 

deflection curve. The deflection curve, y(x),

is identified in Fig. 7.1a.

Analysis of beams involves four distinct

quantities:

• Two deflection-type quantities: deflec-
tion y and slope

; and

• Two force-type quantities: transverse
shear V and bending moment M.

Starting with Eq. 7.1, you should go

through the steps of the derivation of the

moment-curvature equation, Eq. 7.8.This is

the key equation that is used to relate the

deflection of a linearly elastic beam to the

loads acting on the beam. Another equa-

tion that is very useful for calculating the

deflection of a linearly elastic beam is the

load-deflection equation, Eq. 7.12.

You should review Table 7.1 Boundary
Conditions and Table 7.2 Continuity
Conditions, which are used in the integra-

tion of the second-order Moment-

Curvature Equation and the fourth-order

Load-Deflection Equation.

u � y¿ �
dy
dx

P*

P

x

y, v(x)

v(x) = Deflection
           (i.e., displacement)

Deflection curve

x

θ(x) = Slope

Deflection of a Beam (Fig. 7.1a)

x

x

y, v(x)

ρ(x)

 +M ⇒ compression
 in +y fibers.

 +ρ ⇒ center of curvature
 on +y side of beam.

 +v ⇒ displacement
 in +y direction.

M(x)

v(x)

Center 
of 

curvature

y

Notation and Sign Convention for Beam

Deflection (Fig. 7.4)

EIy� � M(x)
Moment-curvature 
equation (7.8)

(EIy�)� � p(x)
Load-deflection 
equation

(7.12)

The sign conventions for transverse distributed

load, p(x); transverse shear, V(x); and bending 

moment, M(x), are shown in Fig. 7.7.

The Moment-Curvature Equation, Eq. 7.8 above,

and the Shear-Deflection Equation, Eq. 7.11, are

useful in formulating the Boundary Condition

shears and moments of Table 7.1, and the shears and

moments in the Continuity Conditions of Table 7.2.

(EIy�)� � V(x)
Shear-deflection 
equation (7.11)

7.2

Derive 

Eq. 7.8.

7.2-3
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Section 7.3 treats the determination of the

deflection of statically determinate beams
by integration of the second-order

Moment-Curvature Equation, Eq. 7.8, or 

by integration of the fourth-order Load-
Deflection Equation, Eq. 7.12.

Section 7.4 treats the analysis of statically
indeterminate beams by integration of the

second-order Moment-Curvature Equation,
Eq. 7.8, or by integration of the fourth-

order Load-Deflection Equation, Eq. 7.12.

Section 7.6 treats the analysis of both stati-
cally determinate beams and statically in-
determinate beams by the Superposition
Method.

You should quickly review the Procedure near the

beginning of Section 7.3.

Examples 7.1 and 7.2 treat single-span beams;
Examples 7.3 and 7.4 treat two-span beams, where

it is necessary to use the continuity conditions of

Table 7.2 in addition to the boundary conditions of

Table 7.1.

As is illustrated in Fig. 7.10, statically indetermi-

nate beams have more boundary conditions than

are necessary to support the beam. Excess bound-

ary conditions are called redundants.

A Statically Indeterminate Beam. (Fig. 7.10)

You should quickly review the procedure titled

Superposition Procedure � Statically Determinate
Beams and Examples 7.9 and 7.10.

7.3-1 

7.3-5 

7.3-15 

7.3-23 

7.3-29

7.4-1 

7.4-5 

7.4-11 

7.4-13

7.6-1 

7.6-5 

7.6-17

Section 7.6 also treats the analysis of beam

deflection by the Differential-Load
Superposition Method.

Also, quickly review the procedure titled

Procedure for Differential-Load Superposition
and Example 7.11.

7.6-23

7.6-27

Finally, Section 7.6 discusses the analysis of

statically indeterminate beams by the

Superposition Method, which is directly re-

lated to the Basic Force Method discussed

in Sections 3.5 and 4.6.

You should carefully review the procedure titled

Superposition Procedure � Statically Indeterminate
Beams and Examples 7.12 through 7.15.

7.6-33 

7.6-34 

7.6-35

7.3

7.4

7.6

w0

A

Ay

Ax B

MA

x

y, v(x)

L
By

Sections 7.5 (Use of Discontinuity Functions to Determine Beam Deflections), and 7.7 (Slope and Deflection of Beams:

Displacement Method) are “optional” sections.
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TRANSFORMATION 
OF STRESS AND STRAIN; 
MOHR’S CIRCLE

8

8.1 INTRODUCTION

In earlier chapters you were introduced to stress analysis; in particular, you learned

about the stress distribution on cross sections of members loaded axially 

, in torsion , or in bending . In Section 2.9 

you learned that, even though only axial loading is applied to a member, the stress

distribution on an inclined sectioning-plane consists of shear stress as well as nor-

mal stress. You also learned that the normal stress and shear stress on an oblique

plane are directly related to the axial stress through stress-transformation equa-

tions. Similarly, in Section 4.4 an analysis was performed for circular rods in torsion,

which explained the very different failures experienced by a ductile torsion rod and

by a brittle torsion rod (Fig. 4.17).

Figure 8.1 is a photo of reinforced concrete beams tested to failure. You can see

that near the center of the beams the cracking occurs basically on cross sections of

the beams, but away from the center of the beams the cracks are quite slanted. In

Chapter 9 we will consider the stress distribution in beams that leads to such pat-

terns of cracking. We will also examine other examples of combined loading of slen-

der members, that is, loads that produce various combinations of axial force, torque,

bending moment, and transverse shear force. But first, in order to completely char-

acterize the state of stress produced by a single type of load or by a combination of

loads, we must develop stress-transformation equations.
We begin, in Section 8.2, by introducing a two-dimensional state of stress called

plane stress. The stress-transformation equations that are derived in Section 8.3 are

a generalization of the stress-transformation equations developed in Sections 2.9

and 4.4. In Section 8.4 we locate maxima and minima of normal stress and shear

stress, and in Section 8.5 a very important graphical representation of this stress

transformation, called Mohr’s circle, is introduced.

as �
�My

I
, t �

VQ

It
bat �

Tr

Ip
bas �

F
A
b
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As you will discover in Section 8.3, the stress-transformation equations are

based solely on equilibrium; they do not depend on material properties (linearly

elastic behavior, etc.) or on the geometry of deformation. However, there are similar

strain transformation equations; these are based solely on the geometry of deforma-
tion. The transformation of strain is discussed in Sections 8.8 through 8.11.

542
Transformation of Stress and
Strain; Mohr’s Circle

FIGURE 8.1 Typical crack

patterns in reinforced concrete

beams. (From Prestressed

Concrete- A Fundamental

Approach, 5th Ed. Update,

2010, Prentice Hall/Pearson

Education, Courtesy Dr.

Edward G. Nawy, Rutgers

University, New Brunswick,

New Jersey)

x

y

PP

z

τxy

τxz

τzy

τyz

τyx

σy

σx
σz

z

x

y

(a) A set of three mutually orthogonal planes
 through an arbitrary point P.

τyx = τxy
τzx = τxz
τzy = τyz

Stresses are shown
only on the positive
faces; oppositely
directed stresses act
on the negative faces.

(b)  A three-dimensional state of stress referred to
 rectangular cartesian axes.  (Stresses are
 shown only on visible faces.)

τzx

FIGURE 8.2 A general

three-dimensional state of

stress.

In general, if we were to pass three mutually orthogonal planes through any point

in a deformable body under load (Fig. 8.2a), we would find normal and/or shear

stresses on all three planes (Fig. 8.2b). This is called a three-dimensional state of
stress. Fortunately, there are many important instances where some of these stresses

vanish, so that there is then a two-dimensional state of stress. For example, consider

the stresses acting on a small element taken from the web of a plate girder of a

8.2 PLANE STRESS
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bridge (Fig. 8.3). Because the web is thin, and because there are no loads applied

directly to the surface of the web, the three stresses associated with the z axis (�z,

�zx � �xz, and �zy � �yz) are all zero. The nonzero stresses are said to lie in the xy
plane. Strictly speaking, the nonzero stresses act on planes whose normal vectors lie

in the xy plane. Hence, the arrows representing these stresses all lie in the xy plane,

as in Fig. 8.3b.

If the stresses �z, �xz, and �yz vanish everywhere, that is, if

(8.1)

the state of stress in a body is said to be plane stress. The nonzero stresses implied

by Eqs. 8.1 (�x, �y, �xy � �yx) lie in the xy plane.1 Figure 8.4 shows three-dimensional

and two-dimensional views of an element in plane stress. From moment equilibrium

it was found (Eqs. 2.37) that

(8.2)

Since a two-dimensional view can depict the relevant (i.e., nonzero) stress informa-

tion, it is not really necessary to use a three-dimensional view when depicting plane

stress. Special cases of plane stress are uniaxial stress (Fig. 8.5a), pure shear
(Fig. 8.5b), and biaxial stress (Fig. 8.5c).

tyx � txy

sz � txz � tyz � 0

543
Plane Stress

y

z

x

P

(a)  A portion of a bridge girder. (b)  A web element, with
  stresses shown.

P σx

τyx

τxy

FIGURE 8.3 An example

of plane stress.

τxy

σy

σx

z x

y

(a) Three-dimensional view.

τyx(= τxy)

τxy

σy

σx

x

y

(b) Two-dimensional view.

FIGURE 8.5 Special cases

of plane stress.

1A state of plane stress would also exist if the stresses were in the xz plane only or the yz plane only.

FIGURE 8.4 A state of

plane stress depicted in 3-D

and in 2-D.

(c) Biaxial stress.(b) Pure shear.(a) Uniaxial stress.
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Deformable bodies that are in a state of plane stress are usually thin, plate-

like members, like the web of the plate girder in Fig. 8.3.2 The stress-transformation

equations that are derived in Section 8.3 are applicable to such plane-stress prob-

lems, but they are also applicable to a much wider class of two-dimensional stress

problems, where Eqs. 8.1 are valid locally, but not everywhere in the body. For ex-

ample, some portions of the surface of a deformable body are subjected to distrib-

uted loading or concentrated loading, but at those parts of the surface where no

loading is directly applied, the stress state may be classified as locally two-
dimensional, or locally plane stress. A circular rod subjected to an axial load and

a torque, as illustrated in Fig. 8.6, is an example of this type of local plane stress.

Since there are no stresses on the surface of the body at the point in question,

Eq. 8.1 is satisfied locally, and we can treat the stress at this point of the surface as

plane stress.

544
Transformation of Stress and
Strain; Mohr’s Circle

(a) A rod with axial load and torque. (b) A two-dimensional stress state.

A

P

T
A

FIGURE 8.6 An example

of two-dimensional stress at the

surface of a deformable body.

2Chapter 2 of Theory of Elasticity, by S. P. Timoshenko and J. N. Goodier, [Ref. 8-1], discusses plane stress

and plane strain problems.

State of Stress at a Point. If the state of plane stress at a point is known with

reference to particular coordinates, say the stresses (�x, �y, and �xy) in the xy refer-

ence coordinates, what are the values of the stresses at the same point in the body

if we rotate the frame of reference? That is, what will be the values of (�x�, �y�, and

�x�y�) on planes oriented along x�y� axes? In Chapter 6 you learned how to use the

flexure formula and the shear formula to determine the stresses on the x and y faces

of an element located at an arbitrary point (x, y) in a beam, as illustrated in Fig. 8.7a.

However, since we have no assurance that the stresses on those particular faces are

the critical (i.e., maximum) ones, it is very important for us to be able to determine

the stresses on inclined planes, like the n face and the t face in Fig. 8.7b.There is only

one unique state of stress at a point, say point P in Fig. 8.7, but the state of stress has

different representations, depending on the orientation of the axes used. For exam-

ple, although the stresses (�x, �y, �xy) in Fig. 8.7a have different values than the

stresses (�n, �t, �nt) in Fig. 8.7b, both are representations of the same state of stress

at point P.

Notation and Sign Convention. Let us suppose that the stresses �x, �y, and

�xy are known at some point (e.g., point P in Fig. 8.7a). To determine the normal

stress and the shear stress on other faces, like the n and t faces in Fig. 8.7b, we

need only to consider one arbitrarily oriented face and to relate the normal stress

and shear stress on that face to the xy stresses. As illustrated in Fig. 8.8. we orient

8.3 STRESS TRANSFORMATION FOR PLANE STRESS
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the arbitrary face, which we call the n face, by rotating its outward normal n through

the counterclockwise angle � �xn, starting with the positive x axis.

The t axis is oriented so that the ntz axes, like the xyz axes, form a right-handed

coordinate frame. As always, the normal stress �n is positive in tension, and a posi-
tive shear stress on the �n face, �nt acts in the �t direction.

Stress Transformation for Plane Stress. Let us assume that the stresses �x,

�y, and �xy are known, and that the stresses �n and �nt are to be determined. As was

pointed out earlier, the stress transformation equations are based solely on equilib-
rium. To set up equations of equilibrium, we need a free-body diagram. The triangu-

lar element PQR in Fig. 8.8, which is repeated as Fig. 8.9a, shows the stresses acting

on the three faces of the element. A figure like Fig. 8.9a, which depicts stresses act-

ing on various faces of an element, is called a stress element.The stresses act on faces

that appear in edge view on the element. The areas of the various faces are given in

Fig. 8.9b and, by multiplying each stress by the area of the face on which that stress

acts, we obtain the corresponding free-body diagram in Fig. 8.9c.

By writing the equilibrium equations for the free body in Fig. 8.9c and substitut-

ing the areas from Fig. 8.9b, and by using the fact that �yx � �xy (Eq. 8.2), we obtain

�txy(¢A cos u)sin u � txy(¢A sin u) cos u � 0

sn¢A � sx(¢A cos u)cos u � sy(¢A sin u)sin u

a Fn � 0:

�

τyx(= τxy)

τxy

σy

σx

x

y

x

P

y face

x face

(a) The stress state at point P, referred to x and y axes.

P y

τtn(= τnt)

τnt

σt σn

x

y

P

t face

n face

(b) The stress state at point P, referred to n and t axes.

P

t n

FIGURE 8.7 The state of stress at a point, as represented in two reference frames.

τyx(= τxy)

τnt

τxy

σy

σn

θσx

x

y
P

Q

n facet

n

x face

y face

R

FIGURE 8.8 The relation-

ship of an arbitrarily oriented

n face to the reference (xy)

axes.

FIGURE 8.9 The free-body

diagram based on a plane-

stress element.

τyx(= τxy)

τxy

τnt σn

σy

σx
θ

x

(a)  A triangular stress element.

y

t

n

x
σxΔAx

σyΔAy

τxyΔAx

τxyΔAy

τntΔA

σnΔA

(c)  The free-body diagram.

t

n

ΔAx = ΔAcosθ

ΔAy = ΔAsinθ

ΔAn ≡ ΔA

(b)  The areas of the respective faces.

x face n face

y face
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Dividing these equations by and collecting terms, we get

(8.3)

Remember that the angle � in these equations is measured counterclockwise from

the x face to the n face (or, equivalently, from the �x axis to the �n axis), as indi-

cated in Fig. 8.9a.

Equations 8.3 can be expressed in a more convenient form by incorporating the

following trigonometric identities:

(8.4)

Then, from Eqs. 8.3, the stress-transformation equations for plane stress become

(8.5)

It should be emphasized again that, to obtain this stress transformation, we had

to multiply stresses times areas to get the forces acting on the free body in Fig.

8.9c. It is not correct to just sum the stresses on a stress element, like the one in

Fig. 8.9a!

To emphasize the fact that Eqs. 8.5 enable us to compute the normal stress and

the shear stress on any face, that is, on a face at any orientation, let us generalize the

stress plot of Fig. 2.33 and obtain a plot of �n and �nt for the particular state of stress

indicated in Fig. 8.10a. The stresses are ail referred to a common stress magnitude

�0, and their senses are indicated by the arrows in Fig. 8.10a. A range of � from �90�
to �90� is sufficient to represent all possible planes that can be passed through a

point, so the plot in Fig. 8.10b extends from �90� to �90�.
The following example illustrates how equilibrium equations may be used di-

rectly to calculate the normal stress and shear stress on an oblique face.

 tnt � � asx � sy

2
b sin 2u � txy cos 2u

 sn � asx � sy

2
b � asx � sy

2
b cos 2u � txy sin 2u

cos2 u �
1

2
 (1 � cos 2 u)

sin2 u �
1

2
 (1 � cos 2u)

2 sin u cos u � sin 2 u

 tnt � �(sx � sy) cos u sin u � txy(cos2 u � sin2 u)

 sn � sx cos2 u � sy sin2 u � txy(2 sin u cos u)

¢A

�txy(¢A cos u)cos u � txy(¢A sin u)sin u � 0

tnt¢A � sx(¢A cos u)sin u � sy(¢A sin u)cos u

a Ft � 0:546
Transformation of Stress and
Strain; Mohr’s Circle

Stress-
Trans-
formation
Equations

qZ
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E X A M P L E  8 . 1

The state of plane stress at a point is indicated in Fig. 1a. Determine the

normal stress �x� and the shear stress �x�y� on the x� face, which is rotated

30� counterclockwise from the x face, as illustrated in Fig. 1b.

Plan the Solution We can follow the procedure used to derive Eqs. 8.3,

using the specific angle of 30� rather than the general angle �.

Solution

Equilibrium: The free-body diagram is shown in Fig. 2.

 � 10¢Ay sin(30°) � 10¢Ay cos(30°) � 0

 sx¿¢A � 20¢Ax cos(30°) � 10¢Ax sin(30°)

a Fx¿ � 0:

FIGURE 8.10 The normal

stress and shear stress corre-

sponding to the sample state

of plane stress.

Fig. 1 Stress-transformation data.

σn––σ0

σn––σ0

τnt––σ0

τnt––σ0

σ0

σ0

t

σx
σy
τxy

 = 2σ0

 = –σ0

 = –σ0

θ

θ
2σ0

n

x

y

,

π– –
2

π–
2

(a)  A sample state of plane stress. (b)  Normal stress and shear stress
  as functions of the orientation
  of the stress face.

1

–1

–2

2

τnt σn

547
Stress Transformation for

Plane Stress

x x

x′

y′

30°

y

(a)  The given state of plane
  stress at a point.

(b)  The orientation of the
  x′ face.

10 MPa

10 MPa

20 MPa

20ΔAx

10ΔAx

ΔAx
ΔAy

 = ΔAcos(30°)
 = ΔAsin(30°)

10ΔAy

10ΔAy

τx′y′ΔA

σx′ΔA

y′

x′

30°

Fig. 2 The free-body 

diagram.

Qz
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So,

Ans. (1a)

or

Ans. (1b)

The stresses on the x� face are shown in Fig. 3.

tx¿y¿ � �17.99 MPa

 � 10¢Ay sin(30°) � 10¢Ay cos(30°) � 0

 tx¿y¿¢A � 20¢Ax sin(30°) � 10¢Ax cos(30°)

a Fy¿ � 0:

sx¿ � 3.84 MPa

In Example 8.1, the values of the normal stress and the shear stress on a

particular face at a specified angle were obtained by the direct use of a free-body di-

agram and equilibrium equations. The stress-transformation equations, Eqs. 8.5,

could also have been used to solve this problem. Starting with Eqs. 8.5 we will: (1)

derive expressions for the maximum normal stress and the maximum shear stress

10 MPa

10 MPa

17.99 MPa

3.84 MPa

10 MPa

20 MPa

y′
y

x′

x

30°

Fig. 3 Stress element.

y ≡ t

(a) The x face is the n face.

τxy

σy

σx

x face

x′ ≡ n

x

y′ ≡ t

(c) The x′ face is the n face.

τx′y′

σy′

σx′ θxx′

x′ face

x–x ≡ t

y ≡ n

(b) The y face is the n face.

τyx

σy

σx

y face

θ = 90°, n     y
σn       σy
τnt       –τyx

θ = 0, n     x
σn       σx
τnt       τxy

θxn ≡ θxx′ 
n       x′
σn       σx′
τnt       τx′y′

x′

–x′ ≡ t

x

y′ ≡ n

(d) The y′ face is the n face.

τy′x′

σy′

σx′

θxy′

y′ face

θxn ≡ θxy′ = θxx′ + 90°  
n       y′
σn       σy′
τnt       –τy′x′

x ≡ n

FIGURE 8.11 The stresses on orthogonal faces.
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at a point (Section 8.4), and (2) develop the Mohr’s circle graphical representation

of the stress-transformation equations (Section 8.5). First, however, formulas for the

normal stress and shear stress on two orthogonal faces of a rotated element, like the

x� face and the y� face of the x�y� element in Fig. 8.11c, will be derived.

Stresses on Orthogonal Faces. The two stress-transformation equations for

plane stress, Eqs. 8.5, relate the normal stress �n and the shear stress �nt on an

arbitrary face to a given set of xy stresses. However, we frequently need to make

reference to the stresses on two orthogonal faces—for example, the x face and the

y face. Figure 8.11a illustrates the case of � � 0. Then, as indicated on Fig. 8.11a,

n → x, t → y, �n → �x, and �nt → �xy. When we consider the y face (Fig. 8.11b), we

must remember that the ntz axes form a right-handed coordinate system.

Therefore, when � � 90�, n → y, t → �x, �n → �y, and �nt → ��yx(� ��xy). The last

of these equivalencies, �nt → ��xy, results from the fact that the t axis corresponds

to the �x axis, not the �x axis.

Now let us consider a pair of arbitrarily oriented orthogonal faces, for example,

the x� face and y� face in Fig. 8.11c and Fig. 8.11d. Let the orientation of the faces x�
and y� be specified by the one angle �xx�. Then, �xy� � �xx� � 90�. Figure 8.11c relates

�n and �nt to the stresses on the x� face, and Fig. 8.11d relates �n and �nt to the stresses

on the y� face.We can calculate these stresses using Eqs. 8.5, noting that 2�xy� � 2(�xx� �
90�) � 2�xx� � 180�.

Note that, as expected, �y�x� � �x�y�.

 ty¿x¿ � �tnt (uxx¿ � 90°) � � asx �sy

2
b sin 2uxx¿ � txy  cos 2uxx¿ � tx¿y¿

 sy¿ � sn(uxx¿ � 90°) � asx �sy

2
b � asx �sy

2
b cos 2uxx¿ � txy sin 2uxx¿

 tx¿y¿ � tnt (uxx¿) � � asx �sy

2
b sin 2uxx¿ � txy cos 2uxx¿

 sx¿ � sn(uxx¿) � asx �sy

2
b� asx �sy

2
b cos 2uxx¿ � txy sin 2uxx¿

549
Stress Transformation for

Plane Stress

(8.6)

E X A M P L E  8 . 2

The state of plane stress at a point is indicated in Fig. 1a. Use Eqs. 8.5 

to determine the stresses on faces that are rotated 30� counterclockwise

from the orientation of the element in Fig. 1a, as illustrated in Fig. 1b.

Show the stresses on a rotated stress element.

Plan the Solution For the x� face � � 30�, while for the y� face � �
30� � 90� � 120� (or we could use � � �60�). This is a straightforward

“plug-in” type problem employing Eqs. 8.5 (or 8.6). From Fig. 1a we have:

sx � 20 MPa, sy � �10 MPa, txy � �10 MPa
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Solution For the x� face, � � 30�, so 2� � 60�, and, referring to Fig. 8.11c,

n → x�, t → y�. Then, Eq. 8.5a gives

or

Ans. (1a)

Similarly, Eq. 8.5b gives

or

Ans. (1b)

For the y� face, � � 120�, so 2� � 240�, and, referring to Fig. 8.11d,

n → y�, t → �x�. Then, from Eqs. 8.5,

Ans. (2)

Equations (1) determine the stresses on the x� face, and Eqs. (2)

determine the stresses on the y� face. These results are illustrated in Fig. 2.

Review the Solution This is a very short problem whose results should

be verified by first seeing if the magnitude of each answer is reasonable.

Then the calculations should be spot-checked for accuracy. In the pres-

ent case, the stresses given on Fig. 1a are in the same proportions as the

stresses in Fig. 8.10a. Hence, we can look at the values of �n/�0 and �nt/�0

in Fig. 8.10b in order to confirm our answers for this problem.

sy¿ � 6.16 MPa

ty¿x¿ � �17.99 MPa

sy¿ � sn(120°),

ty¿x¿ � �tnt(120°),

tx¿y¿ � �17.99 MPa

 tx¿y¿ � �a20 MPa � 10 MPa

2
b sin(60°) � (�10 MPa) cos(60°)

 tx¿y¿ � �asx � sy

2
b sin 2u � txy cos 2u

sx¿ � 3.84 MPa

 � (�10 MPa) cos(60°)

 sx¿ � a20 MPa � 10 MPa

2
b � a20 MPa � 10 MPa

2
b cos(60°)

 sx¿ � asx � sy

2
b � asx � sy

2
b cos 2u � txy sin 2u

Fig. 2 Stresses on an x�y� element at

� � 30�.

x′

x

y′
x′ face

y′ face

θxx′ = 30°

x

y

10 MPa

10 MPa

The given state of plane
stress at a point.

(a) 

An element rotated 30°
counterclockwise.

(b) 

20 MPa

x′

y′

3.84 MPa

6.16 MPa

17.99 MPa

30°

Fig. 1 Stress-transformation data.
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It is not a coincidence that in Example Problem 8.2, (�x � �y) � (�x� � �y�). By

adding Eqs. 8.6a and 8.6c, we get that, independent of the angle �,

(8.7)

Therefore, the sum of the normal stresses on orthogonal faces is a constant, which

is called a stress invariant. That is, the sum of normal stresses on orthogonal faces
does not vary with the angle �.

It is apparent from Fig. 8.10b that the maxima and minima of normal stress and

shear stress at a point do not necessarily act on the x and y faces, that is, on the faces

whose stresses are “given.” In the next section we will derive equations that enable

us to locate the planes on which these maxima (and minima) act.

sx¿ � sy¿ � sx � sy

551
Principal Stresses and

Maximum Shear Stress

8.4 PRINCIPAL STRESSES AND MAXIMUM SHEAR STRESS

Since a structural member or machine component may fail because of excessive

normal stress or excessive shear stress, it is important to be able to determine the

maximum normal stress and the maximum shear stress at a point. Figure 8.10b illus-

trates the fact that, for a plane-stress situation, there are certain planes on which the

maximum and minimum normal stresses act and planes on which the maximum and

minimum shear stresses act. In this section we will determine how to locate these

planes and how to calculate these special stresses for the plane-stress case. Three-

dimensional stress states are discussed in Section 8.6.

Principal Stresses. The maximum and minimum normal stresses are called prin-
cipal stresses.3 As is evident from Fig. 8.10b, the principal stresses occur on planes

that satisfy the equation

(8.8)

where �n(�) is given by Eq. 8.5a. Then,

The angles �p determine the orientation of the principal planes, the planes on which

the principal stresses act. They are obtained by solving for the two values of �p that

satisfy the equation

(8.9)

Figure 8.12a illustrates how to use the tangent value given by Eq. 8.9 to determine

the angles �p. There are two angles between 0� and 360� that satisfy Eq. 8.9. As

tan 2up �
txy

asx � sy

2
b

dsn

du
� �(sx � sy)sin 2up � 2txy cos 2up � 0

dsn

du
� 0

3The word principal is often confused with the word principle. Principal stresses are the al type, meaning

most important stresses.
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illustrated by Fig. 8.12b, these two values of 2�p, labeled 2�p1 and 2�p2, differ by 180�,
so the principal planes are oriented at 90� to each other. That is,

(8.10)

To determine the actual values of the principal stresses, that is, the normal

stresses on the principal planes, we must substitute �p1 and �p2 into Eq. 8.5a. From

Fig. 8.12a we can see that

(8.11)

The quantity R is positive, and it has the units of stress. Also, from Fig. 8.12, the two
principal directions are given by

(8.12a)

and

(8.12b)

Combining Eq. 8.5a with Eqs. 8.11 and 8.12, we get the two expressions for the two
principal stresses:

(8.13)

where

(8.14)

and where R is given by Eq. 8.11. The designation denotes the maxi-
mum normal stress at the point, while denotes the minimum normal
stress at the point. It is easy to see that �1 and �2 satisfy Eq. 8.7.

With angles �p1 and �p2 determined by Eqs. 8.12, and �1 and �2 determined by

Eqs. 8.13 (with 8.11 and 8.14), we can show the two principal stresses on a properly

oriented element. First, however, let us determine the values of the shear stress on

the principal planes by substituting Eqs. 8.12 into Eq. 8.5b. We get

(8.15)

This illustrates the important fact that there is no shear stress on principal planes.
Therefore, Fig. 8.13 represents the stresses on a properly oriented principal-
stress element.

tnt(up1) � 0,  tnt(up2) � 0

s2 � sn(up2)

s1 � sn(up1)

savg �
sx � sy

2

s2 � sn(up2) � savg � R

s1 � sn(up1) � savg � R

sin 2up2 �
�txy

R
,  cos 2up2 �

�asx � sy

2
b

R

sin 2up1 �
txy

R
,  cos 2up1 �

asx � sy

2
b

R

R �
B
asx � sy

2
b2

� t2
xy

up2 � up1 � 90°

Principal
Stresses

x

σ1

σ1

σ2

σ2

θp2

θp1

(a) Determination
      of angle 2θp.

(b) Two angles satisfy Eq. 8.9.

σx – σy______
2(             )

τxy

p1

p1

p2

2θp1

2θp1

2θp2 
= 2θp1 

± 180°

R

FIGURE 8.12 Determination

of the angles that locate princi-

pal planes.

FIGURE 8.13 A principal-

stress element.
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In Section 8.5 you will learn a convenient graphical procedure, called Mohr’s
circle, that is very useful for locating principal planes and calculating principal

stresses. Both the equations of this section and the Mohr’s circle method introduced

in Section 8.5 determine in-plane stresses, that is, stresses in what has been desig-

nated as the xy plane. Section 8.6 extends the notion of principal stresses to three

dimensions, and it also treats maximum shear stress in three dimensions.

Maximum In-Plane Shear Stress. We can locate the planes of maximum in-

plane shear stress and calculate the value of the maximum in-plane shear stress by

following the same procedure that we used to determine the principal planes and

the principal stresses. By differentiating Eq. 8.5b we obtain

where �s designates a plane on which the shear is a maximum.4 Therefore,

(8.16)

Figure 8.14 illustrates the fact that two angles, 2�s, satisfy Eq. 8.16, and that these

two angles are �90� from the angles 2�p that locate the principal planes. Therefore,

the planes of maximum shear-stress magnitude lie at �45� from principal planes and
are oriented at 90� to each other. From Fig. 8.14 we get

(8.17a)

and

(8.17b)

Substituting these expressions into Eq. 8.5b, we get the following expressions for

maximum (and minimum) in-plane shear stress �max:

(8.18)

Thus, we find that the planes of maximum in-plane shear stress magnitude satisfy

the equation

(8.19)us � up � 45°

 ts2 � tnt(us2) � �R � �tmax

 ts1 � tnt(us1) � R � tmax

sin 2us2 �

asx � sy

2
b

R
,  cos 2us2 �

�txy

R

sin 2us1 �

�asx � sy

2
b

R
,  cos 2us1 �

txy

R

tan 2us � � 

asx � sy

2
b

txy

dtnt

du
� �(sx � sy) cos 2us � 2txy sin 2us � 0

553
Principal Stresses and

Maximum Shear Stress

4Since the maximum (i.e., algebraically largest) shear stress and the minimum (i.e., algebraically least)

shear stress have the same magnitude, we will just refer to the “maximum” (see Eq. 8.18).

Maximum
In-plane
Shear Stress

σx – σy______
2(             )

σx – σy______
2(             )

τxy

–τxy

p1

x

p2 s1

s2

2θp1

2θs2

R
R

FIGURE 8.14 Determination

of the angles that locate planes

of maximum shear stress.
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and that the shear stresses on these planes are equal in magnitude. Unlike principal

stresses �1 and �2, which may have different magnitudes and different signs, only the

magnitude of the maximum shear stress is important. It is labeled �max.

Before sketching a maximum-shear-stress element, we need to determine the

values of normal stress on each of the planes of maximum shear stress. Substituting

Eqs. 8.17 into Eq. 8.5a, we get

(8.20)

Thus, the planes of maximum shear are not free of normal stress (unless �x � ��y).

On the contrary, they both have the same normal stress, �avg. Figure 8.15b depicts

the maximum-shear-stress element that corresponds to the principal stress element

of Fig. 8.13 (repeated as Fig. 8.15a). Note how the planes of maximum shear are ori-
ented at 45� to the principal planes, and note that the maximum-shear diagonal (in

Fig. 8.15b the shear arrows all point to this diagonal) lies along the p1 principal

direction. Mohr’s circle, which is discussed in the next section, will provide further

insight into the relationships illustrated in Fig. 8.15.

ss2 � sn(us2) �
sx � sy

2
� savg

ss1 � sn(us1) �
sx � sy

2
� savg

554
Transformation of Stress and
Strain; Mohr’s Circle

x x

s2

s2

s1

45°

45°

s1

p1
p1

(a) Principal-stress element. (b) Maximum-shear-stress element.

θp1
θp1

θs2σavgσ2

σ1

σavg

τmax

FIGURE 8.15 The relation-

ship of the planes of maximum

shear stress to the principal

planes.

E X A M P L E  8 . 3

For the plane-stress state depicted in Fig. 1 (same as Fig. 1a of Example

8.1), (a) determine the orientation of the principal planes; determine the

principal stresses; and illustrate the principal stresses on a properly ori-

ented principal-stress element. (b) Determine the orientation of the

planes of maximum in-plane shear stress; determine the value of the

maximum shear stress; and illustrate the maximum in-plane shear stress

on a properly oriented element.

Plan the Solution From Fig. 1, we have

sx � 20 MPa, sy � �10 MPa, txy � �10MPa
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For Part (a), we could determine the two values of 2�p from 

Eq. 8.9, but it will be more instructive to use Eqs. 8.12 to construct a

sketch like Fig. 8.12.The values of �1 and �2 are easily calculated by using

Eqs. 8.13.

For Part (b), we could determine the two values of 2�s from Eq. 8.16,

but, again, it will be more instructive if we use Eqs. 8.17 to construct a

sketch like Fig. 8.14. The stresses on the planes of maximum shear are

given by Eqs. 8.18.

Solution

(a) Principal Stresses and Principal Planes: To determine the orientation

of the principal planes, we will first sketch a figure like Fig. 8.12. To do

this, we use Eqs. 8.12a and 8.12b to sketch Fig. 2.

and

The value of R can be computed by referring to Fig. 2 or by using 

Eq. 8.11. This gives

(1a)

(1b)

From Eq. 8.12a, as illustrated in Fig. 2,

(2a)

Ans. (a) (2b)

Equation (2a) is to be read, “2�p1 is the angle whose sine is s and whose

cosine is c, as given in the square bracket [sin�1(s); cos�1(c)].’’ likewise,

from Eq. 8.12b, as illustrated in Fig. 2,

(3a)

Ans. (a) (3b)

From Eq. 8.14,

(4)savg �
sx � sy

2
�

(20 MPa � 10 MPa)

2
� 5 MPa

 up2 � 73.2°

2up2 � c sin�1 a 10

2325
b; cos�1 a �15

2325
b d � 146.31°

up1 � �16.8°

2up1 � c sin�1 a �10

2325
b; cos�1 a 15

2325
b d � �33.69°

R � 2325 MPa � 18.03 MPa

R �
B
asx � sy

2
b2

� (txy)2 � 2(15 MPa)2 � (�10 MPa)2

txy � �10 MPa

sx � sy

2
�

20 MPa � 10 MPa

2
� 15 MPa

Fig. 1 A state of plane stress.
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x

y

10 MPa

10 MPa

Shear
diagonal

20 MPa

Fig. 2 A sketch representing principal

directions.

x

p1

p2

15

10

–10

R

R

–15

2θp2
 = 146.31°

⏐2θp1
⏐ = 33.69°
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Problems like this one are generally solved by using Mohr’s Circle (Section 8.5),

which provides a helpful visualization of the entire problem.

and, from Eqs. 8.13,

Ans. (a) (5a)

Ans. (a) (5b)

These stresses are shown on the principal-stress element in Fig. 3.

(b) Maximum In-Plane Shear Stress: To determine the orientation of the

planes of maximum in-plane shear stress, we will sketch a figure like Fig.

8.14. (We could also use the fact that the maximum-shear-stress element

is rotated 45� from the principal-stress element.) Equations 8.17 enable

us to determine the cosine and sine legs of angles 2�s1 and 2�s2 and, from

them, to sketch Fig. 4.

From Eq. 8.17a, as illustrated in Fig. 4,

(6a)

Ans. (b) (6b)

Similarly, from Eq. 8.17b, as illustrated in Fig. 4,

(7a)

Ans. (b) (7b)

From Eqs. 8.18,

Ans. (b) (8a)

Ans. (b) (8b)

The maximum in-plane shear-stress element is sketched in Fig. 5 using

the data in Eq. (4) and in Eqs. (6) through (8).

Review the Solution The principal stress �1 should be � the greater

normal stress on Fig. 1, which it is; and principal stress �2 should be 	 the

lesser normal stress on Fig. 1, which it is.The p1 principal direction should

lie between the axis of the greater normal stress, here the x axis, and the

shear diagonal. The p1 direction of �16.8� satisfies this requirement.

Therefore, the principal stresses and principal directions are probably

correct.

The maximum in-plane shear stress must be greater than the given

shear on Fig. 1, and the directions of maximum shear must bisect the

principal directions. These requirements are satisfied by Fig. 5, so our

maximum shear stresses are also probably correct.

 ts2 � tnt(us2) � �R � �18.0 MPa

 ts1 � tnt(us1) � R � 18.0 MPa

us2 � 28.2°

2us2 � c sin�1 a 15

2325
b; cos�1 a 10

2325
b d � 56.31°

us1 � �61.8°

2us1 � c sin�1 a �15

2325
b; cos�1 a �10

2325
b d � �123.69°

s2 � savg � R � �13.0 MPa

s1 � savg � R � 23.0 MPa

Fig. 3 The principal-stress element.

Fig. 4 A sketch representing 

maximum-shear-stress directions.

Fig. 5 The maximum in-plane shear-

stress element.

x

73.2°

16.8°

2

123.0 MPa

13.0 MPa

x

s1

s2

15

10

–10

–15

2θs2
2θs1

18.0 MPa

5 MPa
5 MPa

x

s2

θs2
 = 28.2°

s1
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Mohr’s circle is an ingenious graphical representation of the plane stress transforma-
tion equations, Eqs. 8.5.5 It permits an easy visualization of the normal stress and

shear stress on arbitrary planes, and it greatly facilitates the solution of plane-stress

problems like Example Problems 8.1 through 8.3.

Derivation of Mohr’s Circle. Let us begin our derivation of Mohr’s circle for

plane stress by rewriting Eqs. 8.5 in the form

(8.21)

Squaring both sides of each of these equations, and adding the resulting squares,

we get

or

(8.22)

This is the equation of a circle in (�, �) coordinates, with center at (�avg, 0) and radius

R. The plane-stress transformation equations 8.5 are just parametric equations of a

circle, with the parameter being �, and with the coordinates of point N on the circle

representing the normal stress �n and shear stress �nt on the n plane at orientation

.

To determine more of the properties of Mohr’s circle, consider now the circle

shown in Fig. 8.16. After discussing many properties of Mohr’s circle, using Fig. 8.16,

we will suggest a procedure for you to use in constructing a Mohr’s circle from given

stress data, and we will illustrate how to solve problems like Example Problems 8.1

through 8.3 using Mohr’s circle.

Mohr’s circle is drawn on a set of rectilinear axes with the horizontal axis (axis

of abscissas) representing the normal stress �, and with the vertical axis (axis of

ordinates) representing the shear stress �. Note that the positive � axis is down-
ward. The sign convention for � is the same one that was introduced in Section 8.3.

The angle is, as previously, measured counterclockwise from the x axis to

the n axis on the body undergoing plane stress. Correspondingly, an angle of

is measured counterclockwise on Mohr’s circle.6 Every point on Mohr’s2u � 2uxn

u � uxn

u � uxn

(sn � savg)2 � t2
nt � R2

(sn � savg)2 � t2
nt � asx � sy

2
b2

� t2
xy

 tnt � �asx � sy

2
b sin 2u � txy cos 2u

 sn � savg � asx � sy

2
b cos 2u � txy sin 2u

8.5 MOHR’S CIRCLE FOR PLANE STRESS

5Otto Mohr (1835-1918), a German structural engineer and professor of engineering mechanics, intro-

duced the graphical representation of stress at a point, Mohr’s circle; developed a failure criterion (see

Sect. 12.3); and made many other important contributions to mechanics of structures and materials 

[Ref. 8-2]. Mohr’s circle is also useful in the computation of strain transformations (Section 8.9) and the

computation of moments and products of inertia (Appendix C.3).
6The sign convention for Mohr’s circle is sometimes a cause of confusion, leading to many different

treatments in texts on the mechanics of deformable bodies. Just remember, in this text, � Is positive
downward, and angles are turned in the same direction on both the body (angle �) and on Mohr’s circle
(angle 2�).
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circle corresponds to the stresses � and � on a particular face; for the generic point

N, the stresses are (�n, �m). To emphasize this, we will label points on the circle with
the same label as the face represented by that point, except that a capital letter will

designate the point on Mohr’s circle. The x face is represented by point X on the

circle; the n face is represented by point N on the circle, and so on.

To reinforce the sign convention for plotting shear stresses on Mohr’s circle,

the small shear stress icons in Fig. 8.16 indicate that the shear stress on a face plots
as positive shear (i.e., plots downward) if the shear stress on the face would tend to
rotate a stress element counterclockwise. Conversely, the shear stress on a face

plots as negative shear (i.e., plots upward) if the shear stress on that face would

tend to rotate a stress element clockwise. Note that this sign convention for plot-

ting � causes the y face to be represented by the point Y at (�y, ��xy), just as was

explained in Fig. 8.11b.

Before we look at examples of how Mohr’s circle is used, let us establish the fact

that Mohr’s circle does, indeed, provide a graphical representation of the stress
transformation equations, Eqs. 8.5. Equations 8.23 and 8.24 come directly from the

trigonometry of the circle in Fig. 8.16.

(8.23)

and

(8.24)

The angle � on Fig. 8.16 is introduced just to facilitate the derivation that follows.

The trigonometric identifies for the cosine and sine of the sum of two angles are

(8.25)
sin(a � b) � sin a cos b � cos a sin b

cos(a � b) � cos a cos b � sin a sin b

sx � sy

2
� R cos(2u � b),  txy � R sin(2u � b)

sn � savg � R cos b,  tnt � R sin b

558
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FIGURE 8.16 Properties

of Mohr’s circle for plane

stress.

x

n

y

τxy

t

σn

σx

σy

τnt

C P1P2

S2

T

Y (σy, – τxy)

σ

τ

N (σn, τnt)
θ = θxn

σavg = ( (σx + σy———
2 ( (σx – σy———

2

β

θ

S1
X (σx, τxy)
 θ = 0

R

2θ
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Letting � � 2�, we can convert Eqs. 8.24 to the form

(8.26a)

(8.26b)

If we multiply Eq. 8.26a by cos 2� and Eq. 8.26b by sin 2� and add the resulting

equations, we get

(8.27)

but, combining this with Eq. 8.23a leads to

(8.5a) 

(repeated)

which, of course, is just Eq. 8.5a. Similarly, multiplying Eq. 8.26a by sin 2� and 

Eq. 8.26b by cos 2� and subtracting the latter from the former we get

(8.28)

but, Eq. 8.23b reveals that this can be written

(8.5b)

(repeated)

which is just Eq. 8.5b. Again, we have shown that Eqs. 8.5 are just the parametric

equations of a circle in (�, �) coordinates.

Having established that Mohr’s circle of stress is a graphical representation of
the transformation equations for plane stress, let us examine other properties that

can be easily deduced from Mohr’s circle.

Properties of Mohr’s Circle. Referring to Fig. 8.16, we can conclude the 

following:

• The center of Mohr’s circle lies on the � axis at (�avg, 0).

• Points on the circle that lie above the � axis (i.e., � negative) correspond to

faces that have a clockwise-acting shear; points that lie below the � axis (i.e.,

� positive) correspond to faces that have a counterclockwise-acting shear, as

illustrated by Fig. 8.17.

• The radius of the circle is determined by applying the Pythagorean theorem

to the triangle with sides �xy and , giving

(8.11)

repeated

(Continued on p. 561)

R �
B
asx � sy

2
b2

� t2
xy

asx � sy

2
b

tnt � �asx � sy

2
b sin 2u � txy cos 2u

� asx � sy

2
b sin 2u � txy cos 2u � R sin b

sn � savg � asx � sy

2
b cos 2u � txy sin 2u

asx � sy

2
b cos 2u � txysin 2u � R cos b

 txy � R(sin 2u cos b � cos 2u sin b)

sx � sy

2
� R(cos 2u cos b � sin 2u sin b)
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Mohr’s Circle for Plane Stress
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560
Transformation of Stress and
Strain; Mohr’s Circle

7After you become proficient with Mohr’s circle, a simple sketch will suffice. However, at first it is 

helpful if you draw stress magnitudes (at least roughly) to scale and draw angles the correct size.
8Although it was suggested that the circle be accurately drawn to some scale, you should use trigonometry

to compute the required answers and only scale magnitudes and angles off of the Mohr’s circle as a check

of your calculations.

PROCEDURE FOR CONSTRUCTING AND USING MOHR’S CIRCLE OF STRESS

To solve plane-stress problems, such as determining the

stresses on a particular face (e.g., Example Problems 8.1 and

8.2) or determining principal stresses and maximum in-plane

shear stresses (Example Problem 8.3), the following proce-

dure is suggested:

Draw Mohr’s Circle7

1. Establish a set of (�, �) axes, with the same scale on both

axes. Remember, the �� axis points downward. It is good

idea to use paper that has a grid, like graph paper or 

“engineering paper.” Use a scale that will result in a cir-

cle of reasonable size.

2. Assuming that �x, �y, and �xy are given (or can be deter-

mined from a given stress element), locate point X at 

(�x, �xy) and point Y at (�y, ��xy).

3. Connect points X and Y with a straight line, and locate

the center of the circle where this line crosses the � axis

at (�avg, 0).

4. Draw a circle with center at (�avg, 0) and passing through

points X and Y. It is best to use a compass to draw the

circle.

Compute the Required Information

5. Form the triangle with sides �xy and , and 

compute

asx � sy

2
b

(8.11)

6. If the stresses on a particular face, call it face n, are

required, locate point N on the circle by turning an angle

2� counterclockwise (or clockwise) on the circle, corre-

sponding to rotating an angle � counterclockwise (clock-

wise) from some reference face on the stress element.

Using trigonometry, calculate �n and �nt.
8

7. If the principal stresses and the orientation of the princi-

pal planes are required, use

(8.13)

to calculate the principal stresses, and use trigonometry

to determine some angle, such as 2�xp1 that can be used to

locate a principal plane, say p1, with respect to some

known face, say the x face.

8. Use a procedure similar to Step 7 if the maximum in-

plane shear stress and the planes of maximum shear stress

are required.

s1 � savg � R,  s2 � savg � R

R �
B
asx � sy

2
b2

� t2
xy

FIGURE 8.17 The Mohr’s

circle shear-stress sign 

convention.

n
t

σ

τ

σ

τ

n

t

(a) Clockwise shear stress. (b) Counterclockwise shear stress.

c08TransformationOfStressAndStrain;Mohr'sCircle.qxd  9/28/10  4:48 PM  Page 560



• Two planes that are 90� apart on the physical body are represented by the

two points at the extremities of a diameter, such as points X and Y or P1 and

P2 in Fig. 8.16.

• If we rotate counterclockwise by an angle �ab to go from face a to face b of

the physical body, we must rotate in that same direction through the angle

2�ab to get from point A on Mohr’s circle to point B. Figure 8.18 illustrates

this property of the Mohr’s circle sign convention. In equations, a positive

angle is always counterclockwise.

• The principal planes are represented by points P1 and P2 at the intersections

of Mohr’s circle with the � axis (Fig. 8.16). The corresponding principal
stresses are �1 � �avg � R and �2 � �avg �R.

• The planes of maximum shear stress are represented by points S1 and S2 that

lie directly below and above the center of the Mohr’s circle (Fig. 8.16). The

corresponding stresses are: (�avg, R) on face s1, and (�avg, �R) on face s2.

• Since the stresses on orthogonal planes n and t are represented by the points

at each end of a diameter of Mohr’s circle,

(8.7)
repeated

sn � st � sx � sy

E X A M P L E  8 . 4

For the plane-stress state in Example Problems 8.1 and 8.2 (Fig. 1), do

the following: (a) Draw Mohr’s circle. (b) Determine the stresses on all

faces of an element that is rotated counterclockwise from the orien-

tation of the stress element in Fig. 1. (c) Determine the orientation of the

principal planes; determine the principal stresses. (d) Determine the ori-

entation of the planes of maximum shear stress; determine the value of

the maximum shear stress.

Solution We can just follow the procedure outlined on page 560.

(a) Mohr’s Circle: On grid paper (Fig. 2), plot point X at (20 MPa, �10

MPa), and plot point Y at (�10 MPa, 10 MPa). The center of the circle is

obtained by connecting X and Y. The diameter crosses the � axis at C:

(�avg, 0) where

(1)

The circle is drawn with center at C and passing through points X
and Y. The radius R is calculated from the shaded triangle XCB in Fig. 2.

(2)

(b) Stresses on x� and y� Faces: Locate the points on Mohr’s circle that

correspond to rotating the stress element by 30�. This means rotating 60�
counterclockwise from the XY diameter on Mohr’s circle. We label these

two points X� and Y�.

R � 2(15 MPa)2 � (10 MPa)2 � 2325 MPa � 18.03 MPa

savg �
20 MPa � 10 MPa

2
� 5 MPa

30°

Fig. 1 A state of plane stress.

FIGURE 8.18 Consistent

angles.

σ
2θad

θad

θab

2θab

τ

C

face d
d

b

a

a

A

B

D

face b

y

x

Shear
diagonal

10 MPa

10 MPa

20 MPa
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Fig. 2 Mohr’s circle.

A B

R

C

S1 Y ′

10–10

10

20

–10

–20

20

23.03

13.03

2θxx ′ = 60°

2θxs2

2θxp1

2θyp2
–20

σ (MPa)

τ (MPa)

S2

P1P2

X ′

X (20, –10)

Y (–10, 10)

R = 18.03 MPa

σavg =

5MPa

To determine the stresses at points X� and Y�, we need to establish

the geometry and trigonometry of the triangle X�CA. To determine 

X�CA we need to first determine the (clockwise) angle 2�xp1, in Fig. 2.

Using the triangle, XCB, we get

(3a)

(3b)

Therefore,

(4)

From the triangle X�CA,

(5a)

or

(5b)

Therefore,

Ans. (b) (6)
sy¿ � savg � AC � 6.16 MPa

sx¿ � savg � AC � 3.84 MPa

AC � 1.16 MPa

AC � R cos(�X¿CA) � 18.03 cos(86.31°)

�X¿CA � 180° � 60° � 2uxp1 � 86.31°

 uxp1 � 16.8°

2uxp1 � tan�1 a10

15
b � 33.69°

�

562

�

s
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Also, from triangle X�CA we get

or

Ans. (b) (7)

Equations (6) and (7) are the same answers that we obtained in

Example Problem 8.1 by using formulas directly.

(c) Principal Planes and Principal Stresses: We have already calculated

�xp1 in Eq. (3). From Fig. 2,

(8a)

(8b)

Also, from Fig. 2,

or

Ans. (c) (9)

(d) Maximum In-Plane Shear Stress: The planes of maximum in-plane

shear stress are represented by the points S1 and S2 on Mohr’s circle.

From Fig. 2,

so

Also, by referring to Fig. 2, we see that

The maximum in-plane shear stress occurs on plane s1 and on plane s2

and is given by

Ans. (d)

On the planes of maximum shear stress, the normal stress is

Ans. (d)ss1 � ss2 � savg � 5 MPa

ts1s2 � R � 18.0 MPa

 uxs2 � 28.2°

2uxs2 � 90° � 2uxp1 � 90° � 33.69° � 56.31°

uxs1 � 61.8°

2uxs1 � 90° � 2uxp1 � 90° � 33.69° � 123.69°

s1 � 23.0 MPa,  s2 � �13.0 MPa

 s2 � savg � R � 5 MPa � 18.03 MPa � �13.0 MPa

 s1 � savg � R � 5 MPa � 18.03 MPa � 23.0 MPa

 uyp2 � 16.8°

2uyp2 � 2uxp1 � 33.69°

tx¿y¿ � �18.0 MPa

tx¿y¿ � �R sin(�X¿CA) � �18.03 sin(86.31°)

563

�

�

�
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Mohr’s Circle—Stress TransformationsMDS8.1 – 8.3

564

Review the Solution It is very important to construct the Mohr’s circle

properly. Once that is done, subsequent results can be checked visually

by (roughly) estimating the values of normal stresses and shear stresses

that are required and the angles that are required.

The comments in the Review the Solution section of Example

Problem 8.3 apply to the results that we obtained above by using Mohr’s

circle.

Figure 8.2 depicts a general three-dimensional state of stress, referred to cartesian

(x, y, z) axes, but in Sections 8.2 through 8.5 we dealt only with plane stress—

formulating stress transformation equations, determining expressions for princi-

pal stresses and maximum in-plane shear stresses, and establishing a graphical

representation of the plane-stress transformation equations, called Mohr’s circle.

We now need to look further at three-dimensional stress states. In particular, we

will briefly consider principal stresses for a general state of stress, and will then

examine absolute maximum shear stresses in greater detail.

Principal Stresses and Principal Directions. For a general three-dimen-

sional state of stress at a point, it can be shown that: there are three principal
stresses, and the corresponding principal planes are mutually perpendicular.9 There

is no shear stress on the principal planes. The three principal stresses are labeled in

the order—maximum, intermediate, and minimum:

(8.29)

that is, �1 � �2 � �3. To each principal stress �i there is a unit normal vector that

defines the corresponding principal direction, that is, the normal to the plane on

which that principal stress acts. If we draw the stress element whose faces are all

principal planes, we get Fig. 8.19. The principal directions are labeled p1, p2, and p3,

with �1 � �2 � �3. Since all faces of this element are free of shear stress, this ele-

ment is said to be in a state of triaxial stress.

Absolute Maximum Shear Stress—General Stress State. In Section 8.4

we examined maximum in-plane shear stress for the case of plane stress. For a gen-

eral state of stress at a point, including the case of plane stress, we need to determine

the absolute maximum shear stress, that is, the largest-magnitude shear stress acting

in any direction on any plane passing through the point.10 To do so, it is convenient

to assume that we already know the principal directions and the principal stresses

s1 � smax,  s2 � sint,  s3 � smin

8.6 TRIAXIAL STRESS; ABSOLUTE MAXIMUM SHEAR STRESS

9For a detailed discussion of procedures for determining principal stresses and principal directions, see

Sections 75–78 of Theory of Elasticity, Third Edition, by S. P. Timoshenko and J. N. Goodier, McGraw-

Hill Book Company, New York, 1970, [Ref. 8-1].
10For a detailed derivation, see Section 79 of Theory of Elasticity, Third Edition, by S. P. Timoshenko and

J. N. Goodier, McGraw-Hill Book Company, New York, 1970, [Ref. 8-1].

FIGURE 8.19 Principal

stresses acting on a three-

dimensional element.

y

x
z

O

p1

p2

p3 σ3

σ1

σ2
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at the point. Figure 8.20a represents the element on which the principal stresses at

the point act.

Let us begin our search for the absolute maximum shear stress at a point by 

examining the stresses on a plane whose normal n is perpendicular to the p2 direc-

tion, that is, a plane like the oblique plane shown in Fig. 8.20b. Since there is no shear

stress at all on the p2 face, the shear stress on the n-face has no p2-component, as is

indicated in Fig. 8.20b. Figure 8.21a is a two-dimensional view of the wedge in 

Fig. 8.20b showing the forces obtained by multiplying each stress by the area of the

face on which it acts. By summing forces on the free-body diagram of Fig. 8.23a we

obtain a special case of Eqs. 8.5, namely,

(8.30)

It is clear that Eqs. 8.30 locate the point N on the Mohr’s circle in Fig. 8.21b.

The maximum shear stress in the p1p3 plane is given by the radius of the circle

in Fig. 8.21b, that is

(8.31)(tmax)p1p3 � t3 �
s1 � s3

2

 �tnt �
s1 � s3

2
 sin 2u � R sin 2u

 sn �
s1 � s3

2
�
s1 � s3

2
 cos 2u � savg � R cos 2u

565
Triaxial Stress; Absolute
Maximum Shear Stress

p3

(a) (b)

σ3

σ2

p1

p1

face p2

face n

n
t

p2

σ1

σn

τntσ1

σ3

σ2

σ1
θ

σ2

σ3

FIGURE 8.20 (a) An ele-

ment in triaxial stress, and (b)

a wedge for stress transforma-

tion based on triaxial stresses.

σ

S (σC, R)

S′ (σC, –R)
N (σn, –τnt)

P1 (σ1, 0)2θ

τ

C

R

(b) Mohr’s circle for stresses in the 
      p1p3 plane.

P3 (σ3, 0)

σC =( (σ1 + σ3———
2

R = ( (σ1 – σ3———
2

n

p3

p1

t

σnΔA
θ

σ1 (ΔA cos θ)

σ3 (ΔA sin θ)

ΔA

τntΔA

(a) A free-body diagram for determining
      stresses in the p1p3 plane. (σ2 is omitted
      because it is normal to the p1p3 plane.)

FIGURE 8.21 Transforma-

tion of stresses in the p1p3

plane.
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where and , and where the designation (�max)p1p3 refers to the

maximum in-plane shear stress in the p1p3 plane. It can be shown11 that this shear

stress is also the absolute maximum shear stress at the point. Therefore,

(8.32)

and this absolute maximum shear stress acts on planes whose normal s bisects the
90� angle between the p1 and p3 directions, as illustrated in Fig. 8.22b. The normal

stress acting on the planes of maximum shear stress is

(8.33)

Note that the �s arrows and the �s arrows in Fig. 8.22b both have components that

point in the p1 direction.

Stress transformations, like Eqs. 8.30, and Mohr’s circles, like Fig. 8.21b, can be

developed for faces whose normal n lies in the p1p2 plane or the p2p3 plane. As

shown in Fig. 8.23, the use of Mohr’s circle can be extended to three-dimensional

stress states by drawing a separate circle through each pair of principal stresses. The

absolute maximum shear stress, given by Eq. 8.32, is the radius of the circle that

passes through the point and the point.

Absolute Maximum Shear Stress—Plane-Stress State. In Section 8.4

we examined the principal stresses and the maximum in-plane shear stresses for

the plane-stress states, where the conditions for the plane stress are �z � �xz �
�yz � 0. Since there is no shear stress on the z faces, the z axis is one of the three

principal directions at the point. In determining the absolute maximum shear stress,

the question, then, is whether the stress �z � 0 is the maximum principal stress

(�1), the intermediate principal stress (�2), or the minimum principal stress (�3).

Figure 8.24 illustrates these three options. In each case a solid-line Mohr’s circle

is drawn for the in-plane (i.e., xy plane) stress transformation discussed in Sections

8.4 and 8.5. The dashed-line circles are for the p1p3 stress transformation, which

s3(� smin)s1(� smax)

ss �
smax � smin

2

tabs
max

�
smax � smin

2

s3 � smins1 � smax566
Transformation of Stress and
Strain; Mohr’s Circle

11See Section 79 of Theory of Elasticity, by S. P. Timoshenko and J. N. Goodier, [Ref. 8-1].

FIGURE 8.23 Mohr’s circles for three-dimensional stress at a point.

p3

(a) Stress element with principal
      planes as faces.

(b) The element on which the 
      absolute maximum shear stress acts.

sτ

σs

τsτs
τs

σsσs

σs

p1

p1

p3

p2

s

45°

p2

σs = ( (σ1 + σ3———
2

τs = ( (σ1 – σ3———
2

O

σ3

σ2

σ1

σ3

σ2

σ1

σ2

,

S′

S

τ

P1P2P3
�

�3

�2

�1

τabs
  max

FIGURE 8.22 Planes of

absolute maximum shear

stress.
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leads to the absolute maximum shear stress (see Fig. 8.23).The value of the absolute

maximum shear stress is always given by Eq. 8.32, and the corresponding normal

stress is always given by Eq. 8.33.

(8.34)

It should be clear from Fig. 8.24 that only when the in-plane principal stresses
have opposite signs is the maximum in-plane shear stress also the absolute maximum

 Case III (0 	 s2 	 s1):  tabs
max

�
s1

2
; ss �

s1

2

 Case II (s3 	 0 	 s1):  tabs
max

�
s1 � s3

2
; ss �

s1 � s3

2

 Case I (s3 	 s2 	 0):  tabs
max

�
�s3

2
; ss �

s3

2

567
Triaxial Stress; Absolute
Maximum Shear Stress

(c1) Mohr’s circle. (c2) A maximum shear plane.

(c) Case III,
      (0 ≤ σ2 ≤ σ1) P2 P1P3 ≡ Z

z ≡ p3

P2 ≡ Z

xy plane stress
S′

S

(b1) Mohr’s circle. (b2) A maximum shear plane.

(b) Case II,
      (σ3 ≤ 0 ≤ σ1)

τabs
  max

τabs
  max

P1P3

S′

S

(a1) Mohr’s circle. (a2) A maximum shear plane.

(a) Case I,
      (σ3 ≤ σ2 ≤ 0)

τabs
   max

P2 P1 ≡ ZP3

xy plane stress
S′

S

σ2| |

| |σ3

σ2

σ1

z ≡ p2

σ3| |

z ≡ p1

p2

p3

σ

τ

τ

σ

σ1

τ

σ

FIGURE 8.24 The absolute

maximum shear stress for 

various plane-stress states;

planes of absolute maximum

shear stress.
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shear stress. When both in-plane principal stresses are negative (Fig. 8.24a) or when

both are positive (Fig. 8.24c), the absolute maximum shear stress acts on planes at

45� to the free surface, and the maximum in-plane shear stress is not the absolute

maximum shear stress. Even though the z faces are stress free, they must be taken
into account in determining the absolute maximum shear stress! But, in every case,

from Eqs. 8.32 and 8.33 we have

(8.35)

The stresses �max and �min are signed quantities (i.e., tension positive, compression

negative); they are not just magnitudes.

 ss �
smax � smin

2

 tabs
max

�
smax � smin

2

568
Transformation of Stress and
Strain; Mohr’s Circle

E X A M P L E  8 . 5

An element in plane stress has the stresses shown in Fig. 1. (a) Determine

the three principal stresses. Use a Mohr’s circle to determine in-plane

stresses. (b) Determine the maximum in-plane shear stress. (c) Deter-

mine the orientation of the principal planes, and sketch the principal-

stress element. (d) Determine the absolute maximum shear stress. Show

an element oriented so that the absolute maximum shear stress acts on

the element.

Plan the Solution We need to determine the principal directions and

in-plane principal stresses for the xy plane using the Mohr’s circle tech-

nique of Section 8.5. From Mohr’s circle we can also get the maximum

in-plane shear stress. In Part (c) we will have to order the principal

stresses �1 � �2 � �3, and compare the three principal stresses in this

problem (the two in-plane principal stresses plus �z � 0) with the three

cases depicted in Fig. 8.24. The maximum absolute shear stress is calcu-

lated using Eq. 8.32.

Solution

(a) Principal Stresses: One of the principal stresses is �z � 0, since 

�zx � �zy � 0. The other two principal stresses are obtained from the

Mohr’s circle in Fig. 2.

From triangle XCA we get

So,

(1)

Since all points on the Mohr’s circle in Fig. 2 have � > 0, �z � 0 is 

the minimum principal stress. Therefore, the intersections of Mohr’s

R � 1125 ksi � 11.18 ksi

R � 2(CA)2 � (XA)2 � 2(5 ksi)2 � (10 ksi)2

Fig. 1 An element in plane stress.

y

x

z

10 ksi

10 ksi

20 ksi

σz = τzx = τzy = 0
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circle with the � axis are labeled p1 and p2. From the circle in Fig. 2,

(2)

Therefore, the three principal stresses are

Ans.(a) (3)

(b) Maximum In-Plane Shear Stress: The maximum shear stress in the

xy plane is the shear stress at point S1 in Fig. 2, or

Ans.(b) (4)

(c) Principal-Stress Element: To orient the principal-stress element

(p1p2p3 axes) relative to the xyz axes we only need to relate p1 and p2 to

x and y, since we already know that p3 z (since �z < �2 < �1). From 

Fig. 2 we can determine the angle 2�xp1. From triangle XCA we get

(5a)

Ans.(c) (5b)

A properly oriented principal-stress element is shown in Fig. 3.

(d) Absolute Maximum Shear Stress: The plane-stress Mohr’s circle in

Fig. 2 corresponds to Case III (Fig. 8.24c). Therefore, we need to con-

struct a p1p3 Mohr’s circle. For clarity, we will draw another figure, Fig. 4,

 uxp1 � 31.7°

 2uxp1 � tan�1 a10

5
b � 63.43°

�

(tmax)xy � R � 11.2 ksi

s1 � 26.2 ksi, s2 � 3.8 ksi, s3 � 0

 s2 � sC � R � 15 ksi � 11.2 ksi � 3.8 ksi

 s1 � sC � R � 15 ksi � 11.2 ksi � 26.2 ksi

Fig. 2 Mohr’s circle for the

xy plane, with P3 shown for

reference.

z

y

x

p2

σ2 = 3.8 ksi

σ1 = 26.2 ksi
p1

σ3 = 0

θxp1
 = 31.7°

σ3

σ1

σ2

Fig. 3 The principal-stress element.

569

S2

S1

τ (ksi)

10 20A

R

C

Y(10, –10)

X(20, 10)

P1(σ1, 0)

P2(σ2, 0)

P3(σz = 0, 0)

σ1 = 26.2 ksi

σ2 =
3.8 ksi

σ (ksi)

(τmax)xy = τs1 = 11.2 ksi
2θxp1

σC = = 15 ksi20 + 10––––––
2(          )
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–10
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repeating part of Fig. 2. From the dashed-line p1p3 Mohr’s circle in Fig. 4

we get

Ans.(d) (6)

Figures 5a through 5c depict the planes of absolute maximum shear

stress. First, in Figs. 5a and 5b the orientations of the planes of maximum

shear stress at 45� to the p1 and p3 axes (faces) are illustrated. Finally, in

Fig. 5c a two-dimensional view of the p1p3 plane is shown, looking

“down’’ the p2 axis.

tabs
max

�
s1

2
� 13.1 ksi

Review the Solution We should first check to make sure the points X
and Y in Fig. 2 correctly represent the stresses on the x and y faces in 

Fig. 1, especially making sure that the sign of the shear stress is correct at

X and Y. Since the answers in Eqs. (3), (4), (5), and (6) came directly

from the Mohr’s circles in Figs. 2 and 3, we can visually check to see if

they are reasonable.

S ′

S

τ (ksi)

10

D CP3 ≡ Z

σD = 13.1 ksi

p1p2 (xy) Mohr's circle

p1p3 Mohr's circle

P2

σ1 = 26.2 ksi

σ (ksi)
20

10

–10

τmax = 13.1 ksiabs
max

z ≡ p3

y

x

(a)

45°

p2 σ2

σ1 p1

σ1

σ2
z ≡ p3

y

x

(b)

45°

p2

p1

(c)

p3

p1

s′

σs = 13.1 ksi

s

τs = τmax= 13.1 ksiabs
max

τs

σs
45°

Fig. 4 Mohr’s circles for

determining .tabs
max

Fig. 5 Planes of absolute maximum shear stress.
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Mohr’s Circle—Absolute Maximum Shear StressMDS8.4 & 8.5

8.7 PLANE STRAIN

Definitions of extensional strain 
 and shear strain � were given in Section 2.12.

These strains vary with position in a body and with the orientation of the refer-

ence directions. For example, at point P in (or on the surface of) a deformable

body, the extensional strains 
x, 
y, and 
z are determined by examining the change

in length of short, mutually orthogonal line segments �x, �y, and �z; and the shear

strains �xy, �xz, and �yz are determined by the changes in the right angles that orig-

inally exist between these lines. Figure 8.25 illustrates these incremental line seg-

ments. There are situations when it is necessary to determine the extensional

strain 
n or the shear strain �nt, given the xyz-referenced strains and the n and 

t directions. In Sections 8.8 through 8.10 we consider only two-dimensional strain

analysis, but in Section 8.11 we will return to the topic of three-dimensional strain

analysis.

One example of two-dimensional strain is called plane strain. If the strains sat-

isfy the equations

(8.36)

everywhere in a deformable body, the body is said to be in a state of plane strain.
The vanishing of extensional strain in the z direction requires that the body

somehow be restrained from expanding or contracting in the z direction, and the

shear-strain equations further require that all planes that are originally parallel

to the xy plane remain plane. One example of plane strain is a very long, cylindri-

cal object, like the dam illustrated in Fig. 8.26. Gravitational loads and upstream

water-pressure loads on the dam are all parallel to the xy plane, and because of

the (assumed) rigid abutments at its ends, the dam is not free to expand or con-

tract in the z direction. Therefore, it can be assumed that 
z � �xz � �yz � 0 every-

where in the dam.

Plane stress and plane strain are very different and should not be confused. As

discussed in Section 8.2, plane stress is defined by the equations

(8.1) 

repeated

and it most frequently occurs in thin, plate-like members, like the web of the plate

girder in Fig. 8.3. If we let �z (and �T) be zero in the last of Eqs. 2.38, we get that,

for linearly elastic, isotropic materials,

(8.37)

On the other hand, if we let 
z (and �T) be zero in the last of Eqs. 2.40, we get, for

linearly elastic, isotropic materials,

(8.38)

Consequently, plane stress generally does not lead to 
z � 0, and plane strain 

normally requires a nonzero value of �z.


z � 0 Ssz �
En

(1 � n)(1 � 2n)
 (
x � 
y)

sz � 0 S 
z �
�n

E
 (sx � sy)

sz � txz � tyz � 0


z � gxz � gyz � 0

z

y
x

Δz
ΔyΔx

t

n
P

z
x

y

FIGURE 8.25 Mutually

orthogonal line segments used

in defining extensional strains

and shear strains.

FIGURE 8.26 An example

of plane strain.
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One very important example of two-dimensional strain analysis is the experi-

mental determination of strains on the surface of a deformable body. Since it is the

strains at a point, like point A on the surface of the rod in Fig. 8.6a, that are of inter-

est, and since the surface is locally plane, we can concentrate on the analysis of

strains in a plane.

572
Transformation of Stress and
Strain; Mohr’s Circle

Before we derive the strain-transformation equations, let us examine a specific 

example of how strains vary with the orientation of the reference axes. Figure 8.27

shows the “before-deformation’’ and “after-deformation’’ pictures of a plane mem-

brane. Before deformation, a grid of horizontal and vertical lines is marked on the

sheet, with a uniform grid spacing of length a. Points P1, P2, and P3 are the origins of

axis systems x1y1, x2y2 and x3y3 in the orientations shown. The sheet is deformed by

uniformly stretching it to twice its original length in the horizontal direction. At the

same time, the sheet is prevented from expanding or contracting in the vertical di-

rection. Hence, each a � a square before deformation becomes a 2a � a rectangle

after deformation. (This would be considered large deformation.) Clearly, the defor-

mation is the same at P1, P2, and P3, but we will get different values of 
n and �nt

depending on the orientation of the reference axes. For example, the shear strain

�x1y1 � 0, but �x2y2 and �x3y3 are clearly not zero, since there are changes in the right

angles at P2 and P3. Likewise, 
y1 � 0, but 
y2 and 
y3 are not zero, since the lengths

of P2R2 and P3R3 are changed by the deformation.

Whereas the stress-transformation equations, Eqs. 8.3 (or Eqs. 8.5) are based on

equilibrium only, the strain-transformation equations are based solely on the geom-
etry of deformation (including some small-angle approximations). Figure 8.28a,

8.28b, and 8.28c depict the separate effects of 
x, 
y, and �xy, respectively. These ef-

fects can be added together to get the total expressions for 
n and �nt as functions of

the angle � � �xn � �yt and the three strains 
x, 
y, and �xy.

Contribution of �x, �y, and �xy to �n and �nt. Using Fig. 8.28a, we will de-

rive expressions that relate 
n and �nt to 
x. The contributions of 
y to 
n and �nt and

of �xy to 
n and �nt can be determined in an analogous manner, so these derivations

are left as homework problems. (See Homework Problems 8.8-1 and 8.8-2.)

Assuming that all strains are small, we can write the following superposition expres-

sions for 
n and �nt:

(8.39a)

(8.39b)gnt � g¿nt � g¿¿nt � g¿¿¿nt

 
n � 
 ¿n � 
¿¿n � 
¿¿¿n

8.8 TRANSFORMATION OF STRAINS IN A PLANE

5@a

10@a

(a) Before deformation. (b) After deformation.

x1

y1y2
y3

R1
R2 R3 Q3Q2

Q1

P3P2P1

5@a

10@2a

R1* R2*
R3* Q3*Q2*

Q1*

P3*P2*P1*
x2

x3

FIGURE 8.27 An example of how strain quantities depend on the orientation of the

reference axes.
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where 
n and nt depend on 
x, 
y, and xy, and also on the angle �. That is,

and analogously for �nt.

To construct Fig. 8.28a, we first construct a rectangle whose diagonal, PQ, is 

oriented at the angle � counterclockwise from the x axis and whose length is �s.The

sides of this rectangle have lengths

Next, in order to make the angle a right angle, we form a rectangle whose

diagonal, PR, is oriented at the angle � counterclockwise from the y axis and whose

length is also �s. Having constructed the shaded figure that is composed of two rec-

tangles and that represents part of the undeformed body, we hold point P fixed and

draw dashed lines to show the shape of that part of the deformed body when 
x is

positive and 
y � �xy � 0.

�QPR

¢x � ¢s cos u,  ¢y � ¢s sin u

 
¿¿¿n � 
n(gxy; u)

 
–n � 
n(
y; u)

 
¿n � 
n(
x; u)

 
n � 
n(
x, 
y, gxy; u)

Δy Δx

Δs S*

θα

Δs* = Q*P*Δs

Δx

RR*

T*

∠Q*P*R*

Note:  ∠QPR = 90°

(a) Deformation due to �x only. (b) Deformation due to �y only.

β

θ

�xΔy

�yΔx

�xΔx

�yΔy

�xΔx cos θ

P, P* P, P*

t
y

n

Q

Δy

Q*

x

Δx

Δs

Δs

Δy

Δy Δx

Δs*

R

R*

T*

t

θ

θ

S*

Q

nQ*

(c) Deformation due to γxy only.

P, P*

t

R R*

γxy

γxy Δx

γxy Δy

γxy γxy

θ
Δs

n

Q*
Q

S*

T*

FIGURE 8.28 The geometry of deformation used to derive strain-transformation 

equations.
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The extensional strain in the direction n is defined by

(2.35)

repeated

and, the shear strain with respect to axes n and t by

(2.36)gnt(P) � lim
QSP along n
RSP along t

ap
2

� �Q*P*R*b


n(P) � lim
QSP along n a¢s* � ¢s

¢s
b

574
Transformation of Stress and
Strain; Mohr’s Circle

repeated

In the present case we can dispense with the limit operation and just write

(8.40)

(8.41)

At the same time, we will make several small-angle approximations.

Contribution of 
x to 
n: We will use the geometry of Fig. 8.28a to develop expres-

sions for 
n� (
x; �) and nt� (
x; �). From Fig. 8.28a and Eq. 8.40,

(8.42)

To determine the elongation , we drop a perpendicular from point Q to the

line P*Q*. In the process, we make the small-angle approximation that 

, that is, that the perpendicular QS* is (approximately) the arc of a circle of 

radius s with center at P. Since , the elongation of the rectangle due

to the strain x, and since angle is (approximately) equal to �, we have

Therefore,

(8.43)

The contributions and due to 
y and 
xy, respectively, can be derived using

Figs. 8.28b and 8.28c, respectively. Summing the three contributions (Eq. 8.39a), we

get the following extensional-strain-transformation formula:

(8.44)

Contribution of 
x to nt: From Fig. 8.28a and Eq. 8.41 we have

(8.45)g¿nt �
p

2
� (�Q*P*R*)¿ � �a � b


n � 
x cos2 u � 
y sin2 u � gxy sin u cos u


¿¿¿n
¿¿n


n¿ �

x¢s cos2 u

¢s
� 
x cos2

 u

Q*S* � 
x ¢x cos u � 
x(¢s cos u) cos u

�QQ*S*

QQ* � 
x ¢x¢

PQ
P*S* �

Q*S*


¿n �
¢s* � ¢s

¢s
�

Q*S*

QP

gnt � ap
2

� �Q*P*R*b


n(P) � a¢s* � ¢s
¢s

b
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where � and � are angles that are defined in Fig. 8.28a. Again using a small angle

approximation, we have

so

But,

Finally, combining these equations, we get

Combining this expression with the contributions of 
y and �xy to �nt, as in Eq. 8.39b,

we get the following shear-strain-transformation formula:

(8.46)

Equations 8.44 and 8.46 are the strain analogs of Eqs. 8.3a and 8.3b, with the one

exception that there is a difference of a factor of two in the shear-strain terms in Eqs.

8.44 and 8.46 compared with corresponding terms in the stress-transformation

equations 8.3a and 8.3b. For example, Eq. 8.46 has the same form as Eq. 8.3b if we

divide Eq. 8.46 by two and write it in the form

Like the stress-transformation equations, the strain-transformation equations
can be simplified by incorporating the double-angle trigonometric identities, giving

(8.47a)

(8.47b)

Note that, unlike the shear-stress terms in Eqs. 8.5, all shear strains in Eqs. 8.47 are
divided by two.

Since the strain-transformation equations, Eqs. 8.47, are completely analo-

gous to the transformation equations for plane stress, Eqs. 8.5, formulas for 

determining principal directions and principal stresses, and other formulas that

are based on Eqs. 8.5, can be converted to formulas for comparable strain-related

quantities. In the next section we will use Mohr’s circle to solve strain-transformation

problems.

 
gnt

2
� � a
x � 
y

2
b sin 2u � agxy

2
b cos 2u

 
n � a
x � 
y

2
b � a
x � 
y

2
b cos 2u � agxy

2
b sin 2u

gnt

2
� �(
x � 
y) sin u cos u �

gxy

2
 (cos2 u � sin2 u)

gnt � �2(
x � 
y) sin u cos u � gxy(cos2 u � sin2 u)

g ¿nt � �2
x sin u cos u

RT* � 
x¢y cos u � 
x(¢s sin u) cos u

QS* � 
x¢x sin u � 
x(¢s cos u) sin u

g¿nt � �aQS*

¢s
b � aRT*

¢s
b

QS* � a¢s,  RT* � b¢s

575
Transformation of Strains

in a Plane

Strain-
Trans-
formation
Equations
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The strain-transformation equations, Eqs. 8.47, are completely analogous to the

transformation equations for plane stress, on which the derivation of Mohr’s circle

of stress in Section 8.5 was based, namely, Eqs. 8.5. By following the same

procedure that was used in Section 8.5, we obtain the following equations that

characterize Mohr’s circle of strain:

(8.48a)

where

(8.48b)

(8.48c)

Equation 8.48a represents the equation of a circle in the plane with center 

at (
avg, 0) and radius R (Fig. 8.29). (All strain quantities are dimensionless.) Thus,

Eqs. 8.47 are just the parametric equations of this Mohr’s circle of strain, with the

angle 2� being the parameter.

To clarify the sign convention of Mohr’s circle of strain, particularly the sign

convention for shear strain g, let us recall the sign convention for Mohr’s circle of

stress. There are two equivalent ways to establish the sign of the �-coordinate of a

point in the (�, �) plane:

Method 1: If the ntz axes form a right-handed coordinate system, point N has the

coordinates (�n, ��nt), while point T has the coordinates (�t, ��nt).

a
, 
g

2
b


avg �

x � 
y

2

R �
B
a
x � 
y

2
b2

� agxy

2
b2

(
n � 
avg)2 � agnt

2
b2

� R2

8.9 MOHR’S CIRCLE FOR STRAIN

γ
–
2

A

R

X

C

O

T

Y

�

�x

�y

�x – �y–––––
2

N(�n,      )
γnt––
2

γxy––
2

�x – �y–––––
2

γxy––
2(         ) (    )2 + 2R = 

�x + �y–––––
2(         )�avg = 

2θxn

FIGURE 8.29 Mohr’s circle

of strain.
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Method 2: If the point N is plotted with positive shear stress (i.e., downward),

then the shear stress � on the N face would tend to rotate the corresponding nt
stress element counterclockwise. (See Fig. 8.17 and also the icons on the � axis of

Fig. 8.16.)

There are two analogous methods for Mohr’s circle of strain:

Method 1: If the ntz axes form a right-handed coordinate system, point N has the 

coordinates , while point T has the coordinates .

Method 2: If the point N is plotted with positive shear strain (i.e., downward), then

a line element in the n direction would tend to rotate counterclockwise. (See the 

icons on the axis in Fig. 8.29).

Figure 8.30 illustrates the fact that a positive shear strain at point P represents

a reduction in the angle between the n and t axes by an amount nt, and, in the

process, the incremental line element in the n direction rotates counterclockwise.

The icons at the ends of the axis in Fig. 8.29 indicate the direction of rotation of a 

generic line element n, depending on the sign associated with the shear-strain coor-

dinate of point N.

g

2

g

2

a
t, �
gnt

2
ba
n, �

gnt

2
b

577
Mohr’s Circle for Strain

–

+

n

P

t
π–
2

– γnt

FIGURE 8.30 An explana-

tion of the shear-strain sign

convention for Mohr’s circle

of strain.

PROCEDURE FOR CONSTRUCTING AND USING MOHR’S CIRCLE OF STRAIN

The procedure for constructing Mohr’s circle of strain is 

virtually identical to the procedure for constructing Mohr’s

circle of stress.

Draw Mohr’s Circle: Figure 8.29 illustrates Steps 1

through 6.

1. Establish a set of axes, with the same scale on both 

axes. Use paper that has a grid, and use a scale that results

in a circle of reasonable size. The positive axis points

downward.
2. Assuming that 
x, 
y, and �xy are given, locate the point X

at and the point Y at .

3. Connect points X and Y with a straight line, and locate

the center of the circle, C, where the line crosses the 
 axis

at (
 avg, 0).

4. Draw a circle that has its center at (
avg, 0) and that passes

through points X and Y. (It is a good idea to use a com-

pass in drawing the circle.)

a
y, �
gxy

2
ba
x, 

gxy

2
b

G

2

a
, 
g

2
b

Compute the Required Information:

5. Form the shaded triangle XCA with sides, and 

, and compute the radius of the circle.

(8.48b)

repeated

6. If the extensional strain in a particular direction, say 
n, is

required, locate point N on Mohr’s circle by turning an

angle 2� counterclockwise (or clockwise) on the circle,

corresponding to rotating an angle � counterclockwise

(or clockwise) from some reference direction such as the

x direction. Construct a diameter through point N and 

the center of the circle, and use trigonometry to calculate

the value of 
n (and 
t and �nt if required).

7. If the principal strains and the orientation of the principal
directions of strain are required, use

(8.49)

2 � 
avg � R


1 � 
avg � R

R �
B
a
x � 
y

2
b2

� agxy

2
b2

a
x � 
y

2
b

agxy

2
b
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E X A M P L E  8 . 6

At a certain point P on a deformable body (Fig. 1), the in-plane strains

referred to a set of xy axes are:

where � is the unit of microstrain (i.e., 10�6 in./in., or microinches per

inch). (a) Using a square of unit length in the x and y directions to rep-

resent the undeformed body at this point, draw a sketch of this elemen-

tal square before and after deformation. (Exaggerate the deformation.)

(b) Sketch a Mohr’s circle of strain for these in-plane strains. (c)

Determine the extensional strain in the direction n that is 30� clockwise
from the x axis. (d) Determine the principal strains and the principal 

directions of strain, and sketch a deformed element that is oriented in

the principal directions. (e) Finally, compute the maximum in-plane shear

strain and the associated extensional strains in the directions of the axes

of maximum in-plane shear strain. Sketch a deformed element that is 

oriented in the directions of maximum in-plane shear strain.

Solution This example problem can be solved using the eight steps 

suggested under Procedure for Constructing and Using Mohr’s Circle of
Strain.

(a) State of Strain: The shaded square in Fig. 2 is the undeformed ele-

ment. The dashed lines indicate the shape of the deformed element.

Since the shear strain, �xy, is negative, the right angle at P increases by 

�x � 120m, �y � �40m, and gxy � �120m

θxn = 30°
x

y

P

n

Fig. 1 The orientation of the n axis.

578

FIGURE 8.31 A Mohr’s circle of strain with the 

principal strains and maximum in-plane shear strains

identified.

to calculate the principal strains, where �avg � �C is given

by Eq. 8.48c. Use trigonometry to determine some angle,

like 2�xp1, that can be used to locate a principal direction

of strain, say p1, with respect to some known reference 

direction. There is no shear strain between the principal

directions of strain.

8. Use a procedure similar to Step 7 if the maximum in-

plane shear strain and maximum shear directions are 

required. The directions of maximum shear strain are at

�45� to the principal directions of strain.

Figure 8.31 illustrates Steps 7 and 8.

S2

S1

γ
–
2

C

X

P1P2
�

2θxp1

2θyp2

2θxs1

γxy––
2

Y(�y, –     )
γxy––
2

�2

�avg

�1

�x

γmax––––
2

γs1s2––––
2

≡
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a total angle of 120�. This shear strain angle is apportioned as 

clockwise to the x edge PQ and counterclockwise to the y edge PR.

(b) Mohr’s Circle of Strain: On grid paper (Fig. 3), the point X is plotted

at , which is the point (120�, �60�). Point Y is plotted at

. Note that the x edge PQ rotates clockwise in Fig. 2, and that

this agrees with the icons on the negative (upper) end of the axis.

The center of the circle, C, lies at (�avg, 0), where

(1)

The radius of the circle is length , which is given by

(2)

(c) Extensional Strain �n: To determine the extensional strain in the n
direction shown on Fig. 1, we locate the radial line CN on Mohr’s circle

in Fig. 3 at an angle 2�xn � 60� clockwise from the radial line CX. From

Fig. 3, we get

(3)�n � OC � CB � �avg � R cos 2up1n

R � 2CA2 � XA2 � 2(80m)2 � (60m)2 � 100m

XC

�avg �
�x � �y

2
�

(120m � 40m)

2
� 40m

g

2

a�y, �
gxy

2
b

a�x, �
gxy

2
b

` gxy

2
`

` gxy

2
`

Fig. 2 An example of in-plane strains.

40μ

y

x

SR

Q
P

60μ

60μ

1

120μ
1

Fig. 3 Mohr’s circle of strain.

579

γ
–
2

C

R = 100

O
�

P1P2 B

A

8040

–100

100
132

X(120, –60)

Y(–40, 60)

2θp1n

2θxp1
 = 36.87°

N(�n,     )
γnt––
2

60°

(μ)

(μ)
200
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To determine the angle , we can use triangle XCA to first determine

the angle .

(4)

Then,

(5)

So, combining Eqs. (1) through (5), we get

or

Ans. (c) (6)

(d) Principal Strains and Principal Directions: To avoid cluttering up

Fig. 3, we will repeat the basic Mohr’s circle as Fig. 4. The principal direc-

tions are represented on Fig. 4 by points P1 and P2 at (�1, 0) and (�2, 0),

respectively. From Fig. 4, the principal strains �1 and �2 are

(7)
 �2 � �avg � R � 40m � 100m � �60m

 �1 � �avg � R � 40m � 100m � 140m

�n � 132m

�n � OC � CB � 40m � 100m cos (23.13°)

2up1n � 60° � 2uxp1
� 23.13°

2uxp1
� tan�1  aXA

CA
b � tan�1  a60m

80m
b � 36.87°

2uxp1

2up1n

Fig. 4 Mohr’s circle showing principal-strain points P1 and P2

and maximum-shear-strain points S1 and S2.
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�

γ
–
2

C

R = 100

O
�

P1 (140, 0)P2 (–60, 0)

–100

100

�1 = 140

�avg = 40

X

Y

2θxp1
 = 36.87°

2θxs2
 = 53.13°

2θys1

2θyp2

(μ)

(μ)
200

S2

S1

γs1s2––––
2

γmax––––
2

= = 100
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Points P1 and P2 can be located relative to points X and Y, respectively,

by clockwise angles

(8)

as calculated in Eq. (4). Therefore, the principal strains and correspon-

ding principal directions are:

Ans. (d) (10)

To sketch the undeformed and deformed principal-strain elements,

let us begin with a unit square oriented at

with respect to the xy axes (Fig. 5). The strains �1 and �2 are then used in

sketching the deformed principal element (dashed lines).

(e) Maximum In-Plane Shear Strain: The points corresponding to maxi-

mum in-plane shear strain, points S1 and S2, are located at the lowest and

highest points on the Mohr’s circle in Fig. 4. From Fig. 4,

(11)

The directions s1 and s2 are determined by the angles on

Fig. 4. Thus,

(12)

so,

(13)

Therefore, the maximum in-plane shear strain is given by

Ans. (e) (14)

The extensional strain in the s1 and s2 directions is

Ans. (e) (15)

To sketch the maximum-shear-strain element, let us begin with a

unit square oriented at the angle given in Eq. (14). We draw the element

so that s1s2z forms a right-handed coordinate system. (Note: The �y
direction and the �y direction are 180� apart on the deformable body,

�s1
� �s2

� �avg � 40m

gs1s2
� 200m,  uxs2

� uys1
� 26.6°

uxs2
� uys1

� 26.6°

2uxs2
� 2uys1

� 90 � 2uxp1
� 90 � 36.87° � 53.13°

2uxs2
� 2uys1

gs1s2

2
� R � 100m

uxp1
� uyp2

� 18.4°

uyp2
� 18.4°�2 � �60m,

uxp1
� 18.4°�1 � 140m,

2uxp1
� 2uyp2

� 36.87°

Fig. 5 An element illustrating the

principal strains.

60μ

y

x

140μ

1

1

18.4°

θxp1
 = 18.4°

p1

p2
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so they are 360� “apart’’ on Mohr’s circle, that is, the point Y represents

both the �y axis and the �y axis.) To get a right-handed coordinate 

system s1s2z in Fig. 6 we should actually rewrite Eq. (14b) as

(16)

Review the Solution The key to correct solution of in-plane strain

problems using Mohr’s circle is accurate drawing of the circle from infor-

mation about the strain state, that is, correctly plotting points X and Y.

We have to remember to divide all � values by two before plotting! The

Mohr’s circle in Fig. 3 is accurately drawn.

It is also useful to sketch the deformed element using information

about the state of strain. This has been done in Fig. 2. By comparing 

Fig. 5 and Fig. 6 with Fig. 2, we can see that all three figures are in agree-

ment; that is, all exhibit stretching in the direction of the QR diagonal in

Fig. 2. Therefore, our solutions are probably correct.

uxs2
� u�ys1

� 26.6°

y

x

1

1

s1

s2

100 μ

100 μ
40 μ

40 μ

26.6°

Fig. 6 An element depicting the maxi-

mum in-plane shear strain.

Mohr’s Circle—Strain TransformationsMDS8.6

12Handbook on Experimental Mechanics, by A. S. Kobayashi, [Ref. 8-3]; Experimental Solid Mechanics,
by A. Shukla and J. W. Dally, [Ref. 8-4].

There are several experimental techniques that may be used to measure strain.

These are described in texts on experimental mechanics or experimental stress
analysis.12 The most straightforward technique employs wire or metal foil electrical-
resistance strain gages, like the ones pictured in Fig. 8.32. Figure 8.32a shows a

metal foil strain gage and Fig. 8.32b depicts two strain rosettes. The gage consists

of a wire or foil “grid’’ on a thin paper or plastic backing that can be bonded (e.g.,

glued) directly to the surface whose strain is to be measured. Extensional strain

along the axis of the grid stretches (or contracts) the metal grid element, causing

a change in electrical resistance of the grid. This change in resistance can be con-

verted directly to the extensional strain �n along the direction n of the axis of the

gage.

Since electrical-resistance strain gages can directly measure only extensional

strain, it is not possible with a single gage to measure shear strain or, for example,

to determine the directions and magnitudes of the principal strains at a point.

Therefore, it is common practice to employ a strain rosette consisting of three

electrical-resistance strain gages mounted on a common backing sheet, like the

rosettes depicted in Fig. 8.32b. Let the three gages of a rosette be oriented along

axes that are labeled a, b, and c, as shown in Fig. 8.33. The extensional strain along

each of these axes can be related to the three strain quantities (�x, �y, �xy), where

the xy reference frame may be established in any convenient orientation. For

8.10 MEASUREMENT OF STRAIN; STRAIN ROSETTES

582

�
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example, the axis of the a gage may be taken as the x axis by setting . From

Eq. 8.44 we get, for arbitrary angles,

(8.50)

The two common rosette arrangements are the 45� rectangular rosette and the

60� equiangular rosette shown in Fig. 8.32b. Substituting �a � 0�, �b � 45�, and 

�c � 90� into Eqs. 8.50, we get the following equations for the 45� rosette:

(8.51)

For the equiangular rosette, we can let �a � 0�, �b � 60�, and �c � 120�. Then, Eqs.

8.50 give the following:

(8.52)

 gxy �
2

23
 (�b � �c)

 �y �
1

3
 (2�b � 2�c � �a)

 �x � �a

 gxy � 2�b � �a � �c

 �y � �c

 �x � �a

 �c � �x cos2 uc � �y sin2 uc � gxy sin uc cos uc

 �b � �x cos2 ub � �y sin2 ub � gxy sin ub cos ub

 �a � �x cos2 ua � �y sin2 ua � gxy sin ua cos ua

ua � 0

583
Measurement of Strain; 

Strain Rosettes

x

a
b

c

θa

θb

θc

FIGURE 8.33 Notation for

a strain rosette with arbitrary

angles.

(a) A metal foil strain gage.

(b) A 45� strain rosette and an equiangular rosette.

FIGURE 8.32 Electrical-resistance strain gages. (Micro-Measurements Division of

Measurements Group, Inc.)
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Once strains �x, �y, and �xy have been calculated using Eq. 8.50 (or 8.51 or 8.52), a

Mohr’s circle of strain can be drawn for the surface strains at the rosette location.

In most instances where strain rosettes are used, there is a need to determine

the principal stresses and, perhaps, the absolute maximum shear stress. The rosette

is affixed to a surface, which is usually stress-free. In that case, one of the principal

stresses is �z � 0.Therefore, if the material constants E and are known, we can use

Eqs. 2.38 to determine the in-plane principal stresses and also the extensional strain

�z. Then,

which can be solved for �1 and �2 to give

(8.53)

In terms of stresses, �z is given by Eq. 8.37,

And, in terms of the in-plane strains, �z is given by

(8.54)�z �
�n(�x � �y)

1 � n
�

�n(�1 � �2)

1 � n

 �z �
�n

E
 (sx � sy) �

�n

E
 (s1 � s2)

 s2 �
E

1 � n2
 (�2 � n�1)

 s1 �
E

1 � n2
 (�1 � n�2)

 �2 �
1

E
 (s2 � ns1)

 �1 �
1

E
 (s1 � ns2)

n

584
Transformation of Stress and
Strain; Mohr’s Circle

E X A M P L E  8 . 7

The landing-gear strut of an airplane is instrumented with a 45� strain

rosette to measure the strains in the strut during landing. The a-gage is

oriented along the axial direction of the strut, as shown in Fig. 1. At one

instant during a landing, the measured strains are:

(a) Letting the x axis be oriented along the a-gage and the y axis be 

oriented along the c-gage, determine the strain values �x, �y, and �xy.

(b) Sketch a Mohr’s circle of strain. (c) Determine the principal (surface)

strains at the rosette location. (d) Determine the principal stresses at the

rosette location. Let E � 15 � 103 ksi and � 0.3.

Plan the Solution Since this is a standard 45� rosette, we can use Eqs.

8.51 to compute the required xy strains. Then we can use the points

n

�a � �700m,   �b � 0,   �c � �100m

a

b

c

Fig. 1 A strain rosette installation.
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and to plot Mohr’s circle. The state of stress

at the surface is plane stress, so the in-plane principal stresses are given

by Eqs. 8.53.

Solution

(a) Rosette Equations: For the 45� rosette, Eqs. 8.51 give

Ans. (a) (1)

(b) Mohr’s Circle of Strain: We can use the strain values in Eqs. (1) to

plot points and , and then draw the Mohr’s circle of

strain, as shown in Fig. 2.

(c) Principal Strains: The values of principal strains in the xy plane are

given by

(2)(�1)xy � �avg � R,  (�2)xy � �avg � R

Y(� C)X(� A)

 �x � �700m, �y � �100m, gxy � 800m

 gxy � 2�b � �a � �c � 0 � 700m � 100m � 800m

 �y � �c � �100m

 �x � �a � �700m

Y a�y, �
gxy

2
bX a�x, �

gxy

2
b

Fig. 2 Mohr’s circle of strain.
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G D

B

P2 P1

300

400

400

�(μ)

–400

–200

–200–600–800

200

400

2θab = 90°

R = 500

γ
––
2

(μ)

A ≡ X(–700, 400)

C ≡ Y(–100, –400)
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where

(3)

and

(4)

Therefore, combining Eqs. (2) through (4), we get the following principal

strains in the xy plane:

Ans. (c) (5)

(d) Principal Stresses: The principal in-plane strains in Eqs. (5) can be

substituted into Eqs. 8.53 to give the in-plane (i.e., in the xy plane) 

principal stresses.

(6)

Then,

(7a)

(7b)

If we order the principal stresses, including �z � 0, in the order �3 	
�2 	 �1, we get

Ans. (d)

Review the Solution We have a good check on Parts (a) and (b) by 

observing that point B, which was not used directly in plotting Mohr’s

circle, has the correct extensional strain, �b � 0. We can scale off points

P1 and P2 on Fig. 2 and see that the values of �1 and � 2 in Eqs. (5) are cor-

rect. It seems strange that (�1)xy in Eq. (7a) is negative, while �1 in 

Eq. (5a) is positive. But, by double-checking Eqs. 8 we see that this result

is correct. Hence, we observe that principal stresses need not always have
the same sign as the corresponding principal strains.

s1 � 0 ksi, s2 � �2.8 ksi, s3 � �14.3 ksi

 � �14.3 ksi

 (s2)xy �
(15 � 103 ksi)

1 � (0.3)2
 [�900 � (0.3)(100)](10�6)

 � �2.80 ksi

 (s1)xy �
(15 � 103 ksi)

1 � (0.3)2
[100 � (0.3)(�900)](10�6)

 (s2)xy �
E

1 � n2
 (�2 � n�1)xy

 (s1)xy �
E

1 � n2
 (�1 � n�2)xy

(�1)xy � 100m,  (�2)xy � �900m

R � 2(GD)2 � (GA)2 � 2(300m)2 � (400m)2 � 500m

�avg �
�x � �y

2
�

�700m � 100m

2
� �400m

586
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*8.11 ANALYSIS OF THREE-DIMENSIONAL STRAIN

An analysis of the three-dimensional geometry of deformation of a body establishes

the fact that, at any point in the body, there are three directions, called principal-
strain directions, that are mutually perpendicular both before and after deforma-

tion.13 That is, there is no shear strain between the principal strain directions, as is

illustrated in Fig. 8.34. (For convenience, the undeformed element in Fig. 8.34 is

taken to be a unit cube.) The principal strains are labeled in the order �1 
 �2 
 �3,

that is,

(8.55)

Their values can be determined by using geometrical equations that are analogous

to the equilibrium equations used to determine principal stresses.

�1 � �max, �2 � �int, �3 � �min

Mohr’s Circle—Strain RosettesMDS8.7

13Theory of Elasticity, by S. P. Timoshenko and J. N. Goodier, [Ref. 8-1], Sections 81 and 82.

The absolute maximum shear strain occurs between two perpendicular axes

that lie in the plane of p1 and p3, just as in the case of absolute maximum shear

stress. Hence, a Mohr’s circle of strain can be constructed for the p1p3 strain

plane, and from this Mohr’s circle (Fig. 8.35), the absolute maximum shear strain

is found to be

(8.56)

Plane Strain. For the special case of plane strain,

(8.36)

repeated
�z � gxz � gyz � 0

gabs
max

� �max � �min

p3

p2

p1

1

1
1

1 + �3

1 + �2

1 + �1

FIGURE 8.34 The principal strains

at a point.
FIGURE 8.35 Mohr’s circle for the

plane of principal strains �1 and �3.

587
Analysis of Three-

Dimensional Strain

S′

S

γ
–
2

P1P3
�

�min

�max

�avg

1–
2

γabsabs
max
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The determination of the absolute maximum shear strain for this case is completely

analogous to the analysis of absolute maximum shear stress for the case of plane

stress. For example, if Example Problem 8.6 is a plane-strain problem, then �1 �
140�, �2 � �z � 0, �3 � �60�, and the xy plane corresponds to the p1p3 plane when

the three-dimensional strain is considered.

Plane Stress. Where a state of plane stress exists in a body, for example at a free

surface of the body, the stresses satisfy

(8.1) 

repeated

If the body is linearly elastic and isotropic, its material behavior satisfies Eqs. 2.38

and 2.40. Therefore, we get

(8.37)

repeated

and, from Eqs. 2.39 and 8.1,

(8.57)

Therefore, the z direction is a principal-strain direction, but the principal strain �z is

not zero. Therefore, it is necessary to determine the two principal strains in the xy
plane (e.g., using a Mohr’s circle as in Section 8.9) and then to order all three prin-

cipal strains as in Eq. 8.55 before using Eq. 8.56 to compute the absolute maximum

shear strain.

gxz � gyz � 0

�z �
�n

E
 (sx � sy)

sz � txz � tyz � 0

Prob. 8.3-1. The state of plane stress at a point is given by

the stresses �x � 0 ksi, �y � 44.0 ksi, and �xy � 10.0 ksi, as 

indicated on the figure below.

STRESS-TRANSFORMATION EQUATIONS

8.12 PROBLEMS

Problems 8.3-1 through 8.3-4. For each of these problems
you are to sketch a free-body diagram like the one in 
Fig. 2 of Example 8.1, and use equilibrium equations to
solve for the normal stress and shear stress on the indi-
cated inclined plane NN.

Prob. 8.3-2. The state of plane stress at a point is given by

the stresses �x � 48 MPa, �y � �32 MPa, and �xy � 16 MPa,

as illustrated on the figure below.

▼

y

x

N

N

10.0 ksi

44.0 ksi

45°

P8.3-1, P8.5-1, and P8.5-35

32 MPa

30°

16 MPa

48 MPa

y

x

N

N

P8.3-2, P8.5-2, and P8.5-35

588
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Prob. 8.3-5. At the point labeled A in the bracket in Fig.

P8.3-5, the given stresses are: �x � 4.8 ksi, �y � �1.2 ksi, and

�xy � �4.0 ksi. The angle is � � 20�.

Prob. 8.3-3. The state of plane stress at a point is given by

the stresses �x � 3000 psi, �y � �3200 psi, and �xy � �3000 psi,

as illustrated on the figure below.

3200 psi

40°

3000 psi

3000 psi

y

x

N

N

P8.3-3, P8.5-3, and P8.5-35

Prob. 8.3-4. The state of plane stress at a point is given by

the stresses �x � �48 MPa, �y � �24 MPa, and �xy � �60

MPa, as illustrated on the figure below.

24 MPa

45°
60 MPa

48 MPa

y

x

N

N

P8.3-4, P8.5-4, and P8.5-35

Problems 8.3-5 through 8.3-12. For each of these problems,
an element in plane stress is subjected to the stresses �x , �y ,
and �xy as indicated. Use the plane-stress-transformation
equations, Eqs. 8.6, to determine the stresses �x �, �y �, and
�x�y� on an element that is rotated by the given angle � � �xx�.
Show the calculated stresses on an element oriented at this
angle.

1.2 ksi

4.8 ksi

4 ksi

y

x

A

A

x′

y′

P.8.3-5, P8.3-6, P8.5-5, P8.5-6, and P8.5-23

32 MPa

20 MPa

48 MPa

y

x
θ

x′

y′

P8.3-7, P8.3-8, P8.5-7, and P8.5-8

5000 psi

5000 psi

3000 psi

y

x
θ

x′

y′

P8.3-9 and P8.3-10

Prob. 8.3-10. Solve Prob. 8.3-9 for � � �20�.

Prob. 8.3-11. Steel plate girders are often used as the beams

that support long multispan bridges. Figure P8.3-11 depicts

the region of a plate girder where it transfers its vertical load

through a roller support to a concrrte pier.The given stresses

589

Prob. 8.3-6. Solve Prob. 8.3-5 for � � �60�.

Prob. 8.3-7. The given stresses are �x � 48 MPa, �y � �32

MPa, and �xy � 20 MPa. The angle is � � 30�.

Prob. 8.3-8. Solve Prob. 8.3-7 for � � �30�.

Prob. 8.3-9. The given stresses are �x � 3000 psi, �y � �5000

psi, and �xy � �5000 psi. The angle is � � 20�.
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Prob. 8.3-14. Solve Prob. 8.3-13 for the state of plane stress

shown on Fig. P8.3-14.

Prob. 8.3-15. Point A on the surface of a machine compo-

nent is subjected to plane stress. The stresses �x, �y, �xy, �x�,

and �x�y� are known, but the angle � � �xx� and the normal

stress �y� are unknown. Use the information shown on the

two stress elements (both are at point A, but are rotated rel-

ative to each other) to determine the angle � and the value

of �y�.

4 MPa

Bridge plate girder

Hinged support

Pier

24 MPa

18 MPa

y

x
θ

x′

y′

A

A

P8.3-11, P8.3-12, P8.5-9, P8.5-10, P8.5-22, and P8.6-11

Prob. 8.3-12. Solve Prob. 8.3-11 for � � �30�.

Prob. 8.3-13. On a thin bracket, the state of plane stress 

referred to the x�y� axes has been found to be �x�, �y�, and 

�x�y�, as shown on the figure below. Use the plane-stress-

transformation equations to determine the stresses �x, �y , and

�xy, the stresses referred to the xy axes. Show these stresses on

a properly oriented stress element.

1 ksi

τx´y´ = 0

6 ksi

y

y′

x

x′

45°

45°

P8.3-13

40 MPa
110 MPa

75 MPa

y

x

x′

y′

33.7°

56.3°

P8.3-14

y′
σy′

x

x′

θ

7 MPa

5 MPa

17 MPa

10 MPa

12 MPa

A

A

y

x

(a) (b)

P8.3-15 and P8.5-25

Prob. 8.3-16. Solve Prob. 8.3-15 using the data in Fig. P8.3-16.

y′
σy′

x

x′

θ

12 ksi

6 ksi

4 ksi

14 ksi

τx′y′ = 0

A A

y

x

(a) (b)

P8.3-16 and P8.5-26

DProb. 8.3-17. A block of wood is subjected to a vertical

compressive stress of magnitude 3�0 and, simultaneously, to

a horizontal compressive stress of magnitude �0, as indicated

in Fig. P8.3-17. The wood block will fail if either (a) the

3σ0

σ0

60°

y

x

P8.3-17 and P8.5-27

590

are: �x � �18 MPa, �y � �4 MPa, and �xy � 24 MPa,The angle

is � � 30�.
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compressive stress perpendicular to the grain exceeds 260

psi (C) or (b) the shear stress parallel to the grain exceeds

130 psi. Determine the maximum allowable value of �0.

Prob. 8.3-18. A 4-in. by 4-in. by 2-in. (thick) concrete block is

subjected to biaxial compression by forces Px and Py acting

through loading pads, as shown in Fig. P8.3-18a. Determine

the compressive axial load Px (in kips) if the vertical force is

Py � 8 kips and compressive normal stresses on the x� and y�
planes have the values shown in Fig. P8.3-18b.

Prob. 8.3-21. The state of plane stress at point A on the sur-

face of a rectangular bar subjected to pure bending in the xy
plane is shown in Fig. P8.3-21. Determine the bending 

moment M (in kip � in.) if the location of A and the cross-

sectional dimensions of the bar are as indicated in Fig.

P8.3-21. (Hint: Consider Eq. 8.7.)

2.5 ksi

1.5 ksi

y

Px

Py y′

x′

30°
xA

A
4 in.

(a) (b)

P8.3-18 and P8.5-28

Prob. 8.3-19. The state of plane stress at point A on the sur-

face of an axially loaded bar is shown in Fig. P8.3-19b.

Determine the axial load P (in Newtons) if the cross-

sectional dimensions of the bar are as indicated in Fig.

P8.3-19a.

y

x

z

45°

40 MPa

40 MPa

40 MPa

y

x
A

(a)

(b)

A

30 mm

5 mm

P

P

P8.3-19 and P8.5-29

Prob. 8.3-20. The state of plane stress at point A on the sur-

face of an axially loaded bar shown in Fig. P8.3-20.

Determine the compressive axial load P (in kips) if the

cross-sectional dimensions of the bar are as indicated in Fig.

P8.3-20.

30°

2.6 ksi 4.5 ksi

1.5 ksi

y

x

x′

y′

y

x

z

A

A

2 in.

2 in.

P

P8.3-20 and P8.5-30

30°

1 ksi 3 ksi

y

x

x′

y′

A

y

z

1.5 in.

A

x

4 in.

1 in.
M

M

P8.3-21 and P8.5-31

Prob. 8.3-22. At point A on the surface of one side of the

backhoe bucket shown in Fig. P8.3-22a, the complete state of

stress relative to the xy axes (Fig. P8.3-22b) is to be deter-

mined. At point A, the normal stresses on the x� and y�
planes are known to be 2.8 ksi in tension and 2.0 ksi in 

compression, respectively, as indicated in Fig. P8.3-22c.

Determine �y and �xy, if, as indicated in Fig. P8.3-22b, �x �
3.6 ksi in compression.
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CProb. 8.3-23. (a) Write a computer program that: (i) inputs

�x, �y, and �xy; (ii) uses the stress-transformation equations,

Eqs. 8.5, to form expressions for �n(�) and �nt(�); and (iii)

plots �n(�) and �nt(�) for ��/2 	 � 	 �/2. You may use the

programming language or math application software of your

own choice, unless your instructor indicates otherwise. (b)

Demonstrate your computer program for the following

stress states: (1) �x � 100 MPa, �y � 0 MPa, and �xy � 0 MPa;

(2) �x � 0 MPa, �y � 0 MPa, and �xy � 100 MPa; (3) �x �
2 ksi, �y � �1 ksi, and �xy � �1 ksi.

Prob. 8.4-7. The state of plane stress for this problem is the

stress at point A on the front suspension of an automobile,

as shown in Fig. P8.4-7b.

P8.3-22

σy

τxy

τx′y′

3.6 ksi

y

x

2.0 ksi

49.1°

40.9°

2.8 ksi

y′

x′

A A

(a)

(b) (c)

A

Prob. 8.4.1. �x � 3000 psi, �y � �5000 psi, and �xy � �3000 psi.

Prob. 8.4-2. �x � 48 MPa, �y � �32 MPa, and �xy � 16 MPa.

Prob. 8.4-3. �x � 12 MPa, �y � �8 MPa, and �xy � �4 MPa.

Prob. 8.4-4. �x � 4.8 ksi, �y � �1.2 ksi, �xy � �4 ksi.

PRINCIPAL STRESSES; MAXIMUM SHEAR STRESS▼

Problems 8.4-1 through 8.4-6. At a certain point in a mem-
ber subjected to plane stress, the stresses �x, �y, and �xy have
the values listed below. (a) Determine the principal stresses
and show them on a sketch of a properly oriented stress 
element, and (b) determine the shear stress and normal
stress on the planes of maximum shear stress, and show
these on a sketch of a properly oriented stress element.

Problems 8.4-7 through 8.4-12. At a certain point in a
member subjected to plane stress, the stresses �x, �y, and
�xy have the values shown on Figs. P8.4-7 through P8.4-12.
(a) Determine the principal stresses and show them on a
sketch of a properly oriented stress element, and (b) de-
termine the shear stress and the normal stress on the
planes of maximum shear stress, and show these on a
sketch of a properly oriented stress element.

10 ksi

4 ksi

4 ksi

y

xA

(a) (b)

A

P8.4-7, P8.5-16, and 8.6-12

Prob. 8.4-8. The state of plane stress for this problem is

shown in Fig. P8.4-8.

35.6 ksi

10 ksi

y

x

P8.4-8 and P8.5-17

Prob. 8.4-9. The state of plane stress for this problem is

shown in Fig. P8.4-9.

Prob. 8.4-5. �x � �4 ksi, �y � 12 ksi, and �xy � 6 ksi.

Prob. 8.4-6. �x � 2,400 psi, �y � 14,400 psi, and �xy �
14,400 psi.
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8 MPa

5 MPa

18 MPa

y

x

P8.4-9 and P8.5-18

Prob. 8.4-10. The state of plane stress for this problem is

shown in Fig. P8.4-10.

10 MPa

10 MPa

30 MPa

y

x

P8.4-10 and P8.5-19

Prob. 8.4-11. The state of plane stress for this problem is

shown in Fig. P8.4-11.

2 ksi

8 ksi

10 ksi

y

x

P8.4-11 and P8.5-20

Prob. 8.4-12. The state of plane stress for this problem is

shown in Fig. P8.4-12.

40 MPa

30 MPa

y

x

P8.4-12 and P8.5-21

Prob. 8.4-13. At a certain point on the surface of a machine

part, the normal stresses on two mutually perpendicular

faces (the x and y faces) are 7 MPa (C) and 3 MPa (T), as

shown in Fig. P8.4-13. The maximum in-plane shear stress at

this point is �max � 10 MPa. Determine the magnitude, �, of

the shear stress that acts in the direction shown on the x and

y faces, and determine the in-plane principal stresses at this

point.

3 MPa

7 MPa

τ

y

x

P8.4-13 and P8.5-32

Prob. 8.4-14. At a certain point on the surface of an airplane

wing, the state of plane stress can be described by Fig.

P8.4-14. The maximum in-plane shear stress at this point is

�max � 13 ksi. (a) Determine the magnitude of the shear

stress, �, on the x and y faces. (b) Determine the two in-plane

principal stresses at this point and show them on a properly

oriented principal-stress element.

20 ksi

τ

y

x

P8.4-14 and P8.5-33

593

 c08TransformationofStressAndStrainMohr’sCircle.qxd  9/28/10  4:50 PM  Page 593



*Prob. 8.4-15. The state of plane stress at a point can be de-

scribed by a known tensile stress �x � 70 MPa, an unknown

tensile stress �, and an unknown shear stress �, as indicated

in Fig. P8.4-15. At this point the maximum in-plane shear

stress is 78 MPa, and one of the two in-plane principal

stresses is 22 MPa (T). Determine the values of the two un-

known stresses, labeled � and � on the figure, and determine

the second in-plane principal stress. The stresses act in the

directions shown on Fig. P8.4-15, that is, �y � � and �xy � ��.

Prob. 8.5-10. Use Mohr’s circle to solve Prob. 8.3-12.

Prob. 8.5-11. (a) Construct Mohr’s circle for an element in a

uniaxial state of stress (Fig. P8.5-11). (b) Use this Mohr’s 

circle to derive the following equations for the normal stress

�n and shear stress �nt on the n-face (see Eqs. 2.30).

(c) Use the Mohr’s circle to determine the planes on which

the maximum shear stress acts. Sketch a properly oriented

maximum-shear-stress element and indicate the normal and

shear stresses acting on its faces.

sn �
sx

2
 (1 � cos 2u),    tnt � �asx

2
b sin 2u

70 MPa

τ

σ

y

x

P8.4-15 and P8.5-34

Prob. 8.5-1. Use Mohr’s circle to solve Prob. 8.3-1.

Prob. 8.5-2. Use Mohr’s circle to solve Prob. 8.3-2.

Prob. 8.5-3. Use Mohr’s circle to solve Prob. 8.3-3.

Prob. 8.5-4. Use Mohr’s circle to solve Prob. 8.3-4.

MOHR’S CIRCLE: STRESS TRANSFORMATIONS▼

All problems is Section 8.5 are to be solved by using Mohr’s
Circle for Plane Stress. Consider only the in-plane stresses.

Additional problems on the topic of Mohr’s Circle
may be found in Chapter 9.

MDS 8.1–8.3

Problems 8.5-1 through 8.5-4. Use Mohr’s circle to solve
for the normal stress and the shear stress on the indicated
inclined plane NN.

Problems 8.5-5 through 8.5-10. Use Mohr’s circle to solve
for the stresses �x �, �y�, and �x�y� on an element that is ro-
tated by the angle � � �xx�. Show the calculated stresses on
a stress element oriented at this angle.

σx σx

σn

y

x x

n

τnt

t

θ

P8.5-11

Prob. 8.5-5. Use Mohr’s circle to solve Prob. 8.3-5.

Prob. 8.5-6. Use Mohr’s circle to solve Prob. 8.3-6.

Prob. 8.5-7. Use Mohr’s circle to solve Prob. 8.3-7.

Prob. 8.5-8. Use Mohr’s circle to solve Prob. 8.3-8.

Prob. 8.5-9. Use Mohr’s circle to solve Prob. 8.3-11.

Prob. 8.5-12. (a) Construct Mohr’s circle for an element un-

dergoing pure shear (Fig. P8.5-12). (b) Use this Mohr’s circle

to derive the following equations for the normal stress �n

and shear stress �nt on the n-face.

(c) Use the Mohr’s circle to determine the principal planes.

Sketch a properly oriented principal-stress element and

show the principal stresses acting on its faces.

sn � txy sin 2u,    tnt � txy cos 2u

σn

y

x x

n

τnt
τxy

τxy

t

θ

P8.5-12

Prob. 8.5-13. Use the stresses given in Prob. 8.4-1.

Prob. 8.5-14. Use the stresses given in Prob. 8.4-2.

Prob. 8.5-15. Use the stresses given in Prob. 8.4-3.

Prob. 8.5-16. Use the stresses given in Prob. 8.4-7.

Problems 8.5-13 through 8.5-24. For each of these prob-
lems, (a) construct a Mohr’s circle of stress. Using this
Mohr’s circle, (b) determine the principal stresses and
show them on a properly oriented stress element, and (c)
determine the maximum shear stress and the normal
stress on the planes of maximum shear, and show these on
a sketch of a properly oriented stress element.
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Prob. 8.5-17. Use the stresses given in Prob. 8.4-8.

Prob. 8.5-18. Use the stresses given in Prob. 8.4-9.

Prob. 8.5-19. Use the stresses given in Prob. 8.4-10.

Prob. 8.5-20. Use the stresses given in Prob. 8.4-11.

Prob. 8.5-21. Use the stresses given in Prob. 8.4-12.

Prob. 8.5-22. Use the stresses given for point A on the steel

plate girder in Prob. 8.3-11.

Prob. 8.5-23. Use the stresses given for point A on the

bracket in Prob. 8.3-5.

Prob. 8.5-24. Use the stresses given for point A on the shop

crane in Fig. P8.5-24.

A

y

900 psi

450 psi

(a) (b)

xA

P8.5-24

Problems 8.5-25 through 8.5-34. Use Mohr’s circle to
solve the named problems from Sections 8.3 and 8.4.

Problems 8.5-35 and 8.5-36 are to be solved by use of the
Mohr’s Circle module of MDSolids.

Prob. 8.5-25. Use Mohr’s Circle to solve Prob. 8.3-15.

Prob. 8.5-26. Use Mohr’s Circle to solve Prob. 8.3-16.
DProb. 8.5-27. Use Mohr’s Circle to solve Prob. 8.3-17.

*Prob. 8.5-28. Use Mohr’s Circle to solve Prob. 8.3-18.

Prob. 8.5-29. Use Mohr’s Circle to solve Prob. 8.3-19.

Prob. 8.5-30. Use Mohr’s Circle to solve Prob. 8.3-20.

Prob. 8.5-31. Use Mohr’s Circle to solve Prob. 8.3-21.

Prob. 8.5-32. Use Mohr’s Circle to solve Prob. 8.4-13.

Prob. 8.5-33. Use Mohr’s Circle to solve Prob. 8.4-14.

Prob. 8.5-34. Use Mohr’s Circle to solve Prob. 8.4-15.

CProb. 8.5-35. Use Mohr’s Circle to solve Probs. 8.3-1

through 8.3-4.
CProb. 8.5-36. Use Mohr’s Circle to solve Probs. 8.4-1

through 8.4-4.

MOHR’S CIRCLE: ABSOLUTE 
MAXIMUM STRESS

▼

Problems 8.6-1 through 8.6-12. For the given stress states,
(a) Sketch Mohr’s circles for three-dimensional stresses,
like the circles in Fig. 8.23, and (b) determine the absolute
maximum shear stress, .

Additional problems on the topic of absolute maxi-
mum shear stress may be found in Chapter 9.

Tabs 
max

MDS 8.4–8.5

y

12 ksi

4 ksi

3 ksi

x

z

P8.6-1 and P8.6-13

y

70 MPa

170 MPa

50 MPa

x

z

P8.6-2 and P8.6-13

y

4 ksi

12 ksi

4 ksi

x

z

P8.6-3 and P8.6-13

y

7 ksi

3 ksi

12 ksi

x

z

P8.6-4 and P8.6-13

z

80 MPa

20 MPa
80 MPa y

x

P8.6-5

z

100 MPa

40 MPa
60 MPa y

x

P8.6-6
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Prob. 8.6-11 Use the plane stress state at point A on the

steel plate girder described in Prob. 8.3-11.

Prob. 8.6-12. Use the plane stress state at point A on the 

automobile front suspension described in Prob. 8.4-7.

Prob. 8.8-4. Following the procedure employed in Section

8.4 to derive expressions for directions of principal stress

and the corresponding principal stresses, and starting with

Eq. 8.47a, (a) derive expressions for the directions of princi-
pal strain, that is, the directions �p1

and �p
2

along which �n

assumes its maximum and minimum values, respectively.

(b) Obtain expressions for the principal strains, �1 and �2, in

terms of �x, �y, and �xy.

Prob. 8.8-5. Following the procedure employed in Section

8.4 to derive expressions for the maximum in-plane shear

stress, and starting with Eq. 8.47b, obtain an expression for

the maximum in-plane shear strain in terms of

�x, �y, and �xy.

gmax � gs1s2

x

y 40 MPa

30 MPa

z

20 MPa

P8.6-7

x

y
8 ksi

4 ksi

16 ksi

z

2 ksi

P8.6-8

x

y 12 ksi

12 ksi

16 ksi

24 ksi

z

P8.6-9

x

y 40 MPa

80 MPa

40 MPa

z

P8.6-10

Problem 8.6-13 is to be solved by use of the Mohr’s Circle 
module of MDSolids.

CProb. 8.6-13. Use Mohr’s Circle to solve Probs. 8.6-1

through 8.6-4.

Prob. 8.8-1. Using Fig. 8.28b, derive expressions that relate

�y to �n and �nt. (These expressions appear in Eqs, 8.44 and

8.46, respectively.)

Prob. 8.8-2. Using Fig. 8.28c, derive expressions that relate

�xy to �n and �nt. (These expressions appear in Eqs. 8.44 and

8.46, respectively.)

*Prob. 8.8-3. At point P on the surface of a flat plate, the

strains are given by �x, �y, and �xy. Thus, the small rectangle

in Fig. P.8.8-3a, whose diagonal PQ defines the direction n, is

deformed into the parallelogram shape in Fig. P.8.8-3b. Use

trigonometry to derive Eq. 8.44, which relates �n to the given

strains. (Hint: Use the law of cosines.)

TRANSFORMATION OF STRAIN—THEORY▼

596

n

x

y
P

Q
Q*

P*

Δy Δy(1 + �y)

Δx(1 + �x)

γxy

ΔL(1 + � n)

Δx

θ
ΔL

(a) (b)

P8.8-3

TRANSFORMATION OF STRAIN—APPLICATIONS▼

Prob. 8.8-6. A thin rectangular bar is subjected to an axial

load P, as shown in Fig. P8.8-6. Near the center of the bar,

line segments AB and AC at 30� and 60�, respectively, to the

axis of the bar define the directions n and t. (a) Determine

the extensional strains �x, and �y. (Note: �xy � 0 for axial

loading.) (b) Determine the extensional strains �n and �t. (c)

Determine the shear strain �nt.

E � 30(103)ksi,  n � 0.3,  t � thickness � 0.50 in

y

P
x

P = 4 kips

t

60° 1 in.

1 in.30°
n

C

B
A

P8.8-6 and P8.9-7
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Prob. 8.8-7. Repeat Prob. 8.8-6 for the rectangular bar in

Fig. P8.8-7.

E � 200GPa,  n � 0.3,  t � thickness � 10 mm

the shear strain �nt. (c) For pressure vessels, �y � 2�x (see

Section 9.2). Therefore, what is the value of Poisson’s ratio,

for this tank? Assume linearly elastic, isotropic material

behavior.

n,

597

x
P = 10 kN P

t n

45°45° 20 mm

20 mm

C B

A

P8.8-7 and P8.9-8

Prob. 8.8-8. A rectangular bar whose cross-sectional dimen-

sions are 5 in. � 1 in. is subjected to an axial load P � 48 kips

that produces extensional strains �n � 640�, �t � 0 along the

n and t directions indicated in Fig. P8.8-8. Determine the val-

ues of Young’s modulus, E, and Poisson’s ratio, , for this bar.

Assume linearly elastic, isotropic material behavior.

n

P P = 48 kips

t
y

30°

30°

2.5 in.

2.5 in.

n

C B

A x

P8.8-8 and P8.9-9

Prob. 8.8-9. The solid, circular aluminum rod in Fig. P8.8-9

has a diameter d � 40 mm and can be subjected simultane-

ously to a torque T in the direction shown and to a tensile

axial load P. The modulus of elasticity is E � 73 GPa, and

the shear modulus is G � 28 GPa. (a) Determine the shear

strain �xy that results if T � 1.0 kN � m and P � 0. (b) For this

torsion-only loading, determine the extensional strains 

�n and �t along the respective n and t directions shown in 

Fig. P8.8-9.

T
30°

30°

P
y

t
n

x

P8.8-9, P8.8-10, P8.9-10, and P8.9-11

*Prob. 8.8-10. For the aluminum rod described in Prob.

8.8-9, (a) Determine the extensional strain �x and the shear

strain �xy that result if P � 50 kN and T � 500 N � m. (b) For

this loading, determine the extensional strains �n and �t

along the respective n and t directions shown in Fig. P8.8-10.

(Note: There are additional combined-load problems in

Chapter 9.)

*Prob. 8.8-11. On the outer surface of a pressure vessel,

strains �n � 200� and �t � 400� are measured along the n
and t directions indicated in Fig. P8.8-11. (a) Determine the

extensional strains �x and �y. (Note: �xy � 0.) (b) Determine

y
t

n

C

A

B

30°

30°
x

P8.8-11

Prob. 8.8-12. At a certain point on the surface of a pressure

vessel (like the one shown in Fig. P8.8-11) the strains are

given by: �x � 100�, �y � 500�, and �xy � 0. (a) Determine

the state of strain for nt axes rotated counterclockwise by 30�
from the xy axes, as shown in Fig. P8.8-12; that is, determine

�n, �t, and �nt. (b) Sketch the shape of the elemental square

ABDC after deformation. Let the original lengths of the

sides be � 1, but exaggerate the deformation.AB � AC

y
t

n

A

B

D

C

30°

1
1

30°
x

P8.8-12

Prob. 8.9-1. An element of material is subjected to the fol-

lowing state of plane strain: �x � 200�, �y � �100�, and 

�xy � 0. (a) Use Mohr’s circle to calculate the strains �n, �t,

and �nt for an element rotated (counterclockwise) by an

angle � � 20�. (b) Use the given strains to produce a sketch of

the deformed xy element, similar to the sketch in Fig. P8.9-1a.

(c) Use the calculated strains to produce a sketch of the 

MOHR’S CIRCLE: STRAIN 
TRANSFORMATIONS

▼

Problems 8.9-1 through 8.9-6. Use the generic figures
below in solving Probs. 8.9-1 through 8.9-6.

MDS 8.6

y
t

n
1

1

θ
x

y

1

(a) (b)

1 γxy

�x

�y

x

P8.9-1 through P8.9-6
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deformed nt element, starting with the undeformed unit ele-

ment in Fig. P8.9-1b.

Prob. 8.9-2. Solve Prob. 8.9-1 for the following strains and

angle: �x � 200�, �y � �100�, �xy � �200�, � � 20�.

Prob. 8.9-3. Solve Prob. 8.9-1 for the following strains and

angle: �x � 300�, �y � 750�, �xy � 450�, � � 30�.

Prob. 8.9-4. Solve Prob. 8.9-1 for the following strains and

angle: �x � 0, �y � 400�, �xy � �300�, � � �30�.

Prob. 8.9-5. Solve Prob. 8.9-1 for the following strains and

angle: �x � 50�, �y � 0, �xy � 120�, � � 45�.

Prob. 8.9-6. Solve Prob. 8.9-1 for the following strains and

angle: �x � 150�, �y � 300�, �xy � 200�, � � �22.5�.

Prob. 8.9-7. Use Mohr’s strain circle to solve Prob. 8.8-6.

Prob. 8.9-8. Use Mohr’s strain circle to solve Prob. 8.8-7.

Prob. 8.9-9. Use Mohr’s strain circle to solve Prob. 8.8-8.

Prob. 8.9-10. Use Mohr’s strain circle to solve Prob. 8.8-9.

*Prob. 8.9-11. Use Mohr’s strain circle to solve Prob. 8.8-10.

PRINCIPAL STRAINS;
MAXIMUM SHEAR STRAIN

▼

Prob. 8.9-12. �x � 100�, �y � �300�, �xy � �300�.

Prob. 8.9-13. �x � 400�, �y � �200�, �xy � �400�.

Prob. 8.9-14. �x � 200�, �y � 500�, �xy � �300�.

Prob. 8.9-15. �x � 0, �y � �400�, �xy � 300�.

Prob. 8.9-16. �x � 100�, �y � 0, �xy � 240�.

Prob. 8.9-17. �x � �20�, �y � 220�, �xy � 100�.

Prob. 8.9-18. �x � 150�, �y � �300�, �xy � 200 �.

*Prob. 8.9-19. Draw Mohr’s strain circle for the following

plane-strain state: �x � 90�, �y � 270�, �1, � 330�. Determine

the following: �xy, �2, .

*Prob. 8.9-20. Draw Mohr’s strain circle for the following:

plane strain state: �x � �240�, �y � 0, �2 � �250�. Determine

the following: �xy, �1, .up2

up1

Problems 8.9-12 through 8.9-18. For each of the listed
states of plane strain, (a) use Mohr’s circle for strain to
determine the in-plane principal strains and principal-
strain directions, and show how a unit square oriented in
the principal-strain directions deforms; and (b) deter-
mine the maximum in-plane shear strain.

y

p1

1
1

p2

θp1 x

P8.9-12 through P8.9-18

COMPARISON OF STRESS TRANSFORMATION
AND STRAIN TRANSFORMATION

▼

*Prob. 8.9-21. Let the x and y axes at point P on the surface 

of a flat plate undergoing plane stress (see Section 8.2) be 

y

θ�1

θ�2

xP

x′

y′

P8.9-21

Prob. 8.9-22. A thin plate is subjected to a state of plane

stress with the following stresses: �z � 8.4 ksi, �y � 2.4 ksi,

�xy � 0. (�z � �xz � �yz � 0 also.) The plate satisfies Hooke’s

Law, with E � 10(103) ksi and � . Sketch a Mohr’s stress
circle and also a Mohr’s strain circle, and comment on the

similarities and differences between these two circles.

Prob. 8.9-23. Solve Prob. 8.9-22 for the following state of

plane stress: �x � 450 MPa, �y � 150 MPa, �xy � 0. Let 

E � 100 GPa and � .

Prob. 8.9-24. Solve Prob. 8.9-22 for the following state of

plane stress: �x � 18 ksi, �y � 0 ksi, �xy � 6 ksi. Let 

E � 10(103) ksi, � 0.30.n

1
3n

1
3n

Prob. 8.10-1. Starting with Eqs. 8.50, derive Eqs. 8.51 for a

45� strain-gage rosette and Eqs. 8.52 for an equiangular

strain-gage rosette.

Prob. 8.10-2. Use Mohr’s circle for strain in Fig. P8.10.2 to

derive the third equation of Eqs. 8.51, that is,

�xy � 2�b � �a � �c

MOHR’S CIRCLE: STRAIN ROSETTES▼
MDS 8.7

��a

γ/2

B

C(≡Y)

A(≡X)

�b

�c

P8.10-2

oriented in the directions of the principal stresses, �1 and �2,

respectively, and let the x� and y� axes be oriented in the direc-

tions of the principal strains, �1 and �2.Assume that the plate is

linearly elastic. Do the axes of principal strain (the x�y� axes)

coincide with the axes of principal stress (the xy axes)? Either

prove that they coincide, or, if they do not coincide, derive a

formula for the angle that orients the �1 axis with respect to

the �1 axis.

u�1
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Prob. 8.10-3. The 45� rectangular rosette in Fig. P8.10-3 was

used to obtain the following strains—�a � 175�, �b � 140�,

and �c � �105�—at a point on the free surface of a machine

component being tested. (a) Determine the in-plane strains

�x, �y, and �xy. (b) Use a Mohr’s strain circle to determine the

in-plane principal strains �1 and �2 at the rosette’s location.

(c) Determine the orientations of the principal-strain axes

relative to the orientation of the “a” gage.

599

Prob. 8.10-6). (a) Determine the strain components �x, �y,

and �xy. (b) Sketch a Mohr’s circle for this state of strain, and

determine the principal strains and the maximum shear

strain at the rosette’s location. (c) Letting E � 30 � 103 ksi

and v � 0.33, determine the principal stresses and the maxi-

mum in-plane (i.e., in the plane of the gage) shear stress.

Sketch a stress element oriented in the principal directions.

Prob. 8.10-9. Starting with Eqs. 8.50, derive expressions for

�x, �y, and �xy in terms of measured extensional strains �a, �b,

and �c for each of the two rosette orientations shown in Fig.

P8.10-9a,b.

Gage a

x

y

Gage b

Gage c

45°

45°

P8.10-3 through P8.10-5

Prob. 8.10-4. Solve Prob. 8.10-3 for the following measured

strains: �a � 440�, �b � 510�, and �c � 340�.

Prob. 8.10-5. During stress testing of a new design for a 

titanium-alloy helicopter transmission case, the following

strains were measured on the outer surface of the transmis-

sion case by use of a 45� rectangular rosette (see Prob. 8.10-3

for the rosette configuration): �a � �270�, �b � 371�, and 

�c � 670�. (a) Determine the strain components �x, �y, and

�xy. (b) Sketch a Mohr’s circle for this strain state, and deter-

mine the principal strains and the maximum shear strain at

the rosette’s location. (c) Letting E � 100 GPa and � 0.33,

determine the principal stresses and the maximum in-plane

(i.e., in the plane of the gage) shear stress. Sketch a stress 

element oriented in the principal directions.

Prob. 8.10-6. The 60� equiangular rosette shown in Fig.

P8.10-6 was used to obtain the following strains—�a � 160�,

�b � 520�, and �c � 160�—at a point on the free surface of

a machine component being tested. (a) Determine the in-

plane strains �x, �y, and �xy. (b) Use a Mohr’s circle to deter-

mine the in-plane principal strains �1 and �2 at the rosette’s

location, (c) Determine the orientations of the principal-

strain axes relative to the orientation of the “a” gage.

n

Gage a

x

y

Gage bGage c

60°

60°

P8.10-6 through P8.10-8

Prob. 8.10-7. Solve Prob. 8.10-6 for the following measured

strains: �a � �200�, �b � 450�, and �c � 125�.

Prob. 8.10-8. At a point on the outer surface of a gas-turbine

engine, the strains �a � 935�, �b � 167�, and �c � 668� were

measured using a 60� equiangular rosette (see figure with

x

y
Gage bGage c

45° 60°60°

90°

Gage a

(a) (b)

x

y

Gage bGage c

Gage a

60°

P8.10-9

Prob. 8.10-10. Repeat Prob. 8.10.9 for the two rosette con-

figurations shown in Fig. P8.10-10a,b. How do your results

compare with Eqs. 8.51 and 8.52, respectively?

Gage a

x

yGage b
Gage b

Gage c

120°

120°
120°

Gage a

x

y

Gage c

(a) (b)

135°

135°
90°

P8.10-10

*Prob. 8.10-11. At a point on the surface of a steel machine

component, the strain rosette shown in Fig. P8.10-11 meas-

ured the following extensional strains: �a � 700�, �b � 560�,

and �c � �280�. (a) Determine the strain components, �x, �y,

and �xy at the rosette location. (b) Letting E � 30 � 103 ksi and

� 0.30, determine the stress components, �x, �y, and �xy at

the rosette location. (c) Using a Mohr’s circle for strain, deter-

mine the principal strains and the maximum shear strain at

the point. (d) Determine the principal stresses and the ab-

solute maximum shear stress at the point. (Recall Section 8.6.)

n

Gage b

Gage a

x

y

Gage c

135°

135°
90°

P8.10-11 and P8.10-12

 c08TransformationofStressAndStrainMohr’sCircle.qxd  9/28/10  4:50 PM  Page 599



600

Prob. 8.10-12. Use Mohr’s circle to determine the exten-

sional strains �a, �b, and �c that would be indicated by the

rosette shown in Fig. P8.10-12 (see Prob. 8.10-11) if the two

in-plane principal strains at the rosette location are �1 �
736� and �2 � �184�. The direction of principal strain �1 is

30� clockwise from the x axis.

*Prob. 8.10-13. At a point on an aluminum-alloy bracket,

the strain rosette shown in Fig. P8.10-13 measured the follow-

ing extensional strains: �a � 592�, �b � �444�, and �c � 740�.

(a) Determine the strain components �x, �y, and �xy at the

rosette location. (b) Letting E � 70 GPa and � 0.33, deter-

mine the stress components �x, �y, and �xy at the rosette loca-

tion. (c) Using a Mohr’s circle for strain, determine the prin-

cipal strains and the maximum in-plane shear strain at the

point. (d) Determine the principal stresses and the absolute

maximum shear stress at the point. (Recall Section 8.6.)

n

Prob. 8.10-14. Use Mohr’s circle to determine the exten-

sional strains �a, �b, and �c that would be indicated by the

rosette shown in Fig. P8.10-14 (see Prob. 8.10-13) if the two

in-plane principal strains at the rosette location are �1 �
580� and �2 � �260�.The direction of the principal strain �1

is oriented 15� clockwise from the x axis (i.e., from the orien-

tation of the “a” gage).

Prob. 8.10-15. A torsion load cell (to measure torque T) is

constructed by mounting two strain gages on a tubular shaft,

with the gages oriented at �45� to the axis of the tube, as in-

dicated in Fig. P8.10-15. The gages are wired so that the

measurement circuit gives an output �t � �b � �a. Determine

the relationship between the applied torque T and the mea-

sured strain difference, �t, if the tube has the following prop-

erties: r0 � outer radius, ri � inner radius, E � modulus of

elasticity, and � Poisson’s ratio.n

Gage a

x

yGage b

Gage c

120°

120°
120°

P8.10-13 and P8.10-14

x

a

T

b y

45°

45°

P8.10-15
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Section
Suggested

Review

Problems

In previous chapters you learned how to

analyze deformable bodies loaded axially

in torsion or in bend-

ing In this chapter

the stress transformation equations are

derived so you can combine various types

of stress.

as � � 

My

I
, t �

VQ

It
b.

at �
Tr

Ip
b,as �

F
A
b,

C H A P T E R  8  R E V I E W — T R A N S F O R M A T I O N  O F
S T R E S S  A N D  S T R A I N ;
M O H R ’ S  C I R C L E

8.1

Section 8.2 defines plane stress Figure 8.4

depicts a state of plane stress in (a) 3-D,

and in (b) 2-D.
8.2

The free-body diagram for a plane stress 

element (Fig. 8.9)

In Section 8.3 the stress transformation
equations for plane stress are derived and

applied to various states of plane stress.

The stress transformation equations for

plane stress are derived by using only the

equations of equilibrium.

Starting 

with 

Fig. 8.9c,

derive 

Eqs. 8.5.

8.3

The normal stress �n and the shear stress �nt

on the “n-face”, whose normal n is at angle

� counterclockwise from the x-axis, are

given by Eqs. 8.5.These are called the stress
transformation equations for plane stress.

τxy

σy

σx

z x

y

(a) Three-dimensional view.

τyx(= τxy)

τxy

σy

σx

x

y

(b) Two-dimensional view.

A state of plane stress (Fig 8.4)

(8.5)

tnt � �asx � sy

2
b sin 2u � txy cos 2u

� txy sin 2u

sn � asx � sy

2
b � asx � sy

2
b cos 2u

8.3-1

8.3-5

8.3-15

601

h

x

(a)  A triangular stress element.

y

t

n

x

(c)  The free-body diagram.

t

n

(b)  The areas of the respective faces.

x face n face

y face
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Section
Suggested

Review

Problems

8.4

8.5

8.6

8.7

The principal stresses are:

(8.13)

(8.14)

(8.11)and R �
B
asx � sy

2
b2

� t2
xy

where savg �
sx � sy

2

s1 � savg � R, s2 � savg � R

In Section 8.4, the equations are derived for

the principal stresses and corresponding

principal directions. Principal stresses 

are the maximum and minimum normal

stresses at a point.

Also derived in Section 8.4 are the equa-

tions for the maximum shear stress at a

point, and the orientation of the planes of
maximum shear stress.

8.4-3 

8.4-7 

8.4-13

The maximum in-plane shear stress is given by the

equation:

�max � R (8.18)

Mohr’s Circle, whose geometry and proper-

ties are described in Section 8.5, is a super

graphical tool for describing the state of

stress at a point.

You should carefully review Fig. 8.16 and

the table that describes the Procedure for
Constructing and Using Mohr’s Circle of
Stress. Note that the positive � axis points

downward. The icons at the two ends of the

� axis indicate how to interpret the sign of

shear stress on a face.Angles � on the stress

element become angles 2�, turned in the

same sense on Mohr’s circle as on the stress

element.

Section 8.6 extends the discussion of state

of stress at a point to cover triaxial states of

stress.

Section 8.7 defines plane strain, which is

quite different than plane stress.

x

n

y

τxy

t

σn

σx

σy

τnt

C P1P2

S2

T

Y (σy, – τxy)

σ

τ

N (σn, τnt)
θ = θxn

σavg = ( (σx + σy———
2 ( (σx – σy———

2

β

θ

S1
X (σx, τxy)
 θ = 0

R

2θ

Properties of Mohr’s circle for plane stress 

(Fig. 8.16)

Points P1 and P2 denote the principal stresses;
points S1 and S2 denote the maximum (and
minimum) in-plane shear stresses.

8.5-1 

8.5-16 

8.5-27

8.6-9
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Section
Suggested

Review

Problems

(8.47)

gnt

2
� � a�x � �y

2
b sin 2u � agxy

2
b cos 2 u

� agxy

2
b sin 2u

�n � a�x � �y

2
b � a�x � �y

2
b cos 2u

In Section 8.8 the equations for trans-
formation of strains in a plane, Eqs.
8.47, are derived. Whereas stress trans-
formation depends solely on equilib-
rium, strain-transformation equations
are based solely on the geometry of de-
formation.

Section 8.9 shows how a Mohr’s circle of
strain can be used to solve the strain-

transformation equations.

You should review Fig. 8.29 and the

Procedure for Constructing and Using
Mohr’s Circle of Strain.

Section 8.10 discusses how to measure

strain, and introduces electrical-resistance
strain gages, which are used to measure

extensional strain. Strain rosettes are also

introduced.

8.8

8.9

8.10

8.8-3 

8.8-9

γ
–
2

A

R

X

C

O

T

Y

�

�x

�y

�x – �y–––––
2

N(�n,      )
γnt––
2

γxy––
2

�x – �y–––––
2

γxy––
2(         ) (    )2 + 2R = 

�x + �y–––––
2(         )�avg = 

2θxn

Properties of Mohr’s circle for strain (Fig. 8.29)

8.9-1 

8.9-3 

8.9-15

8.10-1 

8.10-9

Section 8.11 is an “optional” section.

 c08TransformationofStressAndStrainMohr’sCircle.qxd  9/28/10  4:50 PM  Page 603



604

PRESSURE VESSELS; STRESSES DUE
TO COMBINED LOADING

9

In previous chapters, specifically Chapters 2, 3, 4, and 6, formulas were derived that

relate the normal stress and the shear stress on any cross section of a slender mem-

ber to the stress resultants on the cross section. Some key formulas that were

derived are listed in Table 9.1. In many practical situations, two or more stress

resultants occur on a cross section, so we need to determine the state of stress at a
point due to various combined loads.

The combined effect of normal and shear stresses can be conveniently analyzed

(for plane stress) by the use of Mohr’s Circle for stress (Section 8.5). In this chapter

we will investigate the stress distribution in slender members under several combi-

nations of loading. In addition, we will examine the state of stress in thin-wall pressure

vessels. The biaxial state of stress in thin-wall pressure vessels is also conveniently

analyzed by using Mohr’s circle.

9.1 INTRODUCTION

T A B L E  9 . 1 Formulas for Stresses

Stress Resultant Symbol Formula References

Normal force F Sections 2.2, 3.2

Torsional moment T Section 4.3

Bending moment M Section 6.3

Transverse shear force V Section 6.8 t �
VQ

It

 s �
�My

I

 t �
Tr

Ip

 s �
F
A
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1Thin Elastic Shells by Harry Kraus, [Ref. 9-1].

9.2 THIN-WALL PRESSURE VESSELS

One form of “combined loading” occurs in thin-wall pressure vessels like the cylin-

drical and spherical tanks shown in Fig. 9.1. Thin-wall pressure vessels vary in size,

for example, from 2-in.-diameter hair-spray, shaving-cream, or spray-paint cans to

gas-storage tanks that are sixty feet or more in diameter. In this section we will 

examine cylindrical and spherical tanks under internal (gas) pressure. These are 

special cases of thin-wall structures called thin shells.1

Although a metallic or plastic thin-wall pressure vessel does not expand as

much as a balloon does when it is pressurized, in both cases the pressurization

stretches the “skin” or walls of the pressure vessel, enlarging the vessel. In general,

the walls of a vessel are considered to be thin if the radius-to-wall-thickness ratio is

ten or more (i.e., ). In that case, the tensile stress in the vessel wall varies 

insignificantly (�5%) from the inside of the vessel wall to the outside.

Cylindrical Pressure Vessels. The diver’s air tank in Fig. 9.1a is an example of

a thin-wall cylindrical pressure vessel. Figure 9.2a shows a circular-cylinder pressure

vessel with end closures. In the cylindrical section the normal (tensile) stresses in 

the longitudinal, or axial, direction and in the circumferential, or hoop, direction are

called the axial stress sa and the hoop stress sh, respectively. We will assume that 

the vessel contains a pressurized gas whose weight can be neglected, and we will use 

r
t
 � 10

FIGURE 9.1 Examples of

thin-wall pressure vessels.

r

σh

Δx
x

x

Circular
cylinder
section

End closure

(a) A circular cylinder with end closures. (b) Shell dimensions.

(d) The diametral cutting plane
      for a hoop-stress free-body diagram.

(c) A free-body diagram for determining
     the axial stress σa.

σa Aa

pApa

End closure

σa t

Δx
σh Ah /2

σh Ah /2
pAph

Δx
x

x

(e) A free-body diagram for determining
     the hoop stress σh.

(Effect of σa and p on cross-
sectional planes omitted)

FIGURE 9.2 Figures used in the analysis of stresses in circular cylinders under internal

pressure.
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(a) A scuba diver with
     cylindrical air tank.

(b) Spherical oxygen and propellant
      tanks on a spacecraft.
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appropriate free-body diagrams in relating sa and sh to the internal pressure p.2 It

is also assumed that sa and sh are constant through the thickness of the wall of the

pressure vessel.

Axial (Longitudinal) Stress: To determine the axial stress, we can employ the

free-body diagram in Fig. 9.2c, where a “cut” has been made through the shell wall

and the gas at an arbitrary cross section x at some distance from the end closure.3

Summing the forces in the x direction, we get

(9.1)

The longitudinal stress acts on the cut section of the vessel wall. The gas pressure,

however, acts on the gas still occupying the vessel below the cutting plane at x.Thus,

Eq. 9.1, together with areas Aa and Apa based on Fig. 9.2b, becomes

But, since t r, this can be approximated by

so, the axial stress is given by

(9.2)

Hoop Stress: The free-body diagram in Fig. 9.2e, which is based on the cross-

sectional and longitudinal cutting planes illustrated in Fig. 9.2d, may be used in 

determining the hoop stress, sh. By taking an arbitrary longitudinal cutting plane

that cuts the vessel in half (i.e., it contains the longitudinal axis), we obtain two sur-

faces on which the stress is sh. Also, the two sh-forces in Fig. 9.2e are parallel. Thus,

summing forces in the hoop (i.e., tangential to the circumference) direction, we get

(9.3)

The areas in Eq. 9.3 are Ah � 2t�x and Aph � 2r�x, so Eq. 9.3 gives the following

expression for hoop stress:

(9.4)

The fact that the hoop stress in a cylindrical shell has twice the magnitude of

the axial stress accounts for the typical failure mode of cylindrical shells that is 

depicted in Figs. 9.3. The photo on the left shows the failure of a high-pressure

compressed-air aluminum-alloy tank used by divers; on the right is a steel liquid

Hoop Stress-
Cylindersh �

pr

t

a Fh � 0:         shAh � pAph � 0

Axial Stress-
Cylindersa �

pr

2t

sa(2prt) � ppr2 � 0

V

sa [p(r � t)2 � pr2] � ppr2 � 0

a Fx � 0:          saAa � pApa � 0

606
Pressure Vessels; Stresses Due
to Combined Loading

2This is the gage pressure, that is, the internal pressure minus the external (or atmospheric) pressure. If

the pressure is larger on the outside than on the inside, a thin-wall shell may be subject to collapse by

buckling. We will consider only internal pressurization.
3The effect of the end closure is discussed later in this section.
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propane gas (LPG) tank.4 Because of the catastrophic effects that may accompany

pressure-vessel failures, design and construction of pressure vessels is closely reg-

ulated by codes (e.g., the ASME Boiler and Pressure Vessel Code [Ref. 9-3]).

Spherical Pressure Vessels. Consider now a thin-wall spherical pressure vessel

of inner radius r and wall thickness t(r/t � 10). Because of the spherical symmetry,

the normal stress will be the same in any direction in the shell, as indicated in Fig.

9.4a.This stress, which is labeled ss to identify it with a spherical pressure vessel, can

be determined by taking a free-body diagram that consists of half of the spherical

vessel plus the pressurized gas occupying the half-sphere. By summing the forces on

the free-body diagram in Fig. 9.4b, we get

(9.5)

The approximations that led from Eq. 9.1 to Eq. 9.2 hold here as well, so Eq. 9.5

gives the following equation for normal stress in a spherical pressure vessel:

(9.6)

The stress in a spherical pressure vessel is equal to the longitudinal stress in a

cylindrical pressure vessel having the same r/t ratio; and it is just half the value of

the hoop stress in the cylinder. Thus, for a given pressure, a spherical pressure ves-

sel can have a thinner wall than a cylindrical vessel can.

State of Stress in Pressure-Vessel Walls. The previous analyses give us the

“in-plane” stresses in the walls of cylindrical and spherical pressure vessels. Since

there is no shear stress on the cutting planes in Fig. 9.2c, Fig. 9.2e, or Fig. 9.4b, the

stresses sa, sh, and ss are all in-plane principal stresses. The radial normal stress is

Normal Stress 
in Spheress �

pr

2t

ssAs � pAps � 0

607
Thin-Wall Pressure Vessels

(a) A spherical pressure vessel with
      diametral cutting plane.

σs 

σs 

σp Aps

σs As

4These and many other interesting examples of failure are discussed in Ref. 9-2, Analyzing Failures: The
Problems and the Solutions, V. S. Goel, ed., (1986), ASM International®, Materials Park, OH 44073-0002

(formerly American Society for Metals, Metals Park, OH 44073).

FIGURE 9.3 Typical appearance of failed cylindrical pressure vessels. (Photos courtesy

ASM International.)

FIGURE 9.4 A spherical

shell under internal pressure.

(b) A free-body diagram for determining
      the normal stress in a spherical shell.
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the third principal stress in both cases. At the inner surface of the pressure vessel

wall, the radial normal stress is sr � �p, since the pressure pushes on the inside sur-

face. On the outer surface the (gage) pressure is zero, so sr � 0. Since r/t is assumed

to be equal to, or greater than, ten, the radial stress is much smaller than the in-plane

stresses, so it is usually ignored.5 To determine the state of stress in the walls of cylin-

drical and spherical pressure vessels, we can use Eqs. 9.2 and 9.4 for cylinders and

Eq. 9.6 for spheres to plot a Mohr’s circle of stress for each. Since ss is the normal

stress in any in-plane direction in a spherical vessel, the Mohr’s circle for in-plane

stresses in Fig. 9.5b degenerates to a single point on the s axis. From the analysis in

Section 8.6 we know that

(8.32)
repeated

From Figs. 9.5a and 9.5b this gives

(9.7)

Effects of End Closures and Other Discontinuities. Of course, to fill a

pressure vessel with gas or liquid, or take the gas or liquid out, there must be a hole

in the pressure-vessel wall and some sort of “connector,” as illustrated in Figs. 9.3

and in Fig. 9.6a. The stress formulas developed above do not apply to stresses in the

immediate vicinity of such discontinuities in the pressure-vessel wall.

The vicinity of the joint between the cylindrical section and the end closure of

a pressure vessel (Fig. 9.2a) is also a location where the previous analysis does not

apply. This is illustrated in Figs. 9.6b and 9.6d. If the end closure and the cylindrical

section of the pressure vessel were permitted to expand freely under the effect of

internal pressure, the cylinder would expand radially more than the end closure

would, as illustrated in Fig. 9.6b. However, since the closure must be welded, or oth-

erwise attached, to the cylinder, both the cylinder and the end closure undergo

significant local deformation that involves localized bending stresses.Analysis of the

 atabs
max
b

sph

�
pr

4t

 atabs
max
b

cyl

�
pr

2t

tabs
max

�
smax � smin

2
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5The radial stress can easily be incorporated using the three-dimensional stress analysis approach of

Section 8.6.

(a) Mohr's circles for a cylinder.

A = axial direction
H = hoop direction
R = radial direction

P3 ≡ R

P3 ≡ R
σ σ

τ

τ

τabs
   max

τabs
   max

P2 ≡ A P1 ≡ H

P1 = P2p1 p2 (in-plane)
Mohr's circle
p1 p3 (out-of-plane)
Mohr's circle

(b) Mohr's circles for a sphere.

pr
–––
2t

pr
–––
2t

pr
–––
2t

FIGURE 9.5 Mohr’s circles for in-plane and out-of-plane stresses.
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stress distribution at such discontinuities is beyond the scope of this text.6 Flat-plate

end closures, like the ones illustrated in Fig. 9.6c, are especially undesirable and

should be avoided if possible.

609
Thin-Wall Pressure Vessels

6This topic is treated in textbooks on thin shells; for example, see Section 116 in Theory of Plates and
Shells by S. Timoshenko and S. Woinowsky-Krieger, [Ref. 9-4].

(c) A cylinder with flat-plate
      end closure.

Cylinder

(d) Deformation near cylinder-
      closure junction.

(a) A filler-pipe attachment. (b) Discontinuity at end closure.

Flat-plate
end closure

δ

Detail A

Detail A

Original shape
Free-expansion
shapes

δ

FIGURE 9.6 Two types of

discontinuities in thin-wall

pressure vessels.

E X A M P L E  9 . 1

A cylindrical pressure vessel 2.50 m in diameter is fabricated by shaping

two 10-mm-thick steel plates and butt-welding the plates along helical

arcs, as shown in Fig. 1. The maximum internal pressure in the pressure

vessel is 1200 kPa. For this pressure level, calculate the following quanti-

ties: (a) the axial stress and the hoop stress; (b) the absolute maximum

shear stress; and (c) the normal stress,sn, perpendicular to the weld line,

and the shear stress, tnt, tangent to the weld line.

Solution

(a) In-Plane Stresses: The axial stress and the hoop stress in the cylindri-

cal section of the pressure vessel are given by Eqs. 9.2 and 9.4, respec-

tively. For the given pressure vessel and internal-pressure loading, the

axial stress and hoop stress are:

 sh �
pr

t
�

(1200 kPa)(1.25 m)

(10 mm)
� 150 MPa

 sa �
pr

2t
�

(1200 kPa)(1.25 m)

2(10 mm)
� 75 MPa

Fig. 1

60°

t

n
a
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Since there is no shear on longitudinal or circumferential cutting surfaces,

these stresses are principal in-plane stresses. Therefore,

Ans. (a) (1)

These stresses are shown on the biaxial stress element in Fig. 2a.

(b) Absolute Maximum Shear Stress: The in-plane Mohr’s circle for

stress is shown as the solid-line circle in Fig. 2b. Since both the axial stress

and the hoop stress are tension, the absolute maximum shear stress is 

not the maximum in-plane shear stress. Rather, this is a stress state with

s1 � s2 � 0, as described in Fig. 8.24c. Since r/t � 125, we can neglect the

internal pressure, p, in comparison with the in-plane stresses and draw a

Mohr’s circle passing through P1 and the origin, P3. Thus,

or

Ans. (b) (2)

(c) Weld-line Stresses: The in-plane Mohr’s circle is redrawn in Fig. 3a. The

point N represents the stresses on a face parallel to the weld, since the

direction n in Fig. 1 is perpendicular to the weld line. From the Mohr’s

circle in Fig. 3, we get

or

Ans. (c) (3)sn � 93.8 MPa,  tnt � �32.5 MPa

 tnt � �NB � �(37.5 MPa) sin 60° � �32.48 MPa

 sn � OB � 112.5 MPa � (37.5 MPa) cos 60° � 93.75 MPa

tabs
max

� 75 MPa

tabs
max

�
s1

2
�

150 MPa

2

s1 � sh � 150 MPa,    s2 � sa � 75 MPa

Fig. 2

Fig. 3

σa = σ2 = 75 MPa

σ2 = 75

σ1 = 150

σ (MPa)

τ (MPa)

= 75τabs
   max

P3

P2 ≡ A P1 ≡ H

σh = σ1 = 150 MPa

(a)

(b)

93.8 MPa
30°

n

t
h

a

131 MPa

32.5 MPa

(b)

93.75

σavg = 112.5

σ (MPa)

τ (MPa)

P2 ≡ A P1 ≡ H

N

B

D

C

T

(a)

131.25

R = 37.5
60°

32.48

O
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Stresses in a Cylindrical Pressure VesselMDS9.1

The normal stress st is given by

These stresses are shown on the rotated element in Fig. 3b.

The normal stress and shear stress on the weld can be converted to

normal-force-per-unit-length and shear-force-per-unit-length (shear

flow) as was done in Section 6.8.

st � OD � 112.5 MPa � (37.5 MPa) cos 60° � 131.25 MPa

Recall that in Fig. 8.1 crack patterns were used to illustrate the effect of combined

bending moment M and transverse shear V in reinforced-concrete beams under

load. We will now examine in greater detail the stress distribution in uniform beams

under combined flexure and shear. To illustrate the distribution of stress in a trans-

versely loaded beam, let us consider the simply supported rectangular beam in 

Fig. 9.7. There are localized stress concentrations at the loading point and at the

two support points, so the stresses in the immediate vicinity of these points cannot

be computed by using the flexure formula (s � �My/I) and the shear formula 

(t � VQ/It) developed in Chapter 6. However, according to St. Venant’s Principle,

which was introduced in Section 2.10, the state of stress away from these stress con-

centrations can be based on the formulas of elementary beam theory. The normal

stress and the shear stress may be combined by using the stress-transformation

equations of Section 8.3, Eqs. 8.3 or 8.5, or by using Mohr’s circle for stress to rep-

resent the state of (plane) stress at any point in the beam that is sufficiently distant

from the load and support points.

9.3 STRESS DISTRIBUTION IN BEAMS

611

(c) The moment diagram.

(d) Locations for state of
      stress calculations.

(a) A simply-
      supported
      beam.

(b) The shear diagram.

b

y

x

2P

P

P

A
B
C
D
E
F
G
H
I

c
8 @

c

c
4c

5c

–P

5c

c
c

V(x)

5c

|τxy|

σx

x

5Pc

M(x)

y

x

x

C L

A′
B′
C′
D′
E′
F′
G′
H′
I′

c–
4

FIGURE 9.7 A simply supported beam used for examining the state of stress in a beam.
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For the simply supported beam in Fig. 9.7, we will determine the state of stress

at nine equally spaced points at x � c, where the bending moment is small, and at

nine other equally spaced points at x � 4c, where the moment is near its maximum

value (Fig. 9.7d). This will permit us to see how the principal stresses s1 and s2 vary

from point to point in this particular beam.We can determine whether, for example,

the maximum normal stress is always equal to the maximum flexural stress, or

whether some combination of flexural stress and transverse shear stress may lead to

a larger normal stress at some point in the beam other than the point(s) where the

maximum flexural stress occurs.

For the half-span 0 � x � 5c the flexural stress and transverse shear stress are

given by

(9.8)

(9.9)

where s0 � P/A. These are illustrated in Figs. 9.7c and 9.7b, respectively. The 

maximum normal stress occurs at midspan and is (sx)max � 15s0. Sample 

Mohr’s-circle calculations for point C are illustrated in Fig. 9.8.

The principal stresses at the two cross sections at x � c and x � 4c are tabulated

graphically in Fig. 9.9. Note how the orientation of the principal stresses varies

from top to bottom of the beam at each cross section, with the principal stresses

being parallel to the x and y axes at the top and bottom, and at to the x axis at

the neutral axis (y � 0). Also note that, even at x � c where the moment is 

relatively small, the maximum tension (compression) occurs at the bottom (top) 

of the beam and not at some intermediate height where there is a nonzero trans-

verse shear.

This example is typical of rectangular-beam problems in that the maximum 

tensile and compressive stresses are simply flexural stresses at sectionsas �
�My

I
b

�45°

 txy � �
3s0

2
 a1 �

y2

c2
b

 sx �
�Pxy

I
� �3s0 axy

c2
b
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3–
2

9–
8

3–
2

9–
8

X(–   , – )

9–
8

Y (0,  )

σ2––σ0

τ––σ0

σ––σ0
P2(    , 0) σ1––σ0

P1(    , 0)

2θyp1
 = 56.31°

0.60

2.10

(b) Mohr's circle for point C.

(a) Stresses at C.

(c) Principal stresses at C.

C

C x

σ0

σ0

0.60σ0

28.2°

2.10σ0

FIGURE 9.8 Determination of the principal stresses at point C in Fig. 9.7d.

c09PressureVesselsStressesDueToCombinedLoading.qxd  9/20/10  4:36 PM  Page 612



where |M(x)| has its maximum value. Therefore, the transverse shear has no effect

in determining the maximum normal stresses in the beam. However, in wide-flange

beams, where the shear stress txy may be large near the outer fibers where sx is also

large, a complete investigation (i.e., using Mohr’s circle) should be conducted to 

determine the principal stresses at cross sections where V and M are both signifi-

cant. Such an analysis is carried out in Example Problem 9.2.

Figure 9.9 gives the entire principal-stress picture at a total of 18 points in the

beam in Fig. 9.7. It is not possible to provide complete principal-stress information

like this (i.e., values of s1 and s2 and orientation of principal directions) at every

point in a beam. However, it is possible to provide two diagrams that permit a 

visualization of the principal stresses at every point in a beam. One diagram shows

the orientation of the two principal directions at every point. Curves, called stress
trajectories, are drawn so that they are tangent to the principal directions at every

point. Since the two principal directions at any point are orthogonal, two stress

trajectories pass through every point, and they are perpendicular to each other.

Figure 9.10 shows the stress trajectories for a simply supported beam with rectangular

613
Stress Distribution in Beams

1–
2

3–
4

1–
4

0

1

y/c
x = c

σmin/σ0 σmax/σ0

–3.00 0

–1

1–
4

–

1–
2

–

–3–
4

A

0 3.00I

–2.43 0.18B 15.1°

–0.18 2.43H
15.1°

–2.10 0.60C
28.2°

–0.60 2.10G
28.2°

–1.83 1.08D
37.5°

–1.08 1.83F

37.5°

–1.50 1.50E
45°

x = 4c

σmin/σ0 σmax/σ0

–12.00 0A′

0 12.00I′

–9.05 0.05B′ 4.1°

4.1°
–0.05 9.05H′

–6.20 0.20C′

10.3°

10.3°–0.20 6.20G′

–3.56 0.56D′
21.6°

21.6°
–0.56 3.56F′

–1.50 1.50E′
45°

FIGURE 9.9 The principal stresses at two cross sections of the simply supported beam

in Fig. 9.7, expressed in terms of .s0 � P/A
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cross section. (Stress concentrations are not accounted for in this figure.) A typical

use of stress trajectories is to determine the direction of the principal tensile stress

in beams made of brittle material (e.g., concrete) so that reinforcement can be pro-

vided to carry the tensile stresses (recall Fig. 8.1).The stress trajectories show the di-

rections of principal stress, but they provide no information about the magnitudes

of the principal stresses.A plot of stress contours contains curves that connect points

of equal principal stress.

Using the finite element method to perform the stress calculations, and using col-

ors to represent different stress magnitudes, it is possible to produce color images of

the stress distribution not only in beams, but also in more complex members. The

color insert near the beginning of this textbook illustrates stress plots that were pro-

duced from finite element solutions.

In Section 6.4, Design of Beams for Strength, the sizing of the cross section of a

beam to carry specified loads and to have specified supports was based on the max-

imum flexural stress in the beam. Hence, for example, the maximum moment for the

beam in Example Problem 6.5 occurs at x � 5 ft, and this moment, together with a

given value of allowable stress, was used to determine the most efficient (least

weight) cross section of beam to be used for this application. However, since a wide-

flange beam was selected for this application, it is possible that the maximum prin-

cipal stress at a section where both M and V are large may exceed the maximum

flexural stress on which the design in Example Problem 6.5 was based. The follow-

ing example problem explores this possibility.

614
Pressure Vessels; Stresses Due
to Combined Loading

2P
Minimum (comp.)

P P

Maximum (tens.)

E X A M P L E  9 . 2

Just to the left of point B in Fig. 1a (same as Fig. 1 of Example Problem

6.5) the transverse shear force is V � �28 kips, and the bending mo-

ment is M � �48 kip 	 ft. Ignoring any stress concentration due to the

support at B, determine the principal stresses at point D in Fig. 1b.

Compare the maximum tensile stress at D with the maximum flexural

stress in the beam, which occurs at x � 5 ft, where M(5 ft) � 50 kip 	 ft

and V(5 ft) � 0. The beam is a W14 
 26. (See Example Problems 6.5

and 6.15.)

Plan the Solution We can use the flexure formula to determine the

normal stress on the cross section at B, and the shear stress distribution

on this cross section was determined in Example Problem 6.15. We can

use Mohr’s circle to combine these and to determine the principal stress

magnitudes and directions at point D.

FIGURE 9.10 Stress trajectories for a simply supported beam with a single midspan load.
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Solution The shear force and bending moment just to the left of section

B are shown in Fig. 2a, and the essential cross-sectional dimensions of

the W14 
 26 beam are shown in Fig. 2b.

The normal stress at D is

or

The shear stress at point D has a magnitude

or

We can construct a Mohr’s circle for the stresses in the plane of the

web at point D. From the Mohr’s circle in Fig. 3,

Ans.

 uxp1
� 19.9°

 2uxp1
� tan�1 a6.380

7.682
b � 39.71°

 s2D
� 7.68 ksi � 9.98 ksi � �2.30 ksi

 s1D
� 7.682 ksi � 9.986 ksi � 17.67 ksi

 R � 2(7.682)2 � (6.380)2 � 9.986 ksi

tD � 6.380 ksi c

tD � �txy�D �
�V�Q

It
�

28 kips(5.025 in.)(0.420 in.)(6.745 in.)

(245 in4)(0.255 in.)

(sx)D � 15.364 ksi (T)

(sx)D � �
My

I
� �

(�48 kip � ft)(12 in./ft)(6.535 in.)

245 in4

Fig. 1

Fig. 2

Fig. 3 Mohr’s circle for point D.

x

12 ft 6 ft

A
B C

4 kips/ft

8 kips

y

Detail B

W14 x 26

B

D

x

y |V| = 28 kips

|M| = 48 kip•ft
(a)

5.025 in.

6.535 in.

0.420 in.

0.255 in.

z

y

(b)

Iz = 245 in4

D

D

D x

y

6.38 ksi

15.36 ksi

x

2.30 ksi
17.67 ksi

19.9°

P1

D

2θxp1
 = 39.71°

R = 9.99

P1P2

X(15.36, 6.38)

Y(0, 6.38)

τ (ksi)

σ (ksi)

17.67
2.30

c
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Combined Bending and Shear in BeamsMDS9.2 & 9.3

At x � 5 ft, the maximum tensile stress is just the flexural stress at

the bottom of the beam (since V � 0). Therefore,

or

Therefore, the tensile principal stress at D, 17.67 ksi, is slightly larger

than the maximum flexural stress in the beam, 17.03 ksi. However, since

an allowable stress of 19 ksi was used in Example Problem 6.5 in selecting

the W14 
 26 beam cross section, the beam has enough stress margin

to be safe, even though the principal stress at D is slightly larger than the

maximum flexural stress on which the beam design was originally based.

Review the Solution The calculations in this problem are quite simple,

so they can just be rechecked for accuracy. Since there is a significant

value of transverse shear force at a cross section where the moment is

nearly its maximum value, and since the cross section has heavy flanges

and a thin web, we should not be surprised to find principal stresses, like

the s1 stress at point D, that exceed the maximum flexural stress in the

beam.

sx(5 ft, �6.955 in.) � 17.03 ksi

sx(5 ft, �6.955 in.) �
�My

I
�

�(50 kip � ft)(12 in./ft)(�6.955 in.)

245 in4

The analysis Procedure outlined below will now be applied to solve several stress

analysis problems that involve various combinations of load types—axial, torsional,

and bending.

9.4 STRESSES DUE TO COMBINED LOADS

STRESS-ANALYSIS PROCEDURE FOR COMBINED LOADING

The following three-step procedure will be useful in solving

for stresses due to combined loading.

1. Determine the internal resultants: This, of course, involves

drawing free-body diagrams and writing equilibrium

equations. For statically indeterminate problems, mate-

rial behavior and geometry of deformation must also be

considered.

2. Calculate the individual stresses: Formulas like those listed

in Table 9.1 are used to compute the stress distributions

that result from the various stress resultants. Section 9.2

gives formulas for stresses in thin-wall pressure vessels.

3. Combine the individual stresses: This step involves alge-

braically summing like stresses (e.g., two s’s on the same

face), or using Mohr’s circle when the stresses are dissim-

ilar (e.g., sx and sy). In most cases, the principal stresses

and the maximum shear stress are required, and these can

be obtained from Mohr’s circle for stress.

Combined Axial Loading and Bending. Figure 9.11 shows a member with

cross section at x on which are acting the stress resultants F, My, and Mz. The axial

force resultant acts at the centroid of the cross section, and the sign conventions

616
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for the axial force and the bending moment components are consistent with those

in previous chapters. On any cross section where the y and z axes are principal axes
that pass through the centroid of the cross section, the normal stress sx at point (y, z)

in the cross section is given by a combination of Eqs. 2.4 and 6.30, that is, by the

equation

(9.10)sx �
F
A

�
Myz

Iy
�

Mzy

Iz

617
Stresses Due to Combined

Loads

E X A M P L E  9 . 3

An axial compressive load of 800 kips is applied eccentrically to a short

rectangular compression member, as shown in Fig. 1. (The effect of 

eccentric compressive loading on longer members is treated in Section

10.4.) Determine the distribution of normal stress on a cross section,

say ABCD, that is far enough from the point of load application that

stress concentration effects may be neglected. Sketch the stress distri-

bution and identify the location of the neutral axis in cross section

ABCD.

Fig.  1 An eccentrically loaded short compression member.

FIGURE 9.11 A member subjected to axial loading and biaxial flexure.

z

y

x

C

F

z

y

D

My

Mz

σx

z

y

x

10 in.
10 in.

20 in.

ey = 10 in.

ez = 5 in. 5 in.

A
B

D
C

P
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Plan the Solution The eccentric load P produces axial deformation

plus bending about the y and z axes. Therefore, this problem involves a

superposition of the stresses due to F, My, and Mz (Eq. 9.10).

Solution

Stress Resultants: Figure 2 shows the stress resultants on cross section

ABCD. The sign conventions for stresses and stress resultants is the

same as the sign conventions adopted previously in Chapters 2 and 6.

Applying equilibrium to a free-body diagram of the member above

section ABCD we get the following expressions for the stress resultants:

(1)

Individual Normal Stresses: Combining Eq. 2.4, for the normal stress

due to the axial force F, with Eq. 6.30, for the normal stress due to the

bending-moment components, we have Eq. 9.10:

(2)

Taking each stress contribution separately, and combining Eqs. (1) and

(2), we obtain the following:

(3)

These stress contributions are sketched in Fig. 3. The maximum values of

the bending stresses are

Superposition of Stresses: Using Figs. 3a through 3c, we can combine,

algebraically, the individual stress contributions at four corners to get

(4)

 (sx)D � �1000 � 1500 � 1500 � 2000 psi

 (sx)C � �1000 � 1500 � 1500 � �1000 psi

 (sx)B � �1000 � 1500 � 1500 � �4000 psi

 (sx)A � �1000 � 1500 � 1500 � �1000 psi

 Max�(sx)Mz� � 75y�y�20 m � 75(20 in.) � 1500 psi

 Max�(sx)My� � 150z�z�10 in � 150(10 in.) � 1500 psi

 (sx)Mz
�

�(Pey)y

Iz
�

�(800 kips)(10 in.)y

[ 1
12(20 in.)(40 in.)3]

� �75y psi

 (sx)My
�

(�Pez)z

Iy
�

(�800 kips)(5 in.)z

[ 1
12(40 in.)(20 in.)3]

� �150z psi

 (sx)F �
�P
A

�
�800 kips

(40 in.)(20 in.)
� �1000 psi

sx �
F
A

�
Myz

Iy
�

Mzy

Iz

 Mz � Pey

 My � �Pez

 F � �PFig. 2 Stress resultants.

Fig. 3 Individual stress contributions.

z

y

x

ey = 10 in.

ez = 5 in.

A

B

C

P

F

D

My

Mz

A
B

CD
1000 psi

(a) Stress distribution due to F.

A
B

CD1500 psi

(b) Stress distribution due to My.

A
B

CD1500 psi

(c) Stress distribution due to Mz.
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If a compression member, like the one in Example Problem 9.3, is made of a

brittle material like concrete, it is not desirable to permit tensile stresses to occur at

any point in the cross section. This requires that the compressive load P be located

within a small region near the axis of the member. This region is called the kern of

the cross section, or core of the cross section. For a rectangular cross section, like the

one in Fig. 9.11, the kern is bounded by four straight lines. The equations of the four

lines that bound the kern can be derived by combining Eqs. (1) and (2) of Example

Problem 9.3 to give the normal stress on a cross section like section ABCD in 

Fig. 9.12. Thus,

(9.11)

This normal stress will be zero at corner D (�cy, �cz) if P is applied anywhere along

the line “d,” whose equation is

(9.12)

Similar equations can be derived for the kern boundary lines a, b, and c. (See

Homework Problem 9.4-1.)

Combined Axial Loading and Torsion. The next example problem illustrates

the superposition of stresses due to combined axial and torsional loading.

acy

Iz
b eyd � acz

Iy
b ezd �

1

A

sx(y, z) �
�P
A

�
�Pezz

Iy
�

�Peyy

Iz

With the aid of these corner stresses, we can sketch the combined stress

distribution. Since Eq. (2) is linear in y and z, the stress surface will be a

plane (which has been “folded” to show tension and compression as they

are shown in Fig. 3). In Fig. 4 the member has been rotated about the x
axis to provide a better perspective for viewing the stress surface and the

neutral axis, which is the intersection, RS, of the stress surface with the

ABCD plane.

The equation of the neutral axis line is given by setting sx(y*,

z*) � 0, where (y*, z*) are coordinates of points on the neutral axis.

Combining Eqs. (2) and (3) we get

(5)

The intersection, R, of the neutral axis with edge CD is given by setting

y* � �20 in. This gives (y*, z*)R � (�20 in., 3.33 in.). Similarly,

(y*, z*)S � (6.67 in., �10 in.).

Review the Solution It is obvious from the location of the compressive

force P in Fig. 1 that corner B will have the highest compressive stress 

of any point in the cross section. This is confirmed by Eq. (4b) and by 

Fig. 4. The load P is far enough from the axis of the member that it 

actually causes tension at D.This means that between B and D the stress

changes from compression to tension. Hence, there is a neutral axis 

(sx � 0) that passes between A and D. Therefore, Fig. 4 appears to rep-

resent accurately the stress distribution due to the eccentric load P.

sx(y*, z*) � �1000 � 75y* � 150z* � 0

Fig. 4 The combined stresses on section
ABCD.

D

S

R

A

B
C

2000 psi
(T)

1000 psi (C)

4000 psi (C)

1000 psi (C)

Neutral axis

z

y

z
y

x

ey

ez

A
B

C
cy

cy

cz cz

P

D

b
a

d
c

FIGURE 9.12 The kern of
a rectangular cross section.
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E X A M P L E  9 . 4

During the drilling of an oil well, the section of the drill pipe at A (above

ground level) is under combined loading due to a tensile force P � 70

kips and a torque T � 6 kip 	 ft, as illustrated in Fig. 1. The drill pipe has

an outside diameter of 4.0 in. and an inside diameter of 3.640 in.

Determine the maximum shear stress at point A on the outer surface of

the drill pipe. The radial stress at this point is zero. The yield strength in

tension of this drill pipe is 95 ksi.

Plan the Solution We can use Mohr’s circle to combine the normal

stress s due to force P and the shear stress t due to T, but we may also

need to consider the three-dimensional aspect of the stress at A to deter-

mine the absolute maximum shear stress.

Solution

Stress Resultants: The stress resultants are given in the problem statement:

(1)

Individual Stresses: From Eq. 2.4, we get the normal stress

(2)

From Eq. 4.13, we get the torsional shear stress

(3)

Figure 2 summarizes the “in-plane” stresses on the surface of the drill

pipe at point A. The radial stress, normal to the surface, is zero.

Superposition of Stresses: Mohr’s circle may be used to combine the in-

plane stresses in Fig. 2. From the Mohr’s circle in Fig. 3,

(4)R � 2(16.20 ksi)2 � (18.23 ksi)2 � 24.39 ksi

t �
Tro

Ip
�

(6 kip � ft)(12 in./ft)(2 in.)
p
2 [(2 in.)4 � (1.820 in.)4]

� 18.23 ksi

s �
F
A

�
70 kips

p [(2 in.)2 � (1.820 in.)2]
� 32.41 ksi

F � P � 70 kips,  T � 6 kip � ft

620

Fig. 1 Portions of an oilwell drill

string.

Fig. 2 In-plane stresses at point A.

Fig. 3 Mohr’s circle.

P

T

Drill pipe

Drill bit

A

32.41 ksi

18.23 ksi

x

y A

P3

P2

P1C

R = 24.39

Y (0, –18.23)

BO σ (ksi)

8.2

16.20

τ (ksi)

40.6

24.39

X (32.41, 18.23)
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Shaft Subjected to Combined Axial Loading and Torsion
Many interesting applications of deformable-body mechanics in the field of 

oilwell drilling engineering are presented in Oilwell Drilling Engineering—
Principles and Practice, by H. Rabia, [Ref. 9-5]. See also Ref. 9-6.7

General Combined Loading. In the final example problem on stresses due to

combined loading, we consider a problem that involves all types of stress resultants:

F, T, M, and V.

MDS9.4

Then,

(5)

The in-plane principal stresses are labeled s1 and s3, since the out-of-

plane principal stress, sr � 0, is the intermediate principal stress. Then,

from Eq. 8.32,

(6a)

or

Ans. (6b)

Review the Solution The calculations in Eqs. (2) and (3) should be

rechecked. Points X and Y are plotted correctly, so s1 and s3 appear to

be correct. Finally, since the working stresses in this example should not

produce yielding of the drill pipe, the absolute maximum shear stress

should be much less than half the tensile yield strength. Therefore, the

answer in Eq. (6b) seems reasonable.

tabs
max

� 24.4 ksi

tabs
max

�
smax � smin

2
�

40.6 ksi � (�8.2 ksi)

2

 s3 � savg � R � 16.20 � 24.39 � �8.2 ksi

 s1 � savg � R � 16.20 � 24.39 � 40.6 ksi

7The American Petroleum Institute (API) maintains standards covering all segments of the oil and gas 

industry and distributes publications, technical standards, and electronic and online products.

http://www.api.org

E X A M P L E  9 . 5

Wind blowing on a sign produces a pressure whose resultant, P, acts in

the �y direction at point C, as shown in Fig. 1.The weight of the sign, Ws,

acts vertically through point C, and the thin-wall pipe that supports the

sign has a weight Wp.

Following the procedure outlined at the beginning of Section 9.4,

determine the principal stresses at points A and B, where the pipe col-

umn is attached to its base. Use the following numerical data.

Pipe OD � 3.50 in., A � 2.23 in2, Iy � Iz � 3.02 in4, Ip � 6.03 in4,

Ws � 125 lb, Wp � 160 lb, P � 75 lb, b � 40 in., L � 220 in.
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Plan the Solution It will be a good idea to tabulate the stress result-

ants, stress formulas, and so forth, so that no stress contribution will be

missed. The weight Ws contributes to the axial force, and it also pro-

duces a moment about the y axis. The wind force P produces a trans-

verse shear force in the y direction, and it also causes a torque about

the x axis and a moment about the z axis. A correct free-body diagram

is essential.

Solution

Stress Resultants: All six stress resultants on the cross section at the base

of the pipe are shown in Fig. 1. The upper portion of Fig. 1 can serve as a

free-body diagram for determining these six stress resultants. The sign

convention is the one introduced in Fig. 2.40. Let us tabulate the equilib-

rium equations and indicate what stress is produced by each stress result-

ant and label each individual stress.

Individual Stresses: Using the formulas from Table 9.1, we can compute

the numerical value of each of the nonzero stresses listed in Table 1.

(7)

The shear stress tB2 is due to the transverse shear force Vy. The basic

shear stress formula is

(8)

where Q has to be calculated for the shaded area in Fig. 2. In Example

Problem 6.16, it was shown that the shear stress in this case (stress at the

neutral axis of a thin-wall pipe) is given by

(9a)t �
2V
A

tB2 �
VyQ

Izt

sA1 � sB1 �
F
A

�
�(125 lb) � (160 lb)

2.23 in2
� �128 psi

Fig. 1 A cantilevered sign.

Wp

My

Mz

Vz

Vy

Vz

Vy

L

Mz

T

T

F

A B

D
b

y

z

y

z

x

P

My
A B

Ws

C

T A B L E  1 A Table of Stress Resultants and the Stresses Produced

Stress Stress
Eq. No. Equilibrium Equation at A at B

(1) Fx � 0 F � �Ws � Wp sA1 sB1

(2) Fy � 0 Vy � �P — tB2

(3) Fz � 0 Vz � 0 — —

(4) Mx � 0 T � Pb tA4 tB4

(5) My � 0 My � �Wsb — sB5

(6) Mz � 0 Mz � �PL sA6 —a

a

a

a

a

a

A

B

y

z
Vy

Fig. 2
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Therefore,

(9b)

(10a)

so

(10b)

The flexural stresses due to My and Mz are given by Eq. 6.30.

(11a)

(11b)

(12a)

(12b)

Superposition of Stresses: Using the above values, and taking proper note

of the physical significance of the sign of each term by referring to Fig. 1,

we get the stresses shown in Fig. 3.

 sA6 �
(75 lb)(220 in.)(1.75 in.)

3.02 in4
� 9561 psi

 sA6 �
�Mzro

Iz
�

�(�PL)ro

Iz

 sB5 �
�(125 lb)(40 in.)(1.75 in.)

3.02 in4
� �2897 psi

 sB5 �
Myro

Iy
�

(�Wsb)ro

Iy

tA4 � tB4 �
(75 lb)(40 in.)(1.75 in.)

6.03 in4
� 871 psi

tA4 � tB4 �
Tro

Ip
�

(Pb)ro

Ip

tB2 �
2(75 lb)

2.23 in2
� 67 psi

x

y

x

z

x

y

9561 psi

128 psi

2897 psi

128 psi

871 psi

9433 psi

871 psi

3025 psi

938 psi

871 psi

67 psi

x

zA B

A B

Fig. 3 The states of stress at points A and B.
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Using the stresses shown in Fig. 3, we can construct a Mohr’s circle

for the states of plane stress at points A and B on the pipe surface. The

radial normal stress is sr � 0 at both places. From Fig. 4a.

(13)

(14)

and, from Fig. 4b,

(15)

(16)

In summary, the principal stresses at points A and B, rounded to

three significant figures, are:

Ans.

Review the Solution By showing all six possible internal resultants at

the cross section where stresses are to be calculated, by writing down and

solving all six possible equilibrium equations, and by carefully consider-

ing what stress(es) is (are) produced by each stress resultant, we have 

accounted for the effects of all loads on the structure. As noted earlier,

we have been careful to make sure that each stress component acts in the

direction that “makes sense.” For example, the force P bends the pipe in

the direction that produces tension at point A, and so forth.

The maximum flexural stress at the base occurs at neither A nor B.

Equation 6.30 could be used to combine the flexural stresses due to My

and Mz, and we would also have to consider the effect of shear stress.

(See Homework Problem 9.4-26.)

(s3)B � �3290 psi (s2)B � 0, (s1)B � 267 psi,

 (s1)A � 9510 psi, (s2)A � 0, (s3)A � �80 psi

 (s3)B � (�3025/2) � 1780 � �3292 psi

 (s1)B � (�3025/2) � 1780 � 267 psi

 RB � 2(�3025/2)2 � (938)2 � 1780 psi

 (s3)A � (9433/2) � 4796 � �80 psi

 (s1)A � (9433/2) � 4796 � 9513 psi

 RA � 2(9433/2)2 � (871)2 � 4796 psi

P1 (9513, 0)

P2 (0, 0)P3 (–80, 0)

Z (0, 871)
RA = 4796

X (9433, –871)

σ (psi)

τ (psi)

P1 (267, 0)P2 (0, 0)
P3 (–3292)

Y (0, 938)
RB = 1780

X (–3025, –938)

σ (psi)

τ (psi)(a) (b)

Fig. 4 Mohr’s circles for in-plane stresses at points A and B.

Member Subjected to Combined Axial, Shear, and Bending StressesMDS9.5
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Prob. 9.2-1. A steel oxygen cylinder used by a welder has an

inner radius of ri � 4 in. and a wall thickness of 0.5 in. The

cylinder is pressurized to p � 2000 psi. (a) Determine the

axial stress �a and the hoop stress �h in the cylindrical body

of the tank. (b) Determine the tensile force per inch length

of the weld between the hemispherical head and the cylin-

drical body of the tank.

PRESSURE VESSELS

9.5 PROBLEMS

For all pressure-vessel problems for Section 9.2, the pres-
sure p is the gage pressure, that is, the absolute internal
pressure minus the absolute external pressure. All cylin-
ders are right circular cylinders.

and it is pressurized to a service pressure of p � 3000 psi.

(a) Determine the principal stresses and the maximum in-

plane shear stress in the cylindrical portion of the tank.

(b) Determine the absolute maximum shear stress, .

Prob. 9.2-5. Repeat Prob. 9.2-4 for an air tank with an outer

diameter of do � 180 mm and a wall thickness of t � 13 mm

that it is pressurized to a service pressure of p � 20 MPa.

Prob. 9.2-6. The cylindrical portion of a compressed-air

tank is fabricated of steel plate that is welded along a helix

that makes an angle of � � 70� with respect to the longitudi-

nal axis of the tank. The inside diameter of the cylinder is 48

in., the wall thickness is 0.5 in., and the internal pressure is

240 psi. Determine the following quantities for the cylindri-

cal portion of the tank: (a) the axial stress �a and the hoop

stress �h, (b) the normal stress and shear stress on planes

parallel and perpendicular to the weld, (c) the maximum in-

plane shear stress, and (d) the absolute maximum shear

stress.

tabs
max

▼

P9.2-1

DProb. 9.2-9. (See previous Note.) A vertical standpipe has

an inside diameter of di � 3 m and is filled with water to a

depth of h � 5 m. If the allowable hoop stress is 80 MPa,

what is the minimum wall thickness of the tank to the near-

est millimeter? (Neglect the restraint that the base exerts on

the cylindrical tank.)

MDS 9.1

Weld

Prob. 9.2-2. A steel propane tank for a barbecue grill has a

12-in. inside diameter and a wall thickness of in. The tank

is pressurized to 200 psi. (a) Determine the axial stress 

�a and the hoop stress �h in the cylindrical body of the 

tank. (b) Determine the tensile force per inch length of 

the weld between the upper and lower sections of the tank.

(c) Determine the absolute maximum shear stress in the

cylindrical portion of the tank.

1
8

Weld

P9.2-2 and P9.2-3

Prob. 9.2-3. Solve Prob. 9.2-2 for a tank with 300-mm inside

diameter and a wall thickness of 4 mm, if the tank is pressur-

ized to 1.5 MPa.

Prob. 9.2-4. A scuba diver’s aluminum air tank has an outer

diameter of do � 7.0 in. and a wall thickness of t � 0.5 in.,

P9.2-4 and P9.2-5

c

a

b
45° α

P9.2-6 through P9.2-8

Prob. 9.2-7. Solve Prob. 9.2-6 for a tank with � � 65�, di �
1 m, t � 20 mm, and p � 2 MPa.

Prob. 9.2-8. A 45� strain gage rosette is placed on the com-

pressed air tank with gage “a” oriented parallel to the axis of

the tank. (See Fig. P9.2-8.) The tank is made of steel with

Young’s modulus E � 29(106) psi and Poisson’s ratio � 0.3.

If the inside diameter of the tank is 40 in., the wall thickness

is in., and the internal pressure is 180 psi, what would be the

readings for a, b, and c?���

3
8

n

Problems 9.2-9 and 9.2-10 treat cylindrical tanks used as
vertical fluid-storage reservoirs, or standpipes. Problem
9.2-11 treats a water-filled vertical pipe. The hoop stress,
�h, is given by Eq. 9.4, just as in the case of uniform inter-
nal pressure in a circular cylinder. According to Pascal’s
Law, the fluid develops hydrostatic pressure p � �h, where
� is the specific weight of the fluid and h is the depth below
the fluid surface of the point where the pressure is being
calculated. For water, � � 62.4 lb/ft3 � 9.81 kN/m3.
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DProb. 9.2-10. Solve Prob. 9.2-9 for a standpipe with inside

diameter of di � 10 ft that is filled to a depth of h � 40 ft.

The allowable hoop stress is 12 ksi. (Neglect the restraint

that the base exerts on the cylindrical tank).

Prob. 9.2-11. A pump at the base of a vertical steel pipe cre-

ates a pressure at the base of the pipe that is sufficient to lift

the water in the pipe to a height of 24 ft, where the water is

discharged at atmospheric pressure into a cooling tower. If

the pipe has an inside diameter of 2 ft and a wall thickness

of in., determine (a) the maximum hoop stress in the pipe

and (b) the absolute maximum shear stress in the pipe. For

Part (b), assume that only the lower 18 ft of the steel pipe is

supported by the base, with the upper 6 ft of pipe supported

by the elbow attached to the cooling tower. The specific

weight of the steel is � � 490 lb/ft3.

1
4

maximum internal pressure of p � 120 psi. The allowable ten-

sile stress in the wall of the tank is 12 ksi, and the allowable ten-

sile stress in the weld is 8 ksi. (a) Determine the minimum wall

thickness tc of the cylindrical part of the tank. (b) Determine

the minimum wall thickness ts of the hemispherical end caps.

(c) What is the minimum thickness of the weld?
DProb. 9.2-13. Solve Prob. 9.2-12 for a tank with an inside

diameter of di � 750 mm that is subjected to a maximum in-

ternal pressure of p � 750 kPa. The allowable tensile stress

in the wall of the tank is 80 MPa, and the allowable tensile

stress in the weld is 50 MPa.

Prob. 9.2-14. A cylindrical tank with closed ends contains

compressed nitrogen gas at a gage pressure of 250 psi. The

inside diameter of the tank is 5 ft, and the wall thickness is 

in. (a) Determine the axial stress �a and the hoop stress �h.

(b) Draw a Mohr’s circle for the in-plane stresses in the

cylinder wall, and determine the maximum in-plane shear

stress. Show a properly oriented maximum-shear-stress

element. (c) Calculate the absolute maximum shear stress,

�abs max, in the wall of the cylindrical tank.
DProb. 9.2-15. Hydraulic pressure p acts on a piston at A,

which in turn exerts a force P on the object at B. The allow-

able tensile stress in the wall of the hydraulic cylinder is 

100 MPa. If the inside diameter of the cylinder is di � 125

mm, the wall thickness of the cylinder is t � 6 mm, and the

diameter of the piston rod is dr � 20 mm, determine the

maximum force p that can be exerted by the piston rod.

(Assume that the stress in the cylinder wall is the only factor

that limits the value of p.)

3
4

di

h

P9.2-9 and P9.2-10

h = 24 ft

Pump

Cooling
tower

P9.2-11

DProb. 9.2-12. Hemispherical end caps are welded to a cylin-

drical main body to form a propane storage tank.The tank has

an inside diameter of di � 40 in. and is to be subjected to a

Weld Weld

P9.2-12 through P9.2-14

di

dr
t

p

A

Hydraulic cylinder

Piston rod

B

P9.2-15

Prob. 9.3-1. A uniform cantilever beam with rectangular

cross section is subjected to a uniform distributed load of in-

tensity w0, as shown in Fig. P9.3-1. Determine expressions for

the two principal stresses and the maximum in-plane shear

stress at each of the three indicated points at the root of the

beam: yA � h/2, yB � h/4, and yC � 0. Construct a Mohr’s 

circle to obtain your answers for each point. On sketches

similar to those in Fig. 9.9, indicate the orientation of the 

in-plane principal element at each of the three designated

points.

COMBINED BENDING 
AND SHEAR IN BEAMS

▼ MDS 9.2 & 9.3
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Prob. 9.3-2. A W8 � 40 simply supported steel beam is

subjected to a concentrated midspan load of 50 kips, as

shown in Fig. P9.3-2. Determine expressions for the two

principal stresses and the maximum in-plane shear stress

at the three indicated points in the cross section at x � 2 ft:

yA � 4.125 in., yB � 3.565 in., and yC � 2.0 in. (Note:

Point B is in the web, just below the flange.) Construct a

Mohr’s circle to obtain your answers for each point. On

sketches similar to those in Fig. 9.9, indicate the orienta-

tion of the in-plane principal element at each of the three

designated points.

CProb. 9.3-3. Use the MDSolids modules Section Properties,
Determinate Beams, and Mohr’s Circle Analysis to solve

Prob. 9.3-2.
CProb. 9.3-4. Use the MDSolids modules Section Properties,
Determinate Beams, and Mohr’s Circle Analysis to solve the

following problem.

A W24 � 94 wide-flange steel cantilever beam sup-

ports a distributed load of 1.5 kips/ft and concentrated load

of 20 kips, as shown in Fig. P9.3-4. (See Prob. 6.3-25 for this

figure.) Let the y axis be upward with its origin at the neu-

tral axis at A. (a) Plot the shear-force and bending-moment

diagrams for this beam. (b) Determine the maximum flex-

ural stress in the beam. (c) Using Mohr’s circle, determine

the principal stresses and the maximum in-plane shear

stress at (x � 8� ft. y � 11 in.), that is, the point that is 11 in.

above the neutral axis and on the cross section just to the

left of B. Note that this point is in the web and is just below

the top flange.
CProb. 9.3-5. Use the MDSolids modules Section Properties,
Determinate Beams, and Mohr’s Circle Analysis to solve the

following problem.

A W150 � 24 wide-flange steel beam supports a dis-

tributed load of 1 kN/m and concentrated couple of 4 kN � m,

as shown in Fig. P9.3-5. (See Prob. 6.3-20 for this figure.)

With the origin at the neutral axis at A, let the y axis be 

upward. (a) Plot the shear-force and bending-moment dia-

grams for this beam. (b) Determine the maximum flexural

stress in the beam. (c) Using Mohr’s circle, determine the

principal stresses and the maximum in-plane shear stress at

(x � 2� m, y � 69 mm), that is, the point that is 69 mm

above the neutral axis and on the cross section just to the

left of B. Note that this point is in the web and is just below

the top flange.

w0

L = 20b

h = 2b

b

A
B

C
x

y
y

z

A

B
C

P9.3-1

A

B
C

x

y

y

x

2 ft 2 ft 4 ft
50 kips

W 8 × 40

P9.3-2

Prob. 9.4-1. Show that the boundary line a of the kern of 

the rectangular cross section in Fig. 9.12 is given by the 

expression

Note: The formula for the boundary line d is given in 

Eq. 9.12.

Prob. 9.4-2. The rectangular bar in Fig. P9.4-2 is subjected to

bending in the xy plane and, simultaneously, to an axial ten-

sile force P. The state of plane stress at point A at the top

edge of the bar is shown in Fig. P9.4-2. If the bending moment

is M � 2 kN � m, what is the magnitude of the axial force P?

(Hint: Consider Eq. 8.7.)

a�cy

Iz
b eya � acz

Iy
b eza �

1

A

COMBINED AXIAL LOADING AND BENDING▼
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Prob. 9.4-3. The rectangular bar in Fig. P9.4-3 is subjected to

bending in the xy plane and, simultaneously, to an axial ten-

sile force P. The state of plane stress at point A at the top

edge of the bar is shown in Fig. P9.4-3. If the axial force has

the value P � 5 kips, what is the magnitude of the bending

moment M? (Hint: Consider Eq. 8.7.)

Prob. 9.4-4. The frame of the hacksaw depicted in Fig. P9.4-4

can be adjusted to accommodate either 10-in. or 12-in.

blades, which are pulled taut by the wing nut near the han-

dle. The left-hand end of the hacksaw frame is an L-shaped

rectangular solid steel bar 0.60 in. wide and 0.20 in. thick.

Determine the maximum compressive stress on a cross sec-

tion in this part of the hacksaw frame if the tension in the

blade is 30 lb.

MP

30°

5 MPa

15 MPa

y

x

x′

y′

A

y

z

30 mm

A

x

100 mm

M
P

P9.4-2

MP

30°

1 ksi

3 ksi

y

x

x′

y′

A

y

z

1 in.

A

x

4 in.

M
P

P9.4-3

0.60 in.

3.6 in.

P

A B

P

y

x

z

(a)

(b)

y

16 mm

25 mm

16 mm

60 mm

16 mm

10 mm

BA

P9.4-4

Prob. 9.4-5. One part of the mechanism that controls the

operation of the backhoe bucket in Fig. P9.4-5a is the

(slightly C-shaped) two-force link AB, whose dimensions

are shown in Fig. P9.4-5b. (a) Determine the maximum

tensile stress on the cross section at the center of link AB if

the force exerted on the link by the pins at A and B is P � 6 kN.

(b) How much would the maximum tensile stress be if the

link were perfectly straight, with the same cross-sectional 

dimensions?

P9.4-5
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Prob. 9.4-6. A floor crane, like the one shown in Fig. P9.4-6a,

is used to pick up loads and allow them to be moved easily to

another location. The vertical column AB is steel rectangular

tubing whose dimensions are shown in Fig. P9.4-6b.

Determine the maximum tensile stress and the maximum

compressive stress on the base cross section at A when the

boom BC is in the position shown.
DProb. 9.4-9. A tubular shaft of outer diameter do � 50 mm

and inner diameter di � 40 mm is subjected simultaneously

to a specified torque T � 250 N � m and to an axial load P,

acting as shown in Fig. P9.4-9. The maximum tensile stress 

allowed is �allow � 40 MPa. Using Mohr’s circle, determine

the maximum axial load P that can be applied without 

exceeding this allowable tensile stress.

B

A

C
1.2 m

80 mm

50 mm

6 mm

W = 2 kN80 mm

(a) (b)

P9.4-6

Prob. 9.4-7. Three signal-light clusters are suspended from a

tapered horizontal arm that is cantilevered from a tubular

steel column as shown in Fig. P9.4-7.The weights of the three

signal-light clusters and the horizontal arm are indicated in

the figure. The outer diameter of the column is do � 14.00

in., its inner diameter is di � 13.00 in., it weighs 75 lb/ft, and

it is 20 ft tall. Determine the maximum compressive stress at

the base cross section.

Wc

19 ft

1 ft

1200 lb

12 ft12 ft

120 lb 80 lb 80 lb

P9.4-7

Prob. 9.4-8. A solid shaft of diameter d � 2 in. is subjected

simultaneously to an axial load P � 10 kips and to a torque

T � 2.5 kip � in., acting as shown in Fig. P9.4-8. Use Mohr’s

circle to determine the two principal stresses and the maxi-

mum in-plane shear stress at any point on the outer surface

of the shaft.

COMBINED AXIAL 
LOADING AND TORSION

▼ MDS 9.4

T

P
d

P9.4-8 and P9.4-27

dido

T

P

P9.4-9 and P9.4-28

Prob. 9.4-10. A post-hole digger is mounted on a tractor

(not shown).The power unit of the machine applies a torque

of 800 lb � in. to the auger, and it also exerts a downward

force of 1500 lb on the auger. If the shaft of the auger is a

solid circular rod with a diameter of 2.0 in., determine the

principal stresses and the maximum shear stress at a typical

point A on the surface of the shaft of the auger near the

power unit.

A

P

T

P9.4-10

*Prob. 9.4-11. The large earth drill shown in Fig. P9.4-11 is

used to make 30-in.-diameter holes for the reinforced-

concrete footings that will support the columns of a build-

ing. A solid 4 in. � 4 in. steel shaft exerts a downward force

P � 6.4 kips on the drill bit while, at the same time, it sup-

plies a torque of 15.0 kip � in. to rotate the bit. Use Mohr’s

circle to determine the two principal stresses and the max-

imum in-plane shear stress in the square shaft. (Note:

Recall that Section 4.10 discusses torsion of noncircular

prismatic bars.)
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*Prob. 9.4-12. The shaft of the wind-driven electric power

generator shown in Fig. P9.4-12 (see Prob. 4.8-11) has an

outer diameter of do � 50 mm and an inner diameter di �
40 mm. The generator produces 10 kW of power while the

shaft is turning at a speed of 20 RPM. At the same time, the

propeller exerts a compressive load of 2 kN on the shaft. Use

Mohr’s circle to determine the two principal stresses and the

maximum in-plane shear stress at any point on the outer sur-

face of the shaft.

Prob. 9.4-14. A solid circular shaft whose diameter is 50 mm

is subjected to a torque of 500 N � m and two components of

transverse shear force as shown in Fig. P9.4-14. Use a Mohr’s

circle to determine the principal stresses and the maximum

shear stress on the surface of the shaft at point A.

P

P

T

T

4 in.

P9.4-11

400 mm

100 mm

y

x

A

B

(b)

(a)
A

B

150 N

P9.4-13

Prob. 9.4-13. A force of 150 N acts at point B on an L-

shaped lug wrench, as shown in Fig. P9.4-13a. The force acts

vertically downward, perpendicular to the plane of the

wrench. The handle of the lug wrench is a steel rod with a 

diameter of 12.5 mm, and its planform is shown in Fig. P9.4-

13b. Determine the principal stresses and the maximum

shear stress at point A, which is on the top of the wrench

handle.

GENERAL COMBINED LOADING▼ MDS 9.5

x

z

y

A

200 mm

5 kN

20 kN

500 N·m

P9.4-14

DProb. 9.4-15. A solid circular shaft of radius r � 25 mm is

subjected to a torque T � 98.2 N � m and a bending moment

M as shown. At point A in the cross section, the maximum

compressive stress is �8 MPa. Using a Mohr’s circle, deter-

mine the value of the bending moment M.

x

z
T

y

M

A

r

P9.4-15 and P9.4-16

DProb. 9.4-16. A solid circular shaft of radius r � 1 in. is sub-

jected to a bending moment M � 4.71 kip � in. and a torque

T as shown. At point A in the cross section, the maximum

shear stress is �max � 6 ksi. Using a Mohr’s circle, determine

the value of the torque T.

*Prob. 9.4-17. The boom of a crane has a rectangular box

section with the dimensions shown. Determine the principal

stresses in the boom at points A and B. Neglect the weight of

the boom, pulley, and cable.

z

A

B

y

xy

90 mm

45°150 mm

4 kN

3 m

100 mm 70 mm

A

B

C

P

P9.4-17
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*Prob. 9.4-18. A vertical force of 40 lb is applied to a pipe

wrench, whose handle is parallel to the z axis, as shown in

Fig. P9.4-18. Using Mohr’s circles, determine the principal

stresses at points A and B in the cross section where the pipe

threads begin. The pipe has a nominal diameter of 1 in. See

Table D.7 of Appendix D for cross-sectional dimensions of

the pipe.

in the beam at points A and B. The dimensions of the cross

section are: h � 4 in., b � 3 in., tf � 0.23 in., and tw � 0.15 in.

*Prob. 9.4-21. A chair on a ski lift is supported by a steel

pipe whose outer diameter is do � 60 mm and whose inner

diameter is di � 52 mm. The weight of the pipe may be 

neglected in comparison with the weight of the chair and its

occupants, which is W � 2 kN. (a) Determine the stresses �x,

�y, and �xy at point C, which is on the front of the pipe at the

indicated cross section. The x axis is parallel to the 45� sec-

tion of pipe, AB. (b) Using a Mohr’s circle, determine the

principal stresses and the maximum in-plane shear stress at

point C. (c) Determine the maximum tensile stress in the

straight section of the pipe, DE.

A

4 kips

2 kips

b

4 ft 4 ft 4 ft

h

tf A

tw

B x

B

P9.4-20

12 in.

9 in.

40 lb

z

A

A

B

B

y x

y

z

P9.4-18

Prob. 9.4-19. At a particular cross section of the drive axle of

a race car, the stress resultants are as shown in Fig. P9.4-19.

Use Mohr’s circle to determine the principal stresses and

the maximum shear stress at the following points in this

cross section: (a) Point A, the top point in the cross section,

and (b) Point B, the point (y � 0, z � 0.5 in.) in the cross

section.

y

A

z

x

y

r = 0.5 in.5000 lb⋅in.

4000 lb⋅in.

600 lb

B

z 500 lb

P9.4-19

Prob. 9.4-20. A wide-flange beam is subjected to axial and

transverse loads as shown. Determine the principal stresses

B

D C

E

W

A
45°

x
y

0.6 m

0.4 m

P9.4-21

*Prob. 9.4-22. A section of oilfield drill pipe is being lifted

by a crane, as shown in Fig. P9.4-22. The pipe has an outside

diameter of do � 4.50 in., an inside diameter of d1 � 3.64 in.,

and a total length of L � 30 ft. It weighs w � 20 lb/ft. Use

Mohr’s circle to determine the principal stresses at point B
when the inclination of the pipe is � � 30�.

B

θ

B

C

L/2

Dy

z

di

do

L/2

L/3

y

x

A

P

P9.4-22 and P9.4-23

*Prob. 9.4-23. Solve Prob. 9.4-22 for L � 10 m, do � 114

mm, di � 92 mm, w � 300 N/m, and � � 45�.

Prob. 9.4-24. The frame ABC in Fig. P9.4-24 (see Prob.

1.4-20) consists of W150 � 22 wide-flange steel members 
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AB and BC welded together at B. Determine the maximum

compressive stress on the cross section at x1 � 2 m, where 

x1 is measured along member AB, as shown in Fig. P9.4-24.

(See Table D.2 of Appendix D for the cross-sectional prop-

erties of the wide-flange shape.)

*Prob. 9.4-25. The L-shaped frame ABC in Fig. P9.4-25a
consists of square steel tubing members AB and BC welded

together at B.The frame is supported by a fixed pin at A and

by a roller at C. Determine the maximum principal stresses

and the maximum in-plane shear stress at points D and E
(Fig. P9.4-25b) in the cross section at x � 5 ft, where x is

measured along member AB, as shown in Fig. P9.4-25a.

following:

(a) Determine the angle � that the resultant moment vector M

in Fig. P9.4-26 makes with the z axis, and locate the neutral

axis of the base cross section. (b) Referring to Section 6.6, de-

termine the maximum tension and maximum compression

values of normal stress, �x, on the cross section at the base of

the signpost in Example 9.5. (c) Neglecting the shear stress on

the base cross section due to the transverse shear force Vy, use

Mohr’s circle to determine the maximum tensile normal stress

at the base of the signpost. Indicate the location of the point

in the base cross section where this stress occurs.

 T � 3000 lb � in., My � �5000 lb � in., Mz � �16,500 lb � in.

 F � �285 lb, Vy � �75 lb, Vz � 0,

P = 5 kips

t = 0.25 in.

yD

D

E

A

B

C

y

E
z

x

5 ft

4.8 ft

6.4 ft

3.6 ft

4 in.4 in.

(a)

(b)

P9.4-25

*Prob. 9.4-26. At the base of the cantilevered sign in Fig. 1

of Example 9.5, the stress resultants were found to be the

F

T

x

z

y

Vy
A B Vz

M θ

(See Fig. 1 of Example 9.5.)

P9.4-26

Problems 9.4-27 and 9.4-28 are to be solved by use of the
Torsion module and the Mohr’s Circle module of
MDSolids.

CProb. 9.4-27. Use MDSolids to solve Prob. 9.4-8.
CProb. 9.4-28. Use MDSolids to solve Prob. 9.4-9.
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Section
Suggested

Review

Problems

Chapter 9 illustrates the use of Mohr’s
circle to handle combined stresses.

C H A P T E R  9  R E V I E W — P R E S S U R E  V E S S E L S;
S T R E S S E S  D U E  T O
C O M B I N E D  L O A D S

9.1

The subject of Thin-wall Pressure Vessels is

treated in this chapter because shells are

subjected to stresses that act in multiple 

directions.

For example, for a thin cylindrical shell
with closed ends, the stresses are referred

to as the axial stress, �a, and the hoop stress,
�h, as illustrated in Fig. 9.2a.

9.2

9.2-4 

9.2-7 

9.2-13

Section 9.2 also treats thin spherical shells,
which have the same normal stress �s that

acts in every direction in the shell wall, as 

illustrated in Fig. 9.4a.

The axial stress is given by

(9.2)

The hoop stress is given by

(9.4)sh �
pr

t

sa �
pr

2t

A thin spherical shell. (Fig. 9.4a)

Derive 

Eq. 9.6.

633

σh

Δx
x

Circular
cylinder
section

End closure

End closure

σa

Circular cylinder with end closures. (Fig. 9.2a)

σs 

σs 

The spherical-shell stress is given by

(9.6)ss �
pr

2t
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Section
Suggested

Review

Problems

9.3

9.4

(9.7)

 atabs
max
b

sph

�
pr

4t

 atabs
max
b

cyl

�
pr

2t

Mohr’s circles can be employed to deter-

mine in-plane shear stress values and 

absolute maximum shear stress values for

cylindrical shells and spherical shells.

Mohr’s circles are also useful for determin-

ing normal stresses and shear stresses along

lines that make and angle with the axis of a

cylindrical shell.

Derive

Eqs. 9.7.

9.3-1

9.4-3

9.4-9

634

(a) Mohr's circles for a cylinder.

A = axial direction
H = hoop direction
R = radial direction

P3 ≡ R

P3 ≡ R
σ σ

τ

τ

τabs
   max

τabs
   max

P2 ≡ A P1 ≡ H

P1 = P2p1 p2 (in-plane)
Mohr's circle
p1 p3 (out-of-plane)
Mohr's circle

(b) Mohr's circles for a sphere.

pr
–––
2t

pr
–––
2t

pr
–––
2t

2P
Minimum (comp.)

P P

Maximum (tens.)

Mohr’s circles for in-plane and out-of-plane

stresses. (Fig. 9.5)

Section 9.3 treats the Stress Distribution in

Beams. The flexural stress, and

the transverse shear stress, , vary

from point to point in a beam.

Mohr’s circles can be employed to deter-

mine the magnitude and orientation of such

quantities as the maxim compressive stress,
the maximum tensile stress, and the maxi-
mum shear stress at each point in the beam.

t �
VQ

It

s � �
My

I
,

Stress trajectories for a simply supported beam.

(Fig. 9.10)

Figure 9.10 illustrates the trajectories of maximum

tension and maximum compression in a particular

beam.

Section 9.4 treats several special cases of

Stresses Due to Combined Loads. this in-

cludes Combined Axial Loading and
Bending, Combined Axial Loading and
Torsion, and several cases of General
Combined Loading. In all of these cases

Mohr’s Circles are used to combine the var-

ious stresses that are experienced by the

structure.
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BUCKLING OF COLUMNS

10.1 INTRODUCTION

What constitutes failure of a structure or a machine part? As an engineer you must

consider several possible modes of failure when designing a structure or a machine

component. For example, the stress must be kept small enough so that the compo-

nent will not fail by yielding or by tensile fracture. It might also be important to limit

the deflection of the component. Furthermore, if the part will be subjected to re-

peated cycles of loading, the stress must be limited in order to prevent failure by

progressive fracture (called fatigue failure). To prevent the above types of failures,

design criteria based on strength (stress) and stiffness (deflection) must be taken

into consideration.Therefore, the preceding nine chapters were devoted to methods

for calculating the stress distribution in, and the deflection of, members subjected to

various types of loading. In this chapter we consider another important mode of fail-

ure, buckling.1 Figure 10.1 shows the impressive shape into which a thin cylindrical

shell deforms when subjected to its axial buckling load. Beams, plates, shells and

other structural members may buckle under a variety of loading conditions.2 The

discussion in this chapter, however, is limited to compressive axial loading of slen-

der members.

You can easily perform a buckling “experiment’’ by applying an axial load to 

a thin ruler or yard stick (meter stick). Figure 10.2a shows buckling of a thin rod

(column), and Fig. 10.2b shows buckling of a truss member under compression.

Weights are added until the critical load in the compression member, Pcr, is reached,

and the member suddenly deflects laterally under axial compression. In the analy-

sis of axial deformation in Chapters 2, 3, and 9, we implicitly assumed that, even

under compressive loading, the member undergoing axial deformation remained

straight, and that the only deformation was a shortening or lengthening of the mem-

ber. However, as the ruler demonstration shows, at some value of compressive axial

load the ruler no longer remains straight, but suddenly deflects laterally, bending

635

10

1The term buckling will be defined later in this section; it is illustrated in Figs. 10.1 and 10.2.
2Theory of Elastic Stability, by S. P. Timoshenko and J. M. Gere, [Ref. 10-1]; and Buckling of Bars, Plates,
and Shells, by D. O. Brush and B. O. Almroth. [Ref. 10-2], treat the buckling of several types of members

under various types of loading. Structural Stability—Theory and Implementation, by W. F. Chen and 

E. M. Lui, [Ref. 10-3], presents both theory and design curves.

FIGURE 10.1 Buckling
failure of an axially com-

pressed thin cylindrical shell.

(Photo by W. H. Horton;

from Computerized Buckling

Analysis of Shells, by D.

Bushnell, 1985, With kind 

permission of Springer

Science and Business Media)
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like a beam. This lateral deflection caused by axial compression is called buckling.
Buckling failures are often sudden and catastrophic, which makes it all the more 

important for you to know how they can be prevented.

Stability of Equilibrium. In this section we will examine the basic phenomenon

of buckling; then we will examine the buckling behavior of slender columns. In

Chapter 1 we noted that static deformable-body-mechanics problems always in-

volve equilibrium; now, however, we must look more closely at the topic of equilib-

rium and consider the stability of equilibrium. This concept can be demonstrated

very easily by considering the equilibrium of a ball on three different surfaces, as 

illustrated in Fig. 10.3. In all three situations the solid-colored ball is in an equilib-

rium position, that is, it satisfies , , and . In Fig. 10.3a the

ball is said to be in stable equilibrium because, if it is slightly displaced to one side

and then released, it will move back toward the equilibrium position at the bottom

of the “valley.’’ The ball on the top of the “hill’’ in Fig. 10.3c is also in an equilibrium

configuration, because it also satisfies , , and . In this

case, however, the ball is in an unstable-equilibrium configuration; if slightly dis-

placed to either side, the ball will tend to move farther from the equilibrium position

gM � 0gFy � 0gFx � 0

gM � 0 gFy � 0gFx � 0

636
Buckling of Columns

(a) (b)

g

N

W

N

W

N

x

(a) Stable equilibrium. (b) Neutral equilibrium. (c) Unstable equilibrium.

y

W

FIGURE 10.2 Buckling

demonstrations. (Courtesy

Roy Craig)

FIGURE 10.3 Stability of equilibrium.
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at the top of the “hill.’’ Finally, if the ball is on a perfectly flat, level surface, as in

Fig. 10.3b, it is said to be in a neutral-equilibrium configuration. If slightly displaced

to either side, it has no tendency to move either away from or toward the original

position, since it is in equilibrium in the displaced position as well as the original

position.

Buckling. Now, let us see how stability of equilibrium applies to compression

members where some form of elastic deformation is possible. In Fig. 10.4 the mem-

ber AB is assumed to be perfectly straight and perfectly rigid, and the supporting

pin at A is assumed to be frictionless. A force P is applied vertically downward at B,

which is on the axis of the member. The torsional spring at A has a spring constant

k�, so it produces a restoring moment, MAr, at A that is directly proportional to the

angle of deflection of member AB from the vertical. That is,

(10.1)

The vertical configuration of member AB, shown in Fig. 10.4a, is certainly an

equilibrium configuration. The question is: For what values of P is the vertical

equilibrium configuration stable? neutral? unstable? To answer this question, we

explore what happens when the member AB is rotated to one side through a small

angle �, as shown in Fig. 10.4b. Let MAd be the disturbing moment, that is, the sum

of all moments that tend to make the angle � increase; and let MAr be the restor-
ing moment, that is, the sum of all moments that tend to make � decrease. The

restoring moment, MAr, in Fig. 10.4c is given by Eq. 10.1; the disturbing moment is

given by

(10.2)

In analogy with the balls in Fig. 10.3, the system has the following requirements for

stable equilibrium, neutral equilibrium, and unstable equilibrium, respectively:

(10.3)

Since we are interested in behavior of the system at, and very near, the vertical 

configuration, we let in Eqs. 10.3 and use the approximation sin . Then,

Eqs. 10.3 give

(10.4)

where

(10.5)

The value of the load at which the transition from stable equilibrium to unstable

equilibrium occurs is called the critical load, Pcr. This loss of stability of equilibrium

is called buckling, so we also call Pcr the buckling load.

Pcr �
ku
L

Unstable Equilibrium:       P 7 Pcr

Neutral Equilibrium:   P � Pcr

Stable Equilibrium:   P 6 Pcr

u � uuS 0

Unstable Equilibrium:       MAd 7 MAr S PL sin u 7 ku u

Neutral Equilibrium:   MAd � MAr S PL sin u � ku u

Stable Equilibrium:   MAd 6 MAr S PL sin u 6 ku u

MAd � PL sin u

MAr � kuu
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Introduction

P

B

L

x

Rigid
member

Linear
torsional
spring

(a)  The vertical equilibrium
configuration.

(b)  A displaced
configuration.

(c)  A free-body
diagram.

Akθ

P

B

θ

A

P

B

Ax = 0

Ay = P

MAr

θ

FIGURE 10.4 A simplified

model of column buckling.
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Consider now how the buckling load of the compression member AB in Fig.

10.4 could be obtained by performing an experiment. We could grasp member AB
(with compressive force P applied), rotate it to the left (or to the right) through a

small angle, and then release it. If P � Pcr, member AB would return to the vertical

(� � 0) equilibrium position. If, on the other hand, P � Pcr, the column would tend

to move farther from the � � 0 position once it is slightly disturbed.The critical load

would be the value of P for which there was no visible tendency for the member 

either to return to the � � 0 position or to move farther from it.

A useful way to illustrate the relationship between applied load and stability is

the equilibrium diagram shown in Fig. 10.5. It is a plot of load P versus deflection

angle �. The point labeled B in Fig. 10.5, where the equilibrium diagram branches, is

called the bifurcation point.3 Above the bifurcation point the vertical (i.e., � � 0)

configuration (shown dashed) is an unstable-equilibrium configuration; but there

are alternative stable-equilibrium configurations along curves BC and BC�, with

. Right at point B, where P � Pcr, the equilibrium is neutral.

In the next section we will determine the critical load for a straight, uniform,

axially loaded, linearly elastic, pin-ended column.

u � 0

638
Buckling of Columns

3The word bifurcate means to divide into two branches, or to fork.
4It is customary to refer to the pin-ended compression member being analyzed here as a column, and to

illustrate it by a vertical member subjected to a downward load. This reflects the very important applica-

tion to columns in buildings and other structures. However, the analysis applies equally to any pin-ended

member, such as a member in a truss (Fig. 10.2b), so long as the member is in compression.

To investigate the stability of real columns with distributed flexibility, as contrasted

with the rigid member with torsional spring that was used in the previous section to

model column behavior, we begin by considering the ideal pin-ended column, as 

illustrated in Fig. 10.6a.4 We make the following simplifying assumptions:

• The column is initially perfectly straight, and it is made of linearly elastic 

material.

• The column is free to rotate, at its ends, about frictionless pins; that is, it is 

restrained like a simply supported beam. Each pin passes through the centroid

of the cross section.

10.2 THE IDEAL PIN-ENDED COLUMN; EULER BUCKLING LOAD

FIGURE 10.5 An equilibrium diagram for an idealized compression member.

P

C

θ = 0 is unstable (P > Pcr)

θ = 0 is stable (P < Pcr)

θ

B: bifurcation point, 
θ = 0 is neutral (P = Pcr)

C′

kθ__
L

Pcr = 

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

⎫
⎪
⎬
⎪
⎭
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• The column is symmetric about the xy plane, and any lateral deflection of the

column takes place in the xy plane.

• The column is loaded by an axial compressive force P applied by the pins.

Buckled Configuration: If the axial load P is less than the critical load, Pcr, the col-

umn will remain straight, and it will shorten under a uniform (compressive) axial

stress � � P/A, as illustrated in Fig. 10.6a.5 In the straight configuration with P �
Pcr, the column is in stable equilibrium. However, if a load P � Pcr is applied to the

column, the straight configuration becomes a neutral-equilibrium configuration,

and neighboring configurations, like the buckled shape in Fig. 10.6b, also satisfy

equilibrium requirements. Therefore, to determine the value of the critical load,

Pcr, and the shape of the buckled column, we will determine the value of the load

P such that the (slightly) bent shape of the column in Fig. 10.6b is an equilibrium

configuration.6

Equilibrium of the Buckled Column: First, using the free-body diagram of Fig. 10.6c,

we get Ax � P (from ). Ay � 0 [from ( )B � 0], and By � 0. Therefore,

on the free-body diagram in Fig. 10.6d, we show only a vertical force P acting on the

pin at A, and we show no horizontal force V(x) at section x. The sign convention

adopted for the moment M(x) in Fig. 10.6d is the sign convention that was used in

Chapter 6, namely, that a positive bending moment produces compression in the 

�y fibers (which are on the left in Fig. 10.6d as a result of our choice of xy axes).

From Fig. 10.6d we get

(10.6)M(x) � �Py(x)aaMb
A

� 0:

gMgFx � 0

639
The Ideal Pin-Ended Column;

Euler Buckling Load

5Since column buckling always occurs under compressive normal stress, in the remainder of this chapter

we will let � denote compressive normal stress, digressing from the normal-stress sign convention that

has been followed in previous chapters.
6This approach is called the equilibrium method or bifurcation method. There are several alternative ways

to determine the critical load. Sec, for example, Principles of Structural Stability, by H. Ziegler, [Ref. 10-4],

where four different methods are reviewed.

P < Pcr

L

A

(a) Ideal column.

B

(c) FBD of entire column.

L*

P

Ay

By

A

B

Ax

(d) FBD of partial column.

x

y, v(x)

x

v(x)

P

A

P

M(x)

P = Pcr

x

(b) Buckled configuration.

A

B

x

v(x)

y, v(x)

FIGURE 10.6 Buckling of a pin-ended column.
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Differential Equation of Equilibrium, and End Conditions: Substituting M(x) into

the moment-curvature equation, Eq. 7.8, we obtain

or

(10.7)

This is the differential equation that governs the deflected shape of a pin-ended col-

umn. It is a homogenous, linear, second-order, ordinary differential equation. The

boundary conditions (see Table 7.1) for the pin-ended member are

(10.8)

Solution of the Differential Equation: The presence of the y(x) term in Eq. 10.7

means that we cannot simply integrate twice to get the solution, as was done in

Chapter 7. In fact, only when EI � const is there a simple solution to Eq. 10.7.

Therefore, for the remainder of this chapter we will consider only uniform columns.7

Then Eq. 10.7 is an ordinary differential equation with constant coefficients. Let

(10.9)

For the uniform column, therefore, Eq. 10.7 becomes

(10.10)

The general solution to this homogeneous equation is

(10.11)

We seek a value of � and constants of integration C1 and C2 such that the two

boundary conditions of Eqs. 10.8 are satisfied. Thus,

(10.12)

Obviously, if we make both C1 and C2 equal to zero, the deflection y(x) is zero every-

where (Eq. 10.11), and we just have the original straight configuration. If we want

an alternative equilibrium configuration, like the one in Fig. 10.6b, we must pick a

value of � that satisfies Eq. 10.12b with , that is, � must satisfy the character-
istic equation

(10.13)sin(lnL) � 0 S ln � anp
L
b ,    n � 1, 2, . . .

C1 � 0

 y(L) � 0 S C1 sin(lL) � 0

 y(0) � 0 S C2 � 0

y(x) � C1 sin lx � C2 cos lx

y– � l2y � 0

l2 �
P
EI

y(0) � 0,  y(L) � 0

EIy–(x) � Py(x) � 0

EIy–(x) � M(x) � �Py(x)
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7Tapered columns are treated in Chapter 9 of Guide to Stability Design Criteria for Metal Structures,
ed. by T. V. Galambos, [Ref. 10-5].
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Combining Eqs. 10.9 and 10.13 gives the following formula for the possible buckling

loads:

(10.14)

The deflection curve that corresponds to each load Pn is obtained by combining

Eqs. 10.11 through 10.13 to get

(10.15)

The function that represents the shape of the deflected column is called a mode
shape, or buckling mode. The constant C, which determines the direction (sign) and

amplitude of the deflection, is arbitrary, but it must be small.The existence of neigh-

boring equilibrium configurations is analogous to the fact that the ball in Fig. 10.3b
can be placed at neighboring locations on the flat, horizontal surface and still be in

equilibrium.

The value of P at which buckling will actually occur is obviously the smallest

value given by Eq. 10.14 (i.e., n � 1). Thus, the critical load is

(10.16)

and the corresponding buckling mode is

(10.17)

as illustrated in Fig. 10.7b.The critical load for an ideal column is known as the Euler
buckling load, after the famous Swiss mathematician Leonhard Euler (1707–1783),

who was the first to establish a theory of buckling of columns.8

The buckling mode of Eq. 10.17 is sometimes called the fundamental (or first)

buckling mode. Although the column could theoretically buckle in the second buck-
ling mode, illustrated in Fig. 10.7c, if a load Pcr2 � 4�2EI/L2 were to be applied, this

could only happen if there were some lateral bracing at x � L/2 to prevent the 

column from buckling in the first mode (Fig. 10.7b) at the much smaller Euler load

of Pcr � � 2EI/L2.

Let us examine some important implications of the Euler buckling-load for-

mula, Eq. 10.16. We can express this in terms of critical (buckling) stress.

or

(10.18)
Euler 
Buckling Stressscr �

p2E

(L/r)2

scr �
Pcr

A
�
p2E(Ar2)

AL2

Buckling
Mode

y(x) � C sin apx
L
b

Euler 
Buckling Load

Pcr �
p2EI

L2

y(x) � C sin anpx
L
b

Pn �
n2p2EI

L2

8See Footnote 2 of Chapter 6.

P

L

x

A

B

(a) Undeflected column.

v(x)
A

C

B

(b) First buckling
mode (n = 1).

Pcr1 
= π

2EI____
L2

x

v(x)
A

C

B

(c) Second buckling
mode (n = 2).

Pcr2 
= 4π2EI_____

L2

FIGURE 10.7 Two examples

of buckling modes.
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where

�cr � the critical (elastic buckling) stress.

E � the modulus of elasticity.

r � � the radius of gyration.

L � the length of the member between supports.

The quantity L/r is called the slenderness ratio of the column. Curves of �cr versus

L/r for structural steel and for an aluminum alloy are plotted in Fig. 10.8.

From Eq. 10.18 and from Fig. 10.8 we observe the following characteristics of

elastic buckling of ideal columns:

• The only material property that enters directly into either the elastic buckling

load or the buckling stress is the modulus of elasticity, E, which represents

the stiffness of the material. Therefore, one way to increase the elastic buck-

ling load of a member would be to use a member that is made of material

with a higher E value.

• The elastic buckling load is inversely proportional to the square of the length

of the column. Figure 10.8 illustrates this length effect.

• Euler’s formula is valid only for “long’’ columns, that is, columns whose L/r
ratio leads to a critical stress below the compressive proportional limit, �PL.

(Since �PL is generally not available, the compressive yield stress �Y is usu-

ally substituted for it.) The values of L/r marking the limit of validity of

Euler’s formula for steel and for an aluminum alloy are illustrated in 

Fig. 10.8.

• The buckling load can be increased by increasing the value of the cross-

sectional moment of inertia, I. This can be done, without increasing the

cross-sectional area, by using thin-wall tubular members (e.g., Figs. 10.9a,
b). However, if the column wall is too thin, local buckling can occur.

(Figure 10.1 illustrates buckling of a short, thin-wall member under com-

pression.)

• If the principal moments of inertia of the column cross section are unequal,

as illustrated in Fig. 10.9c, the column will buckle about the axis of the cross

2I/A
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σ c
r 
(k

si
)

L/r

Steel (E = 29000 ksi)

60

50

40

30

20

10

0
50

42 89
100 150 2000

FIGURE 10.8 Graphs of Euler’s formula for structural steel and for an aluminum alloy.

FIGURE 10.9 Column

cross sections.
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section that has the least moment of inertia, unless boundary restraints or 

intermediate bracing force it to do otherwise (see Section 10.3).

• If the slenderness ratio is very large, say L/r � 200, the stress at buckling will

be very small. Therefore, the strength of the material is underutilized. The 

design should be modified by, for example, adding lateral bracing or chang-

ing the boundary conditions (see Section 10.3).

In the sections that follow, we will explore the following exceptions to the buck-

ling behavior treated in this section: other boundary conditions (Section 10.3),

eccentric loading (Section 10.4), imperfections (Section 10.5), and inelastic buckling

(Section 10.6).

643
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E X A M P L E  1 0 . 1

Fig. 1 Cross section.

What is the maximum compressive load that can be applied to an 

aluminum-alloy compression member (Fig. 1) of length L � 4 m if the

member is loaded in a manner that permits free rotation at its ends and

if a factor of safety of 1.5 against buckling failure is to be applied? Recall,

from Eq. 2.26, that

Plan the Solution The allowable load is the critical load divided by the

factor of safety. Since the ends of the member are free to rotate 

(pin-ended), the critical load is determined by Euler’s formula. Eq. 10.16,

provided that the corresponding stress is less than the yield stress of the

material.

Solution From Eq. 10.16,

(1)

Ans.

The corresponding average compressive stress in the member is

so this member will undergo elastic buckling. (For this column, L/r � 133.) 

Finally, the allowable load is

Ans.Pallow �
Pcr

FS
�

52.2 kN

1 .5
� 34.8 kN

 scr � 39.1 MPa 6 sY

scr �
Pcr

A
�

52.2 kN

p [(0.045)2 � (0.040)2]  m2

 Pcr � 52.2 kN

 �
p2(70 	 109 N/m2)(p4)[(0.045)4 � (0.040)4]  m4

(4 m)2

 Pcr �
p2EI

L2

FS �
failure load

allowable load

E 
σY
ro
ri

  =  70 GPa
  =  270 MPa
  =  45 mm
  =  40 mm

ri

ro

Euler Buckling LoadMDS10.1 – 10.2
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10.3 THE EFFECT OF END CONDITIONS ON 
COLUMN BUCKLING

Rarely, if ever, is a compression load actually applied to a member through friction-

less pins. For example, the column might be bolted to a heavy base at the bottom

and framed into other members at the top, as illustrated in Fig. 10.10a. However, an

understanding of the effect of idealized support conditions, like those illustrated in

Figs. 10.10b through 10.10d, enables an engineer to estimate the effect that actual

end conditions, like those in Fig. 10.10a, would have on the buckling load of a real

column.

We will begin by deriving an expression for the elastic buckling load of the

fixed-pinned column in Fig. 10.10d. Then, we will indicate how the concept of the 

effective length of a column can be used to obtain the buckling load of columns with

various end conditions.

Buckling Load of an Ideal Fixed-Pinned Column. We will assume the

same ideal conditions that were listed at the beginning of Section 10.2, except that

the pin at end A of the column is replaced by complete restraint of that end.

Buckled Configuration: To assist us in drawing free-body diagrams of the column in

a buckled equilibrium configuration near the straight equilibrium configuration

(Fig. 10.11a), we sketch a feasible shape of the column that satisfies the prescribed

fixed-pinned end conditions (Fig. 10.11b).

Equilibrium of the Buckled Column: By examining Fig. 10.11b, we can see that the

curvature at A corresponds to a moment MA in the sense shown in Fig. 10.11c. From

, we get Ax � P, and from ( )A � 0, we see that the pin at B must exert

a horizontal force HB, as indicated on Fig. 10.11c. Now we can construct a free-body

diagram of the column below section x or above section x. We have done the latter

in Fig. 10.11d, from which we get

(10.19)M(x) � (L � x)HB � Py(x)aaMb
O

� 0:

gMgFx � 0

(c) Fixed-fixed
column.

(a) Actual column. (d) Fixed-pinned
column.

(b) Fixed-free
("flag pole")
column.

FIGURE 10.10 Various

column end conditions.
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Differential Equation and End Conditions: Substituting M(x) from Eq. 10.19 into

the moment-curvature equation, Eq. 7.8, we get

(10.20)

As in Section 10.2. let us consider only uniform columns, and let us employ the 

definition of � in Eq. 10.9. Then, Eq. 10.20 can be written in the form

(10.21)

Instead of the homogeneous differential equation that we got for the pinned-pinned

column (Eq. 10.10), we have obtained a nonhomogeneous, linear, second-order,

ordinary differential equation with constant coefficients.

The boundary conditions of the fixed-pinned column are

(10.22)

Solution of the Differential Equation: The solution of Eq. 10.21 under the end con-

ditions of Eq. 10.22 consists of a complementary solution plus a particular solution.

To get the complementary solution, we set the right-hand side of Eq. 10.21 to zero.

But this just gives us Eq. 10.10, so we can use Eq. 10.11 as the complementary solu-

tion. Since the right-hand side of Eq. 10.21 consists of a constant term and a term

that is linear in x, let us try the following particular solution:

(10.23)

Substituting this into Eq. 10.21, noting that y
p(x) � 0, and recalling that �2 � P/EI,

we get

(10.24)
P
EI

 (C3 � C4x) �
HBL
EI

�
HBx
EI

yp(x) � C3 � C4x

y(0) � 0,  y¿(0) � 0,  y(L) � 0

y– � l2y �
HBL
EI

�
HBx
EI

EIy–(x) � Py(x) � HBL � HBx
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FIGURE 10.11 A fixed-

pinned column.
(b) Buckled shape

of column.
(c) FBD of entire

column.
(d) FBD of partial

column.
(a) Unbuckled

column.

P < Pcr P = Pcr
P x

HB

Ay
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MA

A
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B B

B P

B

O
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M(x)

y, v(x)
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Therefore, the particular solution is

(10.25)

Finally, the complete general solution of Eq. 10.21 is

(10.26)

We have three end conditions, Eqs. 10.22, to be used to determine the four

constants—�, HB, C1, and C2.

(10.27)

Equations 10.27 can be combined to give

(10.28)

This replaces the much simpler condition, Eq. 10.12b, that we got for the pinned-

pinned column. Again, there are two solutions, but the solution C1 � 0 leads to 

HB � C2 � 0, so we get the “trivial’’ solution of the straight equilibrium configura-

tion, (x) 0.

Alternate equilibrium configurations are possible, however, if � satisfies the 

following equation:

or

(10.29)

This equation is called the characteristic equation. It has an infinite number of solu-

tions, but, as in the case of the pinned-pinned column, we are only interested in the

smallest value of �L that satisfies Eq. 10.29. One way to solve Eq. 10.29 is to plot

f(�L) tan(�L) versus �L, and g(�L) �L versus �L. The smallest value of �L
where the curves f(�L) and g(�L) intersect is

(10.30)

Combining this with Eq. 10.9, we get

(10.31)Pcr � (20.19) 
EI

L2

l1L � 4.4934

��

tan(lnL) � lnL,    n � 1,2, . . .

sin(lnL) � (lnL) cos(lnL) � 0

�y

C1[sin lL � lL cos lL] � 0

 y(L) � 0 S C1 sin lL � C2 cos lL � 0

 y¿(0) � 0 S C1 �
HB

lP

 y(0) � 0 S C2 � �
HBL

P

y(x) �
HBL

P
�

HBx
P

� C1 sin lx � C2 cos lx

yp(x) �
HBL

P
�

HBx
P
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Thus, replacing the pin at one end of a column by complete restraint raises the buck-

ling load significantly—from the Euler load of Eq. 10.16 to the value given in 

Eq. 10.31. That is, the buckling load is increased by

By comparing Eqs. 10.16 and 10.31, we can see that the elastic buckling load

of any column can be expressed as some constant times the factor (EI/L2). Thus,

all of the comments regarding the effects of the parameters E, I, and L on the

buckling of pinned-pinned columns also hold true for columns with other end

conditions.

To get the fundamental buckling-mode shape of the fixed-pinned column, we

can combine Eqs. 10.26, 10.27, and 10.30 to get

(10.32)

This mode-shape expression, which is plotted in Fig. 10.12, is not nearly as simple as

the sin (�x/L) buckling mode of the pinned-pinned column (Eq. 10.17). However,

we again find the shape is specified, but the amplitude coefficient is arbitrary.

Effective Length of Columns. The Euler buckling load, given by Eq. 10.16,

was developed for the ideal pinned-pinned column. We have just found, however,

that a change of end conditions leads to an expression for the buckling load that dif-

fers from that in the Euler formula only in the value of a multiplicative constant.

Therefore, the Euler formula can be extended to give the elastic buckling load of
columns with arbitrary end conditions if we write it as

(10.33)

where Le is the effective length of the column.That is, Le is the length of a pin-ended

column having the same buckling load as the actual column. For example, for the

fixed-pinned column, we equate the expression for Pcr in Eq. 10.31, to the expres-

sion in Eq. 10.33 and get

or

This effective length of the fixed-pinned column is indicated in Fig. 10.12.

Physically, the effective length of a column is the distance between points of

zero moment when the column is deflected in its fundamental elastic buckling

mode. Figure 10.13 illustrates the effective lengths of columns with several types of

end conditions. (Homework Problem 10.3-13 is a derivation based on Fig. 10.13e;

Le � 0.70L

p2

L2
e

�
20.19

L2

Elastic Buckling
LoadPcr �

p2EI

L2
e

y(x) � C e sin a4 .493x
L
b � 4.493 c1 � a x

L
b � cos a4 .493x

L
b d f

a20.19 � p2

p2
b (100%) � 105%
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L

Le = 0.70L

Pcr

FIGURE 10.12 The funda-

mental buckling mode of a

fixed-pinned column.
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Problem 10.3-14 is a similar derivation.) Some design codes employ a dimensionless

coefficient K, called the effective-length factor, where

(10.34)

Then the elastic buckling load is given by

(10.35)

The appropriate value of K is listed for each column shown in Fig. 10.13. From 

Eq. 10.35 we obtain the following expression for the elastic buckling stress:

(10.36)

where (KL/r) is the effective slenderness ratio of the compression member.

scr �
p2E

aKL
r
b2

 

Pcr �
p2EI

(KL)2

Le K KL

(b) Fixed-pinned
column, K = 0.7.

A

B

Le = 0.7L

P

(a) Pinned-pinned
column, K = 1.

A

B

Le = L

P

A

B

(d) Partially-restrained
column.  0.5 < K < 1.

0.5L < Le < L

P

A

B

(c) Fixed-fixed
column, K = 0.5.

Le = 0.5L

P P

A

B

L

(e) Fixed-free
column, K = 2.

Le = 2L

FIGURE 10.13 The effective length of various columns.

Elastic Buckling
Stress

E X A M P L E  1 0 . 2

A stiff beam BC (assumed to be rigid) is supported by two identical

columns whose flexural rigidity is EI (for bending in the xz plane).

Assuming that the columns are prevented from rotating at either end by

this arrangement and that sidesway is permitted, as illustrated in Fig. 1b,
estimate the elastic buckling load, Pcr, by estimating the effective length

of the columns and using Eq. 10.33.

Plan The Solution The problem statement asks us to estimate the effec-

tive length and then use Eq. 10.33. We can compare the columns in this

problem to the effective-length column samples in Fig. 10.13.
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Solution In terms of effective length, the elastic buckling load is given

by Eq. 10.33:

(1)

Figure 1b bears some similarity to Fig. 10.13c, the fixed-fixed column. If

we reflect the columns about their tops, as shown in Fig. 2, we have the

equivalent of the fixed-fixed column situation of Fig. 10.13c. Therefore,

(2)

so, the critical load for each column is just the Euler buckling load,

Ans. (3)

and the effective-length factor is K � 1.

Pcr �
p2EI

L2

Le � 0.5(2L) � L

Pcr �
p2EI

L2
e

d

L

x

z

d

B

A

C

D

W = 2P

(a) Unbuckled configuration.

B

A

C

2P

D

(b) Buckled configuration.

L

L

Le = L

Fig. 1

Fig. 2

E X A M P L E  1 0 . 3

In Example 10.2, buckling of columns AB and CD in the xz plane, as

illustrated in Fig. 1a, was considered. However, suppose that there is

nothing to prevent the columns from buckling in the y direction, as illus-

trated in Fig. 1b. For the frame in Fig. 1, determine whether the W6 	 20

columns AB and CD will buckle in the xz plane (y axis buckling), or

whether they will buckle in the y direction (z axis buckling), and deter-

mine the buckling load. Assume that the joints at B and C are rigidly

welded joints, that the beam BC is rigid, and that it applies a vertical load

P at the centroid of the top of each column.

Let E � 29(103)ksi, �Y � 36 ksi, Iy � 13.3 in4, Iz � 41.4 in4, A � 5.87

in2, and L � 16 ft.
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Solution From Eq. 10.35,

(1)

Let be the critical load for buckling in the xz plane as illustrated in

Fig. 1a, and let be the critical load for the buckling mode illustrated

in Fig. 1b. Then,

(2)

where, from Example 10.2, Ky � 1, and from Fig. 10.13e, Kz � 2. Then,

(3a)

(3b)

Since � , the frame will buckle in the out-of-plane mode 

indicated in Fig. 1b at a buckling load of

Ans. (4)

Review the Solution In the problem statement you were told to assume

that beam BC is rigid and that the joints at B and C are rigidly welded (i.e.,

that the angles between the columns and the beam BC remain 90�). Before

accepting the value of Pcr in Eq. (4) as the true buckling load, let us recon-

sider these assumptions. Since a real beam BC would not be perfectly

rigid, and since the joints at B and C may actually be flexible enough to

allow the respective columns to rotate some at B and C relative to the

Pcr � (Pcrz
)cant � 80.4 kips

Pcry
Pcrz

Pcrz
�
p2[29(103) ksi](41.4 in4)

[2(16 ft)(12 in./ft)]2
� 80.4 kips

Pcry
�
p2[29(103) ksi](13.3 in4)

[1(16 ft)(12 in./ft)]2
� 103.3 kips

Pcry
�
p2EIy

(KyL)2
,  Pcrz

�
p2EIz

(KzL)2

Pcrz

Pcry

Pcr �
p2EI

(KL)2

Fig. 1 Two possible buckling modes.

x

z

x

y

16 ft

B

A

C

B

D

(a) Front view.
(y-axis buckling)

(b) Side view.
(z-axis buckling)

(c) Detail B.

2P
2P

Flexibility
in joint B
(not 90° angle) 
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beam BC, as indicated in Fig. 1c, we should take these possibilities into ac-

count. A “worst case’’ assumption would be that the columns are pinned,

not fixed, to the beam BC. Since the beam BC is free to translate horizon-

tally, the value of Ky for a cantilever (fixed-free) column would apply; that

is, Ky � 2. Then, Eq. (3a) would become

(5)

By comparing Eqs. (4) and (5) we see the importance of correctly

characterizing the end conditions of a column and applying an appropri-

ate factor of safety to account for uncertainty in the end conditions. The

most conservative value of buckling load for columns AB and CD is

given by Eq. (5), that is

The average compressive stress at this load is

so the assumption of elastic buckling is valid.

scr �
Pcr

A
�

25.8 kips

5.87 in2
� 4.40 ksi 6 36 ksi

Pcr � (Pcry
)cant � 25.8 kips

(Pcry
)cant �

p2[29(103) ksi](13.3 in4)

[2(16 ft)(12 in./ft)]2
� 25.8 kips

Effective Length of ColumnsMDS10.3

9A straight member that is simultaneously subjected to axial compression and lateral bending is called a

beam-column.
10The pin supports at A and B are omitted to simplify this figure.

*10.4 ECCENTRIC LOADING; THE SECANT FORMULA

In Sections 10.2 and 10.3 we considered ideal columns, that is, columns that are ini-

tially perfectly straight and whose compressive load is applied through the centroid

of the cross section of the member. Such ideal conditions never exist in reality,

since perfectly straight structural members cannot be fabricated, and since the

point of application of the load seldom, if ever, lies exactly at the centroid of the

cross section.

Beam-Column Behavior.9 Figure 10.14a shows a column with eccentric load

applied through a bracket.We will analyze the “pinned-pinned’’ column with eccen-

tric loading shown in Fig. 10.14b.10 When the eccentricity, e, is zero, we get the Euler

column. When e 0, we use the free-body diagram in Fig. 10.14c to get

(10.37)M(x) � �P [e � y(x)]aaMb
A

� 0:

�
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which is substituted into the moment-curvature equation, Eq. 7.8, to give

(10.38)

As in Eq. 10.9, we consider a uniform member and let �2 � P/EI. Then, Eq. 10.38

may be written as

(10.39)

The particular solution of this differential equation is p(x) � �e � const, so the

general solution is

(10.40)

The boundary conditions (0) � (L) � 0 are used to evaluate the constants in

Eq. 10.40.

or, since (1 � cos �) � 2 sin2(�/2) and sin � � 2 sin (�/2) cos (�/2),

Then,

(10.41)

As indicated in Fig. 10.14b, the maximum deflection of the beam-column occurs at

x � L/2. Its value is

(10.42)

Unlike an Euler column, which deflects laterally only if P equals or exceeds the

Euler buckling load, Pcr, lateral deflection of an eccentrically loaded member occurs

for any value of load P. It is convenient to illustrate this beam-column deflection by

plotting Eq. 10.42, written as

(10.43)

for several values of e (Fig. 10.15). As P approaches the Euler load, Pcr, the lateral

deflection of the beam-column increases without bound. In the limit as e 0, the

curve becomes two straight lines that represent the straight configuration (P � Pcr)

and the buckled configuration (P � Pcr).

The above beam-column analysis is valid only as long as the (compressive)

stress does not exceed the compressive proportional limit. It is important to note

d

ymax � e c sec ap
2B

P
Pcr

b � 1 d

ymax � y(L/2) � e[sec(lL/2) � 1]

y(x) � e c tan alL
2
b sin(lx) � cos(lx) � 1 d

C1 � e tan alL
2
b

 y(L) � 0 S C1 sin(lL) � e[cos(lL) � 1] � 0

 y(0) � 0 S C2 � e

yy

y(x) � C1 sin lx � C2 cos lx � e

y

y– � l2y � �l2e

EIy–(x) � Py(x) � �Pe
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Buckling of Columns

L

e

e

x

P

(a) Cantilever column.

(c) Free-body diagram.

L

P

P

B

A

vmax

y, v(x)

P

(b) Pinned-pinned
column.

e

x

v(x)

M(x)

x

P

A

FIGURE 10.14 Eccentri-

cally loaded columns.
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that the transverse deflection is a nonlinear function of the load P, even though it

depends linearly on the eccentricity e. Thus,

as can be seen by examining Eq. 10.43 or Fig. 10.15. This nonlinear load-deflection

relationship results from the fact that the bending moment M(x) of the beam-

column depends on the deflection y(x), as given by Eq. 10.37. By contrast, the beam

deflection produced by lateral loads or by applied couples varies linearly with the

value of each load (Chapter 7), since there is no y-term in the bending-moment 

expression for those types of loading.

A similar analysis of the beam-column behavior of an eccentrically loaded can-

tilever column, like the one in Fig. 10.14a, leads to expressions for y(x) and ymax that

are just Eqs. 10.41 and 10.42, respectively, with the length L in these two equations

replaced by the effective length of a cantilever column, Le � 2L. (See Homework

Prob. 10.4-1.) The behavior of eccentrically loaded columns with other boundary

conditions (e.g., those in Figs. 10.13b, 10.13c, and 10.13d) cannot be obtained by 

simply substituting the effective length Le for L in these equations.

Secant Formula A member under beam-column action is subjected to a combi-

nation of compressive axial force P and bending moment M(x), as indicated by the

free-body diagram of Fig. 10.14c. The maximum (magnitude) moment occurs at 

x � L/2 and is obtained by combining Eqs. 10.37 and 10.42 in the manner indicated

in Fig. 10.16. Thus,

(10.44)

The maximum compressive stress is therefore

(10.45)smax �
P
A

�
Mmaxc

I

Mmax � |M(L/2)| � Pe sec alL
2
b

ymax(P1 � P2) � ymax(P1) � ymax(P2)

y
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Secant Formula

e decreasing

vmax

0

1
e = 0

P__
Pcr

FIGURE 10.15 Load-deflection diagram for an eccentrically loaded column.
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Combining Eqs. 10.44 and 10.45, and recalling the definition of � in Eq. 10.9, we get

(10.46)

where

�max � the maximum compressive beam-column stress.

P � the (eccentric) axial compressive load.

A � the cross-sectional area of the compression member.

e � the eccentricity of the load.

c � the distance from the centroid to the extreme fiber where 

�max acts (Fig. 10.16b).

E � the modulus of elasticity.

I � the area moment of inertia about the centroidal bending axis.

r � � the radius of gyration.

L � the length of the member.

Equation 10.46 is called the secant formula. Although it was derived for simply sup-

ported columns, it also holds for cantilever columns, like the one in Fig. 10.14a, if the

length L in Eq. 10.46 is replaced by the effective length of the cantilever column,

Le � 2L. (See Homework Prob. 10.4-1.)

To determine the maximum compressive load that can be applied at a given

eccentricity to a column of given length and given material, without causing yield-

ing of the material, we can set �max � �Y, the yield point in compression, and solve

Eq. 10.46 numerically for P/A, the average stress.11 Figure 10.17 is a plot of the 

average stress P/A versus the slenderness ratio L/r for structural steel for several

values of the eccentricity ratio ec/r2. For all curves on Fig. 10.17 except the curve

labeled Euler’s formula, �max � �Y, and therefore P � PY, the load at which yield-

ing first occurs.

If e � 0 and �max � �Y, Eq. 10.46 simply gives , and this plots as a

horizontal line at stress �Y. However, long columns with zero eccentricity buckle

P
A

� sY

2I/A

smax �
P
A
c1 � aec

r2
b sec aL

2rB
P

AE
b d  

11We assume that the material remains linearly elastic up to the stress �Y, that is, we assume that 

�PL � �Y.

x = L/2

(a) Axial stress. (c) Total normal stress.(b) Bending stress.

+ =

P Mmax

σmax

c

FIGURE 10.16 Superposition of beam-column stresses.

Secant 
Formula
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elastically at the Euler critical load, and their maximum stress is less than �Y. Thus,

the Euler load is an upper bound on the value of P for long columns, and therefore

the Euler curve is shown in Fig. 10.17.12

Clearly, the secant formula expresses a nonlinear relationship between the 

applied compressive load P and the maximum compressive stress �max. Therefore,

the principal of superposition does not apply to the calculation of the stress in

beam-columns.13

12The behavior of short and medium-length ideal columns is examined further in Section 10.6, Inelastic
Buckling.
13The secant term in Eq. 10.46 approaches unity as L/r 0. Therefore, for very short members, super-

position can be applied, as in Example 9.3.

S

σY = 36
40

Steel: E = 29(103) ksi

Euler's curve
30

20

10

0
0 50

ec/r2 = 0.0

0.1

1.0
1.5

2

0.5

100 150 200

P__
A

(ksi)

L_
r

FIGURE 10.17 The average stress, P/A, corresponding to �max � �Y, based on the

secant formula (Eq. 10.46).

PROCEDURE FOR DETERMINING THE ALLOWABLE LOAD FOR AN ECCENTRICALLY LOADED COLUMN

The allowable load for a given eccentrically loaded column

may be determined by the following procedure:

1. Obtain, or estimate, the value of the eccentricity e.

2. Substitute the value of e into the secant formula, along

with the geometric parameters r, c, A, and L, and the 

material properties E and �Y (i.e., let �max � �Y), and

solve for the load PY.

3. Divide the load PY by the appropriate factor of safety to

determine the allowable load. (Note that, because of the

nonlinear relationship between load and stress, the factor

of safety must be applied directly to the load. It is not 

applied to the stress to determine an allowable stress

from which an allowable load is then calculated!)

The following example problem illustrates the use of the secant formula.

E X A M P L E  1 0 . 4

A W6 	 20 structural steel (E � 29(103) ksi, �Y � 36 ksi) column is 

eccentrically loaded as shown in Fig. 1. Assume that the load is applied

directly at the top cross section even though it is applied through a

bracket that is attached to a flange. Also assume that the column is
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supported in a manner that prevents out-of-plane buckling, that is,

buckling in the z direction.

(a) If a compressive load P � 20 kips is applied at an eccentricity e �
4.0 in., what is the maximum compressive stress in the column? Where

does it occur? (b) What is the factor of safety against initial yielding of

the column under the above loading?

Solution

(a) Maximum Compressive Stress: As noted earlier the maximum compres-

sive stress in a cantilever column (see Fig. 2) can be calculated directly

by using the secant formula, Eq. 10.46, with Le � 2L replacing the length

L. Thus,

(1)

Ans.

(b) Factor of Safety: Since the secant formula is nonlinear, we must deter-

mine the value of load PY that makes �max � �Y, the compressive yield

stress.We may be able to get an estimate from Fig. 10.17. For this column

By interpolating between the curves for and at 

on Fig. 10.17, we get ksi. Therefore, since A � 5.87 in2,

we can expect a solution of PY 70 kips.

We need to solve for the value of PY that satisfies Eq. (1) with �max �
�Y � 36 ksi, that is, the equation

or

(2)211 � PY c1 � 1.753 sec a0.08752PYb d

36 ksi �
PY

(5.87 in2)
 c1 � 1.753 sec a36.1 

B

PY

(5.87 in2)(29,000 ksi)
b d

�

PY

A
� 12

Le

r
� 75

aec

r2
b � 2.0aec

r2
b � 1.0

ec

r2
�

(4.0 in.)(3.10 in.)

(2.66 in.)2
� 1.753

Le

r
�

2(96 in.)

(2.66 in.)2
� 72.2

smax � 9.87 ksi

 � 9.866 ksi

 smax �
20

5.87
c1 � a4.0(3.10)

(2.66)2
b  sec  a 2(96)

2(2.66)
 
B

20

5.87(29,000)
b d

 smax �
P
A
c1 � aec

r2
b sec aLe

2rB
P

AE
b d

A � 5.87 in2, r � 2.66 in., c � 3.10 in.

e
x

P

y

8 ft

y

z

c = 3.10 in.

Max. comp.
stress occurs
here.

Fig. 1 Eccentrically loaded cantilever

column.

Fig. 2
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A

B

L

(a) Initially crooked
 column.

v0(x) 

x

A

B

P

v0(x) + v(x) 

x

(b) Crooked column under
 compressive loading.

P

P

v0(x) + v(x) 

M(x)

y, v(x)

x

x

A

(c) A free-body diagram.

FIGURE 10.18 A column with initial crookedness 0(x).y

*10.5 IMPERFECTIONS IN COLUMNS

The previous section indicated how the behavior of a straight column is affected 

if the load is applied eccentrically rather than at the centroid of the cross section 

of the member. The behavior of a column is also affected by any initial lack of

straightness of the axis of the column, or initial imperfection of the column.The ideal

pin-ended column of Fig. 10.6a is replaced, in Fig. 10.18a, by the column that has an

initial crookedness (x).

Although (x) is usually small, its exact functional form differs from column 

to column and is unknown. However, we can get an idea of the effect of initial

crookedness by assuming that (x) can be represented by

(10.47)y0(x) � d0 sin  apx
L
b

y0

y0

y0

Therefore, the calculated load that will cause first yielding is

Since the actual load on the column is 20 kips, the factor of safety with

respect to yielding is

Ans.

Note that this factor of safety, which is based on loads (Eq. 2.26), is not

equal to the ratio of stresses �Y/�max.

FSY � 3.2

FSY �
PY

P
�

64.2 kips

20 kips
� 3.21

PY � 64.2 kips
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which has the same shape as the fundamental buckling mode of an ideal column

(Eq. 10.17). From the free-body diagram of Fig. 10.18c we get

(10.48)

where (x) is the deflection caused by the load P. Combining Eqs. 10.47 and 10.48

with the moment-curvature equation, Eq. 7.8, gives the differential equation

(10.49)

The solution to Eq. 10.49 with the boundary conditions (0) � (L) � 0 is

(10.50)

where

(10.51)

From Eq. 10.50 we can determine the maximum deflection, �max, and the maxi-

mum bending moment, Mmax, as follows:

(10.52)

(10.53)

Then,

(10.54)

where r2 � 1/A.

Since � � P/Pcr, Eqs. 10.52 through 10.54 are all nonlinear in the load P.

Equation 10.54 for the maximum compressive stress is similar to the secant formula

for eccentric loading of columns, Eq. 10.46. If the imperfection ratio �0c/r2 is used to

determine a family of curves of PY/A versus L/r for a given compressive yield stress

�max � �Y, the result is a set of curves very similar to those in Fig, 10.17. Therefore,

the analysis of columns with initial crookedness is very similar to the analysis of

columns with eccentric loading.

smax �
P
A

�
Mmaxc

I
�

P
A

 c1 �
d0c

r2(1 � a)
d

 Mmax � Pdmax �
Pd0

1 � a

 dmax � d0 � y(L/2) �
d0

1 � a

a �
P

Pcr

�
PL2

p2EI

y(x) � a ad0

1 � a
b  sin  apx

L
b

yy

EIy–(x) � Py(x) � �Pd0 sin apx
L
b

y

M(x) � �P [y(x) � y0(x)]

Let us reconsider the buckling of ideal (i.e., initially straight, axially loaded) pin-

ended columns. If an ideal column is sufficiently long, it will buckle elastically at

the critical stress given by Euler’s formula, Eq. 10.18, with �cr �PL. Therefore,

we can determine the value of the slenderness ratio, L/r, above which elastic



*10.6 INELASTIC BUCKLING OF IDEAL COLUMNS
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buckling occurs, by setting �cr � �PL in Eq. 10.18. This gives the critical slender-
ness ratio

(10.55)

Columns for which (L/r) � (L/r)c are called long columns. Long columns fail at their

elastic buckling limit, namely, the Euler buckling stress.

If an ideal column is very short, it will not buckle at all, but it will simply fail by

crushing of the material at the ultimate compressive stress �U. Columns that fail in

this manner are called short columns, and they fail at their compressive-strength
limit, as indicated on Fig. 10.19. Between short columns and long columns lies a

range of columns, called intermediate columns, whose failure mode is referred to as

inelastic buckling.They fail when the average stress P/A reaches the inelastic-buckling
limit, indicated by the curve BC in Fig. 10.19.

Let us now examine the phenomenon of inelastic buckling to determine the in-

elastic buckling limit of an ideal column whose compressive stress-strain diagram

has the form shown in Fig. 10.20.14 Assume that the column fails in the range of in-

termediate columns, so buckling does not occur at a stress below the proportional

limit �PL. And assume that when its average compressive stress P/A reaches the

value �B (point B on Fig. 10.20), the column is just on the verge of inelastic buck-

ling. There are two principal theories that predict the value of �B at which a column

will buckle inelastically. The simplest theory is the tangent-modulus theory, devel-

oped in 1889 by F. Engesser, a German engineer. The tangent-modulus formula is

aL
r
b

c
�

B

p2E
sPL

659
Inelastic Buckling of 

Ideal Columns

Euler's curve 

Short columns

Intermediate
columns

Elastic-
buckling
limit

Inelastic-
buckling
limit

Compressive-
strength limit

Long columns

D

C

B

L
––r

L
––r

O

σU

σPL

A

P––
A

(    )c

14Because actual columns are not perfectly straight and are not loaded exactly along the centroidal axis,

and because stresses (called residual stresses) are induced into columns when they are manufactured, it

is not possible to determine an analytical expression for the inelastic buckling limit of real columns.

However, use of the analytical expressions presented here, together with the results of many column

buckling experiments, makes it possible to obtain empirical column-design formulas, several of which are

discussed in Section 10.7.

FIGURE 10.19 Buckling behavior of an ideal column.

σB

σ

σPL

�

1

E = Young's modulus

1

Et (σB) = Tangent modulus

A

B

FIGURE 10.20 Compres-

sive stress-strain diagram.

c10BucklingOfColumns.qxd  9/20/10  4:52 PM  Page 659



obtained by replacing Young’s modulus, E, in Euler’s buckling formula by the tan-
gent modules Et, which is the slope of the compressive stress-strain curve. At stress

�B the tangent modulus is given by

(10.56)

The meaning of Et is illustrated on Fig. 10.20. Thus, the tangent-modulus buckling
stress is given by

(10.57)

The tangent-modulus curve for inelastic buckling is labeled �t in Fig. 10.21.

A slightly higher inelastic buckling stress �r is predicted by the reduced-modulus
theory. In the reduced-modulus formula

(10.58)

the reduced modulus Er (Et � Er � E) depends on E, Et, and also the shape of the

cross section. Since actual buckling tests of intermediate-length columns result in

buckling loads that tend to be close to the tangent-modulus load, and also since the

tangent-modulus load is far easier to calculate than the reduced-modulus load, the

tangent-modulus theory is the generally preferred theory for inelastic buckling of

columns [Ref. 10-6].

The following example illustrates the use of the tangent-modulus theory to 

determine the inelastic buckling stress.

sr �
p2Er

(L/r)2

st �
p2Et

(L/r)2
 

Et(sB) �
ds
d�
`
s�sB

Intermediate
columns

Euler curve
(elastic buckling)

Long columns

σt

σr

σPL

P––
A

L
––r

L
––r(    )c

FIGURE 10.21 Critical stress versus slenderness ratio.

Tangent-Modulus
Buckling Formula

E X A M P L E  1 0 . 5

A 4 	 4 	 1/2 tubular column, whose cross section is shown in Fig. 1, has

an effective length of 100 in. (A � 6.36 in2, r � 1.39 in.). The column is

made of a material whose compressive stress-strain curve is given by the
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curve ABC in Fig. 2.The corresponding curve of tangent modulus Et ver-

sus compressive stress � is the curve DEFG in Fig. 2, with values of the

tangent modulus on the upper scale. Compute the buckling load for this

column.

Solution Let us first determine whether elastic or inelastic buckling gov-

erns, by using Eq. 10.55 to determine Lc/r. From the tangent-modulus

curve of Fig. 2 we can estimate that E � 30(103) ksi, and �PL 29 ksi.

Then,

The actual value of L/r is

Since L/r � Lc/r, inelastic buckling occurs.

L
r

�
100 in.

1.39 in.
� 71.9

Lc

r
�

B

p2E
sPL

�
B

p2(30 	 103 ksi)

29 ksi
� 101.0

�

Fig. 2 The compressive stress-strain curve and the tangent-modulus curve for a

structural material.

Fig. 1
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662

From the tangent-modulus formula, Eq. 10.57, we get

(1)

This straight line is plotted in Fig. 2. Its intersection with the tangent-

modulus curve gives the solution for the tangent-modulus stress. First,

try �1 � 33 ksi. From Fig. 2, we estimate that the corresponding value of

the tangent modulus is E1 � Et(�1) 17(103) ksi. From Eq. (1),

which is lower than our first-guess value of 33 ksi. We need a slightly

higher value of Et, so try Et(�2) 17.2(103) ksi. Then Eq. (1) gives

which agrees with the value taken from the tangent-modulus curve.

Then,

or, rounded to two significant figures,

Ans.Pt � 210 kips

Pt � stA � (32.8 ksi)(6.36 in2) � 209 kips

st1 � 32.8 ksi

�

st1 � 0.001907[17(103) ksi] � 32.4 ksi

�

st �
p2Et

(L/r)2
�
p2Et

(71.9)2
� 0.001907 Et

In Sections 10.2 through 10.6 we examined the behavior of columns of known

geometry (perfectly straight or with a specified form of imperfection), known mate-

rial behavior (free of any residual stress and having a known compressive stress-

strain diagram), known end conditions (pinned, fixed, or free), and known line of

action of load. For real columns, all of these factors, and more, are subject to vari-

ability (e.g., see Ref. 10-5), and this variability must be properly accounted for

when a column is designed.Therefore, design codes typically specify column-design
formulas that are obtained by curve-fitting data from laboratory tests of many real

columns and that incorporate appropriate factors of safety, effective-length factors,

and other modifying factors.

In this section we will consider several representative column-design formulas

for centrally loaded columns of steel, aluminum alloy, and wood. Each design

formula applies only to columns made of a specific material and having an effective

slenderness ratio in a specific range. The purpose of this section is just to illustrate

the basic aspects of the column-design process. In some cases the code notation

has been changed to be consistent with the notation in Sections 10.2 through 10.6

(e.g., to the notation � for stress). Because column-design formulas and procedures

are updated periodically by the various code-writing agencies, the reader should

consult the current edition of the appropriate design code or specification before

10.7 DESIGN OF CENTRALLY LOADED COLUMNS
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designing a column for actual fabrication and use. The names, mailing addresses,

or Web addresses of several major code-writing societies and agencies are listed in

the References for Chapter 10.

The allowable stress �allow is related to the critical stress �cr, or buckling stress,

by the equation

(10.59)

where FS is the factor of safety. The allowable load is then given by the allowable

stress times the area of the cross section of the column.

(10.60)

The column-design formulas presented in Eqs. 10.65, 10.66, and 10.67 can be

used in a very straightforward manner to determine the allowable load for a column

of a given material with a given effective length and given cross section. On the

other hand, column design—that is, determination of a suitable cross section for a

column of given material and given effective length to support a given load—is an

iterative procedure, which is described below.

Pallow � sallowA

sallow �
scr

FS
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COLUMN DESIGN PROCEDURE

The basic steps of this design procedure are:

Step 1: Select a trial cross section.

Step 2: Determine the value of the effective slenderness

ratio by comparing the values (KL/r)1 and (KL/r)2

for buckling in the directions of the principal axes of

the cross section. (For a wood column with rectan-

gular cross section, use KL/d instead of KL/r.)

Step 3: Using the column-design formula that is appropriate

to the selected material and to the effective slender-

ness ratio calculated in Step 2, determine the allow-

able stress �allow. Multiply �allow by the cross-sectional

area of the trial cross section to determine the allow-

able load.

Step 4: If the allowable load calculated in Step 3 is equal 

to or slightly greater than the given design load,

accept the trial section. If the allowable load is less

than the given design load, repeat Steps 1 through 

3 for another trial section. If the allowable load is

much greater than required, try a smaller cross 

section.

Structural Steel Columns. The design of columns of structural steel is based on

formulas proposed by the Structural Stability Research Council (SSRC), formerly

called the Column Research Council (CRC). The American Institute of Steel

Construction (AISC), an organization that publishes specifications for use in the de-

sign of steel structures, has adopted the SSRC formulas and prescribed the safety

factors to be used in the design of steel columns [Ref. 10-7].

For long columns, the Euler formula, Eq. 10.36, is used. This formula is theoret-

ically valid as long as �cr does not exceed the proportional limit of the material in

compression. (The yield stress �Y may be substituted for �PL.) However, it has been

observed that the process of rolling that is used to produce structural-steel shapes

such as wide-flange sections produces large residual compressive stresses so that

yielding may occur at a compressive stress as low as half the nominal compressive

yield stress. Therefore, the AISC limits the range of validity of the Euler formula to 
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those values of KL/r for which �cr 0.5 �Y, that is, for values of KL/r
(KL/r)c,with

(10.61)

The value of E given by AISC is 29(103) ksi.15

Combining Eqs. 10.36 and 10.61, we can write Euler’s formula in the form

(10.62)

This equation is plotted in Fig. 10.22, where its range of validity is indicated by the

solid-line portion of the curve labeled Euler’s formula.
For shorter columns, that is, for values of KL/r that do not exceed (KL/r)c, the

Column Research Council proposed use of the parabolic curve16

(10.63)

This curve has a horizontal tangent at KL/r � 0, and it merges smoothly with the

Euler curve at (KL/r)c, as shown in Fig. 10.22.

scr

sY
� 1 �

aKL
r
b2

2 aKL
r
b2

c

 ,   aKL
r
b � aKL

r
b

c

scr

sY
�

p2E

sY aKL
r
b2

�

aKL
r
b2

c

2 aKL
r
b2

 ,   aKL
r
b � aKL

r
b

c

aKL
r
b

c
� a p2E

0.5sY
b

1
2

��664
Buckling of Columns

15This value is for room-temperature conditions (70�F); the assumed value of E decreases linearly to a

value of 25(103) ksi at 900 F.
16This is sometimes called the Johnson column formula.

°

Euler's formula

Eq. 10.63

Eq. 10.62

Eq. 10.65b

Eq. 10.65a

(KL/r)c

KL/r

,

0
0 50 100 150 200

0.2
0.261

0.5

0.4

0.6

0.8

1

FIGURE 10.22 Design curves for buckling of structural steel columns.
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The factor of safety corresponding to Eq. 10.63 is given by the AISC as

(10.64a)

and, corresponding to Eq. 10.62 the factor of safety is the constant

(10.64b)

The AISC formulas for �allow are obtained by combining Eqs. 10.60 and 10.62

through 10.64 to give

(10.65a)

(10.65b)

These formulas are also plotted in Fig. 10.22.

Finally, it is noted in Eq. 10.65b and on Fig. 10.22 that the AISC restricts

columns to values of KL/r 200.

Aluminum-Alloy Columns. The Aluminum Association provides specifications

for the design of aluminum-alloy structures. Euler’s formula is used for long

columns, and straight lines are prescribed for short and intermediate columns. The

general form of these curves is indicated in Fig. 10.23. Specific design formulas,

which depend on alloy, temper, and usage, are provided by the Aluminum

Association [Ref. 10-8]. For the alloy 2014-T6, an alloy used in building structures,

the column design formulas are:

(10.66a)

(10.66b)

(10.66c)

These formulas incorporate a factor of safety.

sallow �
54,000 ksi
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Wood Columns. The design of wood structural members is governed by the

National Design Specification for Wood Construction published by the American

Forest & Paper Association [Ref. 10-9].The National Design Specification (currently

NDS-2005) provides a single formula for the column stability factor covering the 

effective slenderness ratio range of 0 � KL/d � 50. The allowable compressive

stress for a wood column is given by

(10.67)

In the above formula,

Fc � the value of allowable stress for compression parallel to the grain of the

wood.

FcE � � the reduced Euler buckling stress.

E � the modulus of elasticity.

KcE � 0.30 for visually graded lumber.

c � 0.8 for sawn lumber.

The values of Fc and E vary greatly with type of wood, moisture content,

duration of load, and other factors, with typical values of Fc being in the range of

400 psi to 2000 psi, and typical values of E ranging from 800 ksi to about 1800 ksi.

The effective slenderness ratio, KL/d, is taken as the larger of the two values

(KL/d)1 and (KL/d)2 for buckling in the direction of the principal axes of the

cross section, with d1 and d2 being the finished dimensions of the rectangular

cross section.

KcEE

(KL/d)2

sallow � Fc c 1 � (FcE/Fc)

2c
 � 

B
c 1 � (FcE/Fc)

2c
d 2 

� 
FcE/Fc

c
d

666
Buckling of Columns

(KL/r)1 (KL/r)2

σ1

σallow

σ2

KL/r

Eq. 10.66a

Eq. 10.66b

Eq. 10.66c

FIGURE 10.23 The typical design curve for buckling of aluminum-alloy columns.
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The wood column design curve, based on Eq. 10.67 with E � 1800 ksi and Fc �
1.2 ksi, is plotted in Fig. 10.24.

The column-design procedure outlined earlier will now be illustrated.

667
Design of Centrally 

Loaded Columns

E = 1800 ksi
Fc = 1.2 ksi

Fc

0
0 5040302010

1.5

σallow (ksi)

1

0.5

KL–––
d

FIGURE 10.24 A design curve for buckling of wood columns.

E X A M P L E  1 0 . 6

Fig. 1

10 ft.

P = 10 kipsDetermine the size of a square S4S (surfaced on four sides) structural-

lumber column of 10 ft unbraced length to carry an axial load of 10 kips.

Assume that the square ends of the column give an effective length

factor K � 1, that E � 1800 ksi, and that Fc � 1.2 ksi.

Solution

Step 1: Try a nominal 6 � 6 in. section (5.5 in. � 5.5 in. finished dimensions).

Step 2: Since this is a square cross section

for both principal directions. Then,

Step 3: From the wood-column design formula, Eq. 10.67,

Step 4: The 6 � 6 in. section is obviously adequate, but let us see if a 

4 � 4 in. section would be sufficient.

 Pallow � sallow A � (0.8054 ksi)(5.5 in.)(5.5 in.) � 24.4 kips 7 10 kips

 sallow � Fc £ 1 � (FcE/Fc)

2c
 � 

B
c1 � (FcE/Fc)

2c
d 2 

� 
FcE/Fc

c
§ � 0.8054 ksi

FcE �
KcEE

(KL/d)2
�

0.3(1800)

(21.82)2
� 1.134 ksi

aKL
d
b �

1(10 ft)(12 in./ft)

5.5 in.
� 21.82
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Step 1: Try a nominal 4 � 4 in. section (3.5 in. � 3.5 in. finished dimensions).

Step 2:

Step 3: From Eq. 10.67, �allow � 0.4154 ksi. Then,

Pallow � �allow A � (0.4154 ksi)(3.5 in.)(3.5 in.) � 5.09 kips 	 10 kips

Step 4: Since we were asked to select S4S structural lumber with square

cross section, we must use the 6 � 6 in. section. Ans.

aKL
d
b �

1(10 ft)(12 in./ft)

3.5 in.
� 34.3

The design formulas presented in this section are only applicable to centrally loaded

columns.The design of eccentrically loaded columns is beyond the scope of this book.

Design of Centrally Loaded ColumnsMDS10.4 – 10.9

Prob. 10.1-1. Determine the critical load, Pcr, for the bar-

spring system shown in Fig. P10.1-1. The load P remains ver-

tical as the bar rotates about the pin at A.The force in spring

BD is proportional to the elongation of the spring, with

spring constant k. That is, Fs � ke, where e is the elongation

of the spring. The spring is unstretched when � � 0.

10.8 PROBLEMS

Problems 10.1-1 through 10.1-4. In solving the problems
for Section 10.1, assume that the bars are rigid, that the
springs are linearly elastic, and that the displacements
and angles of rotation are small. Also, neglect gravity,
and assume that buckling takes place in the plane of 
the figure.

Prob. 10.1-2. Determine the critical load, Pcr, for the bar-

spring system shown in Fig. P10.1-2. The load P remains

horizontal. End A is free to move horizontally, and point B
moves in a circular arc about C. A frictionless pin connects

bars AB and BC at point B.

P10.1-1

P10.1-2

Prob. 10.1-3. Determine the critical load, Pcr, for the bar-spring

system shown in Fig. P10.1-3. The load P remains vertical.

P
CBA

L

k

L

P

L

C

D

A

B

k

L/2

θ

P

2L/3

C

A
k

B

L/3

θ

D

P10.1-3
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Prob. 10.1-4. Determine the critical load, Pcr, for the bar-

spring system shown in Fig. P10.1-4. The load P remains

horizontal. End A is free to move horizontally, and point B
moves in a circular arc about C. A frictionless pin connects

bars AB and BC at point B. Like the rotational spring in 

Fig. 10.4, the rotational spring at C exerts a restoring mo-

ment (MC)r � k�� when bar BC rotates away from the

horizontal position.

669

Prob. 10.2-2. Determine the critical load, Pcr, of a steel pipe

column that is 20 ft long; that has a -in. wall thickness, as

shown in Fig. P10.2-2; and that weighs the same amount per

foot as the square tubular column in Fig. P10.2-1. Let Est �
29(103) ksi and �Y � 46 ksi.

1
4

P10.1-4

P
C

B kθA

2L L

Prob. 10.1-5. Modify the two-bar system in Fig. P10.1-4 by

moving the rotational spring, with spring constant k�, from

end C to the pin joint at B, so that there will be a restoring

moment at B that is proportional to the angle between bar

AB and bar BC. Neglect gravity, and assume that the entire

two-bar system ABC is horizontal when the spring is at-

tached across the joint at B and the horizontal load P is ap-

plied at the moveable end A. Determine an expression for

the critical load Pcr for this modified two-bar system. Include

a sketch of the modified two-bar system, and express your

answer in terms of the spring stiffness k� and the length L.

Prob. 10.2-1. Determine the critical load, Pcr, of a square

tubular steel column that is 20 ft long and that has the cross

section shown in Fig. P10.2-1. Let Est � 29(103) ksi and 

�Y � 46 ksi.

EULER BUCKLING LOAD

Problems 10.2-1 through 10.2-19. In solving the problems
for Section 10.2, assume that the compression member in
question is an ideal slender, prismatic, pin-ended, elastic
column.

▼ MDS 10.1 & 10.2

P10.2-1

4 in.

4 in.
t =   in.1–

4

P10.2-2

t =   in.

ri

1–
4

DProb. 10.2-3. A builder plans to nail together two boards

to form a column. Which of the configurations in Fig. P10.2-3

would give the greater buckling load, configuration A, or

configuration B? Assume that the ends of the columns are

“pinned’’ in a manner that permits buckling in any direction.

Show calculations to support your answer.

P10.2-3

2b

A

(a) (b)

B

2b

b

b

b

b/2

b/2

b

DProb. 10.2-4. (a) Calculate the critical load, Pcr, for a W8 �
35 steel column having a length of 24 ft. Let Est � 29(103) ksi

and �Y � 36 ksi, and assume that the column is free to buckle

in any direction. See Table D.1 of Appendix D for wide-

flange section properties. (b) Would a W12 � 35 column be

better (i.e., have a higher critical load) than the 8-in. section?

(c) If �Y � 50 ksi rather than 36 ksi, would there be any ef-

fect on the critical load?
DProb. 10.2-5. A pin-ended column that is 16 ft long must

support a compressive axial load of P � 300 kips with a fac-

tor of safety with respect to buckling of 2.0. Assume that the

column has “pinned’’ ends that allow buckling in any direc-

tion. From Table D.1 of Appendix D, select the lightest 

W shape that will support the load. Let Est � 29(103) ksi and

�Y � 36 ksi.
DProb. 10.2-6. A solid-waste compactor, which is illustrated

in Fig. P10.2-6, can be purchased in a “standard’’ configura-

tion or a “heavy-duty’’ configuration. One difference be-

tween the designs is the size of the push rod that is used. The

push rod may be considered to be a pin-ended column of

length 1.5 m. The push rod on the standard model is a 
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rectangular bar with dimensions b � 15 mm, h � 30 mm. It

is made of steel with Est � 200 GPa, �Y � 250 MPa. (a)

Determine the compaction-force capacity of the standard

model if the push rod is designed with a factor of safety of

3.0 with respect to elastic buckling. (b) If the push rod of the

heavy-duty model is made of the same steel, and if it also has

a rectangular cross section with h � 2b, what dimension b is

required (to the nearest mm) if the heavy-duty model is to

have a capacity of 50 kN?

670

light that increased its temperature uniformly by an amount

T. Assume that the ends of the pushrod are pinned to

structure that is “rigid,’’ and assume that the control rod is

stress-free when T � 0. Determine an expression for the

value of T that would be required to cause the buckling

failure. Express your answer in terms of cross-sectional and

material properties of the bar, that is, in terms of I, A, �, etc.,

and the length L.

*Prob. 10.2-12. A “rigid’’ horizontal beam AD is supported

by two pin-ended columns as shown in Fig. P10-2.12. The

columns have the same cross-sectional dimensions and are

made of the same material (i.e., same I and same E). (a)

Determine an expression for the load Wa that will cause

elastic buckling of one of the columns, and indicate which

column will buckle first. (b) Determine an expression for

load Wb that would cause the second column to buckle also.

Assume that the force in the column that buckles first re-

mains constant after that column buckles.

¢
¢

¢

P10.2-6

h

h

b
1.5 m

Actuator beam

Push rod

Prob. 10.2-7. Three pin-ended columns have the same

length and the same cross-sectional area. They are made of

the same material, and they are free to buckle in any direc-

tion. The cross sections of the columns are: (1) a circle, (2) a

square, and (3) an equilateral triangle. Determine expres-

sions for the elastic buckling loads—P1, P2, and P3—of the

respective columns.

*DProb. 10.2-8. An equal-leg angle section of length L � 12

ft is to be used to support a compressive load of P � 20 kips

with a factor of safety of 2.5 against elastic buckling.17

Assume that the ends of the column are pinned in a manner

that permits it to buckle in any direction. From Table D.5 of

Appendix D, select the lightest steel section that meets the

design requirements. Let Est � 29(103) ksi and �Y � 36 ksi.

*DProb. 10.2-9. Solve Prob. 10.2-8 if the load is P � 10 kips

and the length is L � 10 ft.

*DProb. 10.2-10. From Table D.7 of Appendix D, select a

standard steel pipe that would meet the design requirements

of Prob. 10.2-8.

Prob. 10.2-11. It is suspected that a small control rod on the

spacecraft depicted in Fig. P10.2-11 “failed’’ as a result of

elastic buckling when the rod became exposed to direct sun-

17Because of the difficulty of applying axial loads exactly passing

through the centroid of an angle section, such members are not rec-

ommended for use as columns.

Control rod

"Rigid" structure

Sun

Satellite

 L

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭

P10.2-11

A B C D

WL1 = L

L2 = 1.5L

d

(1)(2)

"Rigid" beam

d d

P10.2-12 and P10.2-13

*Prob. 10.2-13. Solve Prob. 10.2-12 with L1 � L2 � L.
DProb. 10.2-14. An aluminum-alloy column is 15 ft long and

is pinned at both ends. What is the allowable compressive

load Pallow if the factor of safety against elastic buckling is

2.75 and the column is a 6.00 � 4.00 standard I-beam section

weighing 4.692 lb/ft? (See Table D.9 of Appendix D.) Let 

Eal � 10.0(103) ksi and �PL � 38 ksi.
DProb. 10.2-15. The truss shown in Fig. P10.2-15 is used as

part of a rig to pull pilings out of the ground. If the two truss

members are steel pipes with outer diameter of do � 2.875

in. and wall thickness of t � 0.275 in., determine the largest

tension that can be exerted on the piling without causing

elastic buckling of a truss member. The cable that exerts

tension T on the piling passes over a pulley that is free to

TB

A
C

8 ft.

30° 45°
Piling

P10.2-15
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rotate about the same pin that connects the two truss mem-

bers together at B. Let Est � 29(103) ksi and �Y � 36 ksi.
DProb. 10.2-16. The truss shown in Fig. P10.2-16 is made of

steel rods, each of which has a solid, circular cross section

with a diameter of 1 in.The ends of the members are pinned.

Determine the maximum load W that can be supported at D
without causing elastic buckling of any member of the truss.

Let Est � 29(103) ksi and �Y � 36 ksi.

671

that would produce elastic buckling of member BC. Express

your answer in terms of the distance H, which determines

the (variable) location of support point C and also deter-

mines the length of member BC.
DProb. 10.2-19. The steel compression strut BC of the frame

ABC in Fig. P10.2-19 is a steel tube with an outer diameter

of do � 48 mm and a wall thickness of t � 5 mm. Determine

the factor of safety against elastic buckling if a distributed

load of 10 kN/m is applied to the horizontal frame member

AB as shown. Let Est � 210 GPa and �Y � 340 MPa.

A

C
D

B

W

1.5 ft

2 ft 2 ft

P10.2-16

DProb. 10.2-17. The compression member BC of the truss

ABC in Fig. P10.2-17 is a square solid steel bar with 1.75 in.

� 1.75 in. cross section. The tension member AB is a solid

steel rod that has a circular cross section with diameter d.

Let Est � 29(103) ksi and �Y � 36 ksi. (a) Determine the

maximum load W that can be supported at B without caus-

ing elastic buckling of member BC. (b) Determine the diam-

eter of member AB if it is to yield in tension just when the

load W reaches the value determined in Part (a). The yield

stress in tension is �Y � 36 ksi.

A

B C

W

6 ft.

8 ft.

P10.2-17

DProb. 10.2-18. Member AB of the truss in Fig. P10.2-18 has

a fixed length L1, is pinned to a fixed support at A, and re-

mains horizontal. Determine an expression for the load W

A

H

L1

C

B

W

P10.2-18

1 m

2 m

C

A B

10 kN/m

P10.2-19

EFFECTIVE LENGTH
OF COLUMNS MDS 10.3

▼

Problems 10.3-1 through 10.3-14. In solving the problems
of Section 10.3, assume that the compression member in
question is an ideal slender, prismatic, elastic column
with the stated end conditions. Also, assume that deflec-
tions and slopes are small.

Prob. 10.3-1. A W14 � 26 wide-flange steel column has a

length of L � 18 ft and is supported at its ends so that it is

free to buckle in any direction. Using the effective-length

method, calculate the elastic buckling load, Pcr, for columns

with the following end conditions: (a) pinned-pinned. (b)

fixed-pinned, and (c) fixed-fixed. See Figs. 10.13a, b, and c,

respectively, for columns with these end conditions, and see

Table D.1 of Appendix D for the properties of the W14 �
26 section. Let Est � 29(103) ksi and �Y � 50 ksi.

Prob. 10.3-2. Solve Prob. 10.3-1 for a standard steel pipe

column with nominal diameter of d � 3 in. and a length of L �
20 ft. See Table D.7 of Appendix D for the cross-sectional prop-

erties of the pipe column. Let Est � 29(103) ksi and �Y � 50 ksi.

Prob. 10.3-3. Solve Prob. 10.3-1 for a steel pipe column with

an outer diameter of do � 60 mm, a wall thickness of t � 4

mm, and a length of L � 4 m. Let Est � 210 GPa and �Y �
340 MPa.
DProb. 10.3-4. Two 4 � 3 � steel angles are attached to-

gether as shown in Fig. P10.3-4 to form a column with a tee

cross section. (a) Determine the radii of gyration of the cross

1
2
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section about the y axis and about the z axis using the cross

sectional properties given in Table D.6 of Appendix D. (b) If

the column has fixed-free end conditions, has a length of 

L � 8 ft, and is free to buckle in any direction, what is the

factor of safety of the column against elastic buckling if the

compressive axial load on the column is P � 20 kips? Let 

Est � 29(103) ksi and �Y � 36 ksi.

672

gyration ry � rz � 62 mm and rm � 40 mm. The section is to

be used as a fixed-free column of length L � 4 m. Let 

Est � 210 GPa and �Y � 340 MPa.

Prob. 10.3-8. Determine the elastic buckling load of a 12-ft-

long 6 � 6 timber column that can be considered to be fixed

at its base and free at the top. Let the modulus of elasticity

(in compression parallel to the grain) be Ew � 1.6(103) ksi,

and let �Y � 6 ksi. (Recall that the finished dimensions of 

the wood column are smaller than the nominal dimensions

stated above. See Table D.8 of Appendix D.)

1.33 in.

z

yC
4 × 3 × 1/2 angles

Longer legs back-to-back

P10.3-4

DProb. 10.3-5. A square, tubular steel column has the di-

mensions shown in Fig. P10.3.5, has a length of L � 3 m, and

has an axial compression load of P � 50 kN. If the column

has fixed-free end conditions and is free to buckle in any

direction, what is the factor of safety with respect to elastic

buckling? Let Est � 210 GPa and �Y � 250 MPa.

125 mm

150 mm

P10.3-5

Prob. 10.3-6. The 6 � 6 � equal-leg angle section in Fig.

P10.3-6 has a cross-sectional area A � 5.75 in2 and radii of

gyration ry � rz � 1.86 in. The minimum radius of gyration

for this section is rm � 1.18 in. If this section is to be used as

a fixed-fixed column of length L � 22 ft, what is the largest

compressive load that can be applied through the centroid of

the cross section without causing elastic buckling?18 Let 

Est � 29(103) ksi and �Y � 36 ksi.

1
2

45°

mz

y
C

P10.3-6 and P10.3-7

18Because of the difficulty of applying axial loads exactly passing

through the centroid of an angle section, such members are not

recommended for use as columns.

Prob. 10.3-7. Solve Prob. 10.3-6 for an equal-leg steel column

with cross-sectional area A � 9700 mm2, and with radii of

12 ft

P

6 × 6

P10.3-8

Prob. 10.3-9. Rigid walls at each end of a solid slender rod

AB provide fixed-fixed boundary conditions for the member

in Fig. P10.3-9. At the reference temperature, T0, the rod is

perfectly stress-free. (a) Derive a formula that expresses the

uniform increase in temperature, Tcr, required to cause elas-

tic buckling of the compression member. Express your answer

in terms of the following material and geometric parameters:

the coefficient of thermal expansion, �, and the slenderness

ratio, L/r. (b) Determine the value of Tcr in �F required to

cause elastic buckling of a stainless steel rod with a diameter

of d � 1 in. and a length of L � 4 ft. The coefficient of ther-

mal expansion for stainless steel is � � 9.6 � 10�6/�F.

¢

¢

d

L

A B

P10.3-9

Prob. 10.3-10. A straight, slender rod is fixed to a rigid sup-

port at end A and pinned to a rigid support at end B, as

shown in Fig. P10.3-10.At the reference temperature, T0, the
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rod is perfectly stress-free. (a) Derive a formula that ex-

presses the uniform increase in temperature, Tcr, required

to cause elastic buckling of the compression member.

Express your answer in terms of the following material and

geometric parameters: the coefficient of thermal expansion,

�, and the slenderness ratio, r/L. (b) Determine the value of

Tcr in �C required to cause elastic buckling of an aluminum

rod with a diameter of d � 20 mm and a length of L � 1 m.

The coefficient of thermal expansion for aluminum is 

� � 23 � 10�6/�C.

¢

¢
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length of the beam, a, and the length of the column, L; the

moment of inertia of the beam, Ib, and of the column, Ic; and

the cross-sectional area of the column, Ac. (Note: This must

be solved as a statically indeterminate problem. Use the fact

that the deflection of the beam at C and the shortening of

the column just prior to buckling are equal.)

d

L

A

B

P10.3-10

Prob. 10.3-11. A rigid beam AB that supports a uniformly

distributed load of intensity w (force per unit length) is

pinned to a rigid support at end A and is supported by a

square timber column at end B. Neglecting the weight of the

beam AB, derive a formula for the value of the distributed

load, wcr, that would cause elastic buckling of the support

column BC. Since the exact end conditions of the column are

not known, express your answer in terms of the following

material and geometric parameters: the modulus of elastic-

ity of the wood column, Ew; the (finished) cross-sectional

dimension of the square column, b; the length a of the hori-

zontal beam AB; and the effective length of the column, KL.

B

b

C

A

a

w

L

P10.3-11

*Prob. 10.3-12. A beam AB that supports a uniformly dis-

tributed load of intensity w (force per unit length) is simply

supported at both ends, and it rests on a pipe column at its

center C. Neglecting the weight of the beam AB, derive a

formula for the value of the distributed load, wcr, that would

cause elastic buckling of the support column CD. Assume

that the column is fixed to its base at D and pinned to the

beam at C. Express your answer in terms of the following

material and geometric parameters: the modulus of elastic-

ity, E (same for the beam AB and the column CD); the

B

L

D

C
A

w

a/2 a/2

P10.3-12

*Prob. 10.3-13. Following a procedure similar to the one

used in Fig. 10.11 and in Eqs. 10.20 through 10.32 to deter-

mine an expression for the elastic buckling load of a fixed-

pinned column, derive an expression for the buckling load of

a fixed-free column, as shown in Fig. 10.13e and in Fig. P10.3-

13. (Hint: Take a free-body diagram of length (L � x) from

the top. The maximum deflection, �, can be eliminated by

setting (L) �.)�y

L

v(x)

x

Pcrδ

*Prob. 10.3-14. Following a procedure similar to the one

used in Fig. 10.11 and in Eqs. 10.20 through 10.32 to deter-

mine an expression for the elastic buckling load of a fixed-

pinned column, derive an expression for the buckling load

of the fixed-free column shown in Fig. P10.3-14. The portion

of the column from A to B is flexible, with modulus of elas-

ticity E and moment of inertia I, but the portion of the col-

umn from B to the point of application of the load P can be

considered to be perfectly rigid. (Hint: Take a free-body

diagram from section x to the top of the column, where the

P10.3-13
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force P is applied. Use the end conditions that 

and y¿(L) � u.)
y(L) � d

674

ksi) has a circular cross section with diameter d � 1 in.; its

length is L � 5 ft. (a) Determine the maximum deflection,

max, of this eccentrically loaded column, and (b) determine

the maximum bending moment, Mmax.

y

L

L/2

v(x)

Flexible

(The deflection is
greatly exaggerated.)x

A

Pcr

δ
θ

B

C

Rigid

P10.3-14

Problems 10.4-1 through 10.4-12. In solving these prob-
lems, assume that the compression member in question is
an ideal slender, prismatic, elastic column; and assume
that bending occurs in the xy plane.

Prob. 10.4-1. The cantilever column in Fig. P10.4-1 has a

vertical load P that is applied at an eccentricity e with

respect to the axis of the column. Starting with a free-body

diagram, formulate the differential equation that governs

the beam-column action of this member. Then, solving the

differential equation, determine expressions for (a) the

maximum transverse deflection, max, and (b) the maximum

bending moment, Mmax.

y

Prob. 10.4-2. A compressive load P � 2 kips is applied par-

allel to the axis of the column in Fig. P10.4-2 at an eccentric-

ity e � 0.2 in. from the axis. The steel column (E � 30 � 103

x
e

vmax ≡ v(L)P

v(x)

y,v(x)

x

L

(neglect slope effect)

(meas. from x
axis to NA of

deflected column)

P10.4-1

d = diam.

L

y

z

e

e

x

P

P10.4-2, P10.4-7, P10.4-9, and P10.4-15

Prob. 10.4-3. A compressive load P � 100 kN is applied par-

allel to the axis of the column in Fig. P10.4-3 at an eccentricity

e � 30 mm from the axis. The aluminum-alloy column (E �
70 GPa) has a thin-wall, square, box cross section with outer

dimension b � 130 mm and wall thickness t � 10 mm. Its

length is L � 4 m. (a) Determine the maximum deflection,

max, of this eccentrically loaded column, and (b) determine

the maximum bending moment, Mmax.

y

y

L

z

e

e

x
P

b

Cross section

b

t

P10.4-3, P10.4-8, P10.4-10, and P10.4-16

DProb. 10.4-4. A load P � 120 kips is applied at an eccen-

tricity e � 8 in. in the plane of the web of the W12 � 50 wide-

flange steel column shown in Fig. P10.4-4. Let E � 30 � 103

ksi, and see Table D.1 for the cross-sectional properties of

this member. What is the maximum length, Lallow, that this

 c10BucklingOfColumns.qxd  9/20/10  5:10 PM  Page 674



column can have if the transverse deflection at the top of the

column must not exceed max � 1 in.? (Note: Since this is a

cantilever column, you will need to consider its “effective

length.’’)

y

675

e � 30 mm, L � 4 m, and E � 70 GPa. (a) If the applied com-

pressive load is P � 200 kN, what is the magnitude of the

maximum normal stress, �max? (b) What is the allowable

compressive load, Pallow, if the steel has a yield strength of 

�Y � 250 MPa and the factor of safety with respect to yield-

ing of the material is FS � 2.5?

*DProb. 10.4-9. Consider the steel column in Fig. P10.4-9

(see Prob. 10.4-2). Let E � 30 � 103 ksi, L � 8 ft, �Y � 36 ksi,

and the factor of safety with respect to yielding be FS � 2.5.

(a) If the maximum compressive load to be applied to the

column is P � 2.0 kips, and it is to be applied at an eccentric-

ity e � 0.25 in., what is the required (i.e., minimum) column

diameter, d, to the nearest 0.10 in.? (b) If the diameter of the

column is d � 2.0 in., and the maximum compressive load to

be applied to the column is P � 5.0 kips, what (to the near-

est 0.10 in.) is the maximum eccentricity, emax, at which this

load may be applied?

*DProb. 10.4-10. Consider the aluminum-alloy column in

Fig. P10.4-10 (see Prob. 10.4-3). Let E � 70 GPa, L � 6 m,

t � 15 mm, �Y � 250 MPa, and the factor of safety with re-

spect to yielding be FS � 2. (a) If the maximum compressive

load to be applied to the column is P � 250 kN, and it is to

be applied at an eccentricity e � 50 mm, what is the required

(i.e., minimum) column outer cross-sectional dimension, b,

to the nearest mm? (b) If the outer cross-sectional dimen-

sion of the column is b � 180 mm, and the maximum com-

pressive load to be applied to the column is P � 250 kN,

what, to the nearest 1 mm, is the maximum eccentricity, emax,

at which this load may be applied?

*DProb. 10.4-11. A compressive load P is applied parallel

to the axis of the steel pin-ended pipe column (do � outer

diameter; t � wall thickness) in Fig. P10.4-11 at an eccen-

tricity e from the axis. Bending is restricted to the plane

containing the axis of the column and the line of action of

the loading. Let E � 30 � 103 ksi, L � 10 ft, t � 0.25 in., and

e � 6 in. (a) If the outer diameter of the column is do � 6 in.,

and the compressive load is P � 25 kips, what is the

L

Pe

x

y

z

P10.4-4 and P10.4-5

DProb. 10.4-5. Repeat Prob. 10.4-4 for a W360 � 79 wide-

flange steel column as follows: E � 70 GPa, P � 300 kN,

e � 240 mm, and max � 25 mm. (See Table D.2 for the cross-

sectional properties of this column.)

Prob. 10.4-6. A compressive load P is applied in the mid-

plane of a square pinned-end column at an eccentricity e
from the axis of the column, as shown in Fig. P10.4-6. (a) If

P � Pcr/4 and e � b/4, determine the maximum deflection of

the column, max. (Pcr is the Euler buckling load.) (b) For the

same conditions as in (a), determine an expression for the

maximum bending moment Mmax.

y

y

b/2

e

b/2

b/2b/2

P10.4-6

DProb. 10.4-7. Consider the steel column in Fig. P10.4-7 (see

Prob. 10.4-2). Let d � 1 in., e � 0.2 in., L � 5 ft, and E �
30 � 103 ksi. (a) If the applied compressive load is P � 2.5

kips, what is the magnitude of the maximum normal stress,

�max? (b) What is the allowable compressive load, Pallow, if

the steel has a yield strength of �Y � 36 ksi and the factor of

safety with respect to yielding of the material is FS � 3?
DProb. 10.4-8. Consider the aluminum-alloy column in 

Fig. P10.4-8 (see Prob. 10.4-3). Let b � 130 mm, t � 10 mm, P10.4-11 and P10.4-12

x

e
P

y
z

P

L

End plate

Cross section

do

t
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maximum normal stress in the column? (b) If the outer di-

ameter of the column is do � 6 in., the yield strength of the

material is �Y � 50 ksi, and the factor of safety with respect

to yielding is FS � 2.5, what is the allowable load, Pallow? (c)

If the allowable load is Pallow � 10 kips, the yield strength

of the steel is �Y � 50 ksi, and the factor of safety with re-

spect to yielding is FS � 2.5, what is the required (mini-

mum) outer diameter, do, to the nearest 0.1 in.?

*DProb. 10.4-12. For the steel pin-ended pipe column in Fig.

P10.4-12, let E � 210 GPa, L � 4 m, t � 10 mm, and e �
50 mm. (a) If the outer diameter of the column is do �
220 mm, and the compressive load is P � 500 kN, what is the

maximum normal stress in the column? (b) If the outer di-

ameter of the column is do � 220 mm. the yield strength of

the material is �Y � 250 MPa, and the factor of safety with

respect to yielding is FS � 2.5, what is the allowable load

Pallow? (c) If the allowable load is Pallow � 200 kN, the yield

strength of the steel is �Y � 250 MPa, and the factor of 

safety with respect to yielding is FS � 2.5, what is the re-

quired (minimum) outer diameter, do, to the nearest mm?

*Prob. 10.4-13. A compressive load P is applied parallel to

the x axis of the slender, rectangular aluminum-alloy mem-

ber in Fig. P10.4-13.The load acts in the xy plane at an eccen-

tricity e from the z axis. The member is supported at its ends

in a manner that permits bending in any direction. Let E �
70 GPa, L � 1 m, b � 10 mm, h � 40 mm. and e � 10 mm.

(a) Determine the load for elastic buckling of the

member for bending in the xz plane. (b) If the yield strength

of the material is �Y � 270 MPa, what load (PY)z would

cause yielding due to bending in the xy plane? (c) From your

answers to Parts (a) and (b), what can you conclude about

the most likely failure mode of this member?

(Pcr)y
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E � 16 � 103 ksi, L � 20 in., b � 0.25 in., h � 0.50 in., and 

e � 0.25 in. (a) Determine the load for elastic buckling

of the member for bending in the xz plane, (b) If the yield

strength of the material is �Y � 120 ksi, what load (PY)z

would cause yielding due to bending in the xy plane? (c)

From your answers to parts (a) and (b), what can you con-

clude about the most likely failure mode of this member?

(Pcr)y

y

z

x
e

b/2

h/2

P

L

P

*Prob. 10.4-14. A compressive load P is applied parallel to

the x axis of the slender, rectangular titanium-alloy member

in Fig. P10.4-14. The load acts in the xy plane at an eccentric-

ity e from the z axis. The member is supported at its ends 

in a manner that permits bending in any direction. Let 

P10.4-13 and P10.4-14

Computer Exercises—Section 10.4. Develop a computer
program (e.g., using a mathematical programming lan-
guage or a spreadsheet program) to generate the plots
required in Probs. 10.4-15 and 10.4-16.

*CProb. 10.4-15. Consider the pin-ended column in Prob.

10.4-2, with E � 30 � 103 ksi, L � 8 ft, d � 2 in., and e � 0.5 in.

(a) Generate a plot of the maximum normal stress, �max, ver-

sus the compressive load, P, for 0 P 15 kips. Assume

that the maximum normal stress remains less than �Y for this

range of loading, (b) Plot the maximum transverse displace-

ment, max, for values of the compressive load 0 P 15 kips.

(c) Based on the plots you have generated in (a) and (b),

write n short paragraph discussing the difference between

using Eq. 2.26 to define “factor of safety’’ and using Eq. 2.27

to define “factor of safety.’’ (Note that the Procedure for
Determining the Allowable Load for an Eccentrically Loaded
Column specifies the use of Eq. 2.26.)

*CProb. 10.4-16. Consider the pin-ended column in Prob.

10.4-3, with E � 70 GPa, L � 4 m, b � 130 mm, t � 10 mm,

and e � 30 mm. (a) Generate a plot of the maximum normal

stress, �max, versus the compressive load, P, for the 0 P
350 kN. Assume that the maximum normal stress remains

less than �Y for this range of loading. (b) Plot the maximum

transverse displacement, max, for values of the compressive

load 0 P 350 kN. (c) Based on the plots you have gen-

erated in (a) and (b), write a short paragraph discussing the

difference between using Eq. 2.26 to define “factor of

safety’’ and using Eq. 2.27 to define “factor of safety.’’ (Note

that the Procedure for Determining the Allowable Load for
an Eccentrically Loaded Column, given in Section 10.4, spec-

ifies the use of Eq. 2.26.)

��
y

��

��y

��

Problems 10.5-1 through 10.5-5. In solving these prob-
lems, assume that the compression member in question is
a slender, prismatic, elastic column with an initial de-
flection in the form of a half-sine curve (Eq. 10.47) with
amplitude �0. Also assume that the compressive load P
acts at the centroid of the cross section.

Prob. 10.5-1. A compressive load P � 2 kips is applied par-

allel to the axis of an imperfect pin-ended column, like the

one shown in Fig. 10.18. The amplitude of the initial imper-

fection is �0 � (L/2) � 0.25 in. The steel column (E �
30 � 103 ksi) has a circular cross section with diameter d �
1.25 in., and its length is L � 6 ft. (a) Determine the maxi-

mum total deflection. of this eccentrically loaded col-

umn, and (b) determine the maximum normal stress, �max.

dmax,

y0
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Prob. 10.5-2. A compressive load P � 200 kN is applied par-

allel to the axis of an imperfect pin-ended column. like the

one shown in Fig. 10.18. The amplitude of the initial imper-

fection is �0 (L/2) � 30 mm. The aluminum-alloy col-

umn (E � 70 GPa) has a thin-wall, square, box cross section

with outer dimensions b � 200 mm and wall thickness t �
10 mm, Its length is L � 5 m. (a) Determine the maximum

total deflection, �max, of this eccentrically loaded column, and

(b) determine the maximum normal stress, �max.

Prob. 10.5-3. A compressive load P is applied parallel to the

axis of a pin-ended, imperfect elastic (modulus E) column,

like the one shown in Fig. 10.18. The cross section of the col-

umn is a square with edge dimension b, and its length is L.

(a) If P � Pcr/4 and �0 � b/4. determine an expression for the

maximum total deflection of the column, �max (Pcr is the

Euler buckling load.) Assume that (b) For the

same conditions as in (a), determine an expression for the

maximum normal stress �max.

D*Prob. 10.5-4. A compressive load P is applied to an im-

perfect. steel, pin-ended pipe column, like the one shown in

Fig. 10.18 (do � outer diameter, t � wall thickness). Let 

E � 30 � 103 ksi, L � 10 ft, t � 0.25 in., and �0 � 0.5 in. (a)

If the outer diameter of the column is do � 6 in., and the

compressive load is P � 25 kips, what is the maximum nor-

mal stress in the column? (b) If the outer diameter of the

column is do � 6 in., the yield strength of the material is 

�Y � 50 ksi, and the factor of safety with respect to yield-

ing is FS � 2.5, what is the allowable load Pallow? (c) If the

allowable load is Pallow � 80 kips, the yield strength of the

steel is �Y � 50 ksi, and the factor of safety with respect to

yielding is FS � 2.5, what is the required (minimum) outer

diameter, do, to the nearest 0.1 in.?

D*Prob. 10.5-5. A compressive load P is applied to an im-

perfect, steel, pin-ended pipe column, like the one shown in

Fig. 10.18. Let E � 210 GPa, L � 3 m, t � 20 mm, and �0 �
10 mm. (a) If the outer diameter of the column is do � 100

mm, and the compressive load is P � 300 kN, what is the

maximum normal stress in the column? (b) If the outer di-

ameter of the column is do � 100 mm, the yield strength of

the material is �Y � 270 MPa, and the factor of safety with

respect to yielding is FS � 3.0, what is the allowable load

Pallow? (c) If the allowable load is Pallow � 300 kN, the yield

strength of the steel is �Y � 270 MPa, and the factor of

safety with respect to yielding is FS � 3, what is the required

(minimum) outer diameter, do, to the nearest mm?

smax 6 sY.

y0�
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*CProb. 10.5-6. A compressive load P is applied to an im-

perfect pin-ended column, like the one shown in Fig. 10.18.

The steel column (E � 30 � 103 ksi, �Y � 36 ksi) has a circu-

lar cross section with diameter d � 2 in. (a) Let the compres-

sive load be P � PY, the load that makes �max � �Y. For an

initial imperfection �0 � 0.25 in., generate a plot of the aver-

age normal stress, P/A, versus the normalized length, L/r, for

(b) Change �0 from 0.25 in. to 0.5 in., and

generate a second plot. (c) Write a short paragraph dis-

cussing the effect of initial imperfection amplitude and

column length on the ability of columns to carry compres-

sive loads.

*CProb. 10.5-7. A compressive load P is applied to an im-

perfect pin-ended column, like the one shown in Fig. 10.18.

The steel column (E � 200 GPa, �Y � 340 MPa) has a

square, box cross section with cross-sectional dimensions 

b � 100 mm and t � 12.5 mm. (a) Let the compressive load

be P � PY, the load that makes �max � �Y. For an initial im-

perfection �0 � 10 mm, generate a plot of the average nor-

mal stress P/A, versus the normalized length, L/r, for 10

L/r 200. (b) Change �0 from 10 mm to 20 mm, and gen-

erate a second plot. (c) Write a short paragraph discussing

the effect of initial imperfection amplitude and column

length on the ability of columns to carry compressive

loads.

�
�

10 � L/r � 200.

Computer Exercises—Section 10.5. Develop a computer
program (e.g., using a mathematical programming lan-
guage or a spreadsheet program) to generate the plots
required in Probs. 10.5-6 and 10.5-7. In solving these
problems, assume that the compression member in ques-
tion is a slender, prismatic, elastic column with an initial
deflection in the form of a half-sine curve (Eq. 10.47)
with amplitude �0. Also assume that the compressive load
P acts at the centroid of the cross section.

Prob. 10.6-1. A 6-in. (nominal diameter) standard-weight

steel pipe column has an effective length of 120 in. (See

Table D.7 for the cross-sectional properties of this pipe col-

umn.) The steel of which the column is made has a compres-

sive stress-strain curve that is given by the curve ABC in 

Fig. 2 of Example 10.5. The compressive tangent modulus

curve for this material is the curve DEFG in this same fig-

ure. (a) How long would the column have to be for it to

buckle elastically (i.e., according to the Euler formula for

elastic buckling)? (b) Calculate the buckling load for this

column. (Assume that �EL � �PL, and estimate �PL from the

� vs Et curve.)

Prob. 10.6-2. A 4 in. � 4 in. � in. (actual dimensions; see

Fig. 10.6-2a) aluminum-alloy box column has an effective

length of 72 in.The material of which the column is made has

a compressive stress-strain curve that is given by the curve

ABC in Fig. P10.6-2b. The compressive tangent modulus

curve (i.e., the � vs Et curve) for this material is the curve

DEFG in this same figure. (a) How long would the column

have to be for it to buckle elastically (i.e., according to the

Euler formula for elastic buckling)? (b) Calculate the buck-

ling load for this column. (Assume that �EL � �PL, and esti-

mate �PL from the � vs Et curve.)

3
8

Problems 10.6-1 through 10.6-3. In solving these prob-
lems, assume that the compression member in question is
a slender, prismatic ideal column made of the material
whose compressive stress-strain properties are plotted.
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Prob. 10.6-3. An aluminum-alloy pipe column has the mate-

rial properties shown in Fig. 10.6-3b.The (actual) dimensions

of the pipe column, shown in Fig. 10.6-3a, are: outer diameter

do � 6.000 in., wall thickness t � 0.375 in., and length L �
8 ft. (a) Calculate the buckling load for this column.

(Assume that �EL � �PL, and estimate �PL from the � vs Et

curve.) (b) How long would the column have to be for it to

buckle elastically (i.e., according to the Euler formula for

elastic buckling)?
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DProb. 10.7-3. Determine the allowable compressive axial

loads P (� Pallow) for pin-supported W14 � 53 wide-flange

steel columns having the following lengths: L � 18 ft. L �
22 ft. and L � 26 ft. Let E � 29 � 103 ksi and �Y � 36 ksi.

DProb. 10.7-4. Determine the allowable compressive axial

loads P (� Pallow) for pin-supported W200 � 59 wide-flange

steel columns having the following lengths: L � 4 m, L �
6 m, and L � 8 m. Let E � 200 GPa and �Y � 250 MPa.

DProb. 10.7-5. Determine the allowable compressive axial

loads P (� Pallow) for pin-supported W250 � 45 wide-flange

steel columns having the following lengths: L � 4 m, L �
5 m, and L � 6 m. Let E � 200 GPa and �Y � 250 MPa.

DProb. 10.7-6. Determine the allowable compressive axial

loads P (� Pallow) for pin-supported W310 � 97 wide-flange

steel columns having the following lengths: L � 6 m, L �
8 m, and L � 10 m. Let E � 200 GPa and �Y � 340 MPa.

DProb. 10.7-7. Determine the maximum allowable length

for a pin-supported W10 � 60 wide-flange steel column if

the compressive axial load is (a) 150 kips; (b) 300 kips. Let 

E � 29 � 103 ksi and �Y � 36 ksi.

DProb. 10.7-8. Determine the maximum allowable length

for a pin-supported W12 � 50 wide-flange steel column if

the compressive axial load is (a) 100 kips; (b) 200 kips. Let 

E � 29 � 103 ksi and �Y � 36 ksi.

DProb. 10.7-9. Determine the maximum allowable length

for a pin-supported W16 � 100 wide-flange steel column if

the compressive axial load is (a) 300 kips; (b) 450 kips. Let 

E � 29 � 103 ksi and �Y � 50 ksi.
DProb. 10.7-10. The 27-ft-long W12 � 50 wide-flange steel

column shown in Fig. P10.7-10 has a “fixed’’ base and re-

ceives equal downward (compressive) loading from the

beams that frame into it at the top. Consider only buckling

in the xy plane. Because of the flexibility of the adjoining

beams, the end conditions of the column fall somewhere

between “fixed-fixed’’ and “pinned-pinned.’’ It is estimated

6.00 in.

0.375 in.

80

60

40

20

0
0 2 4 6 8 10 12

St
re

ss
, k

si

Strain, 0.001 in./in.
Compressive Tangent Modulus, 103 ksi

(a)

(b)

4.00 in.

4.00 in.

0.375 in.

D

E

B

A

C

F

G

P10.6-2 and P10.6-3

y z

x x

P (Load on column
     from horiz. beams)

27 ft W-section column

P

P10.7-10, P10.7-11, and P10.7-12

DESIGN OF COLUMNS MDS 10.4–10.9▼

Problems for Section 10.7. In solving these problems, as-
sume that the compressive axial load is centrally applied
at the ends of the column and, unless indicated otherwise,
that the column is supported in a manner that permits
buckling in any direction.

DProb. 10.7-1. Determine the allowable compressive axial

loads P (� Pallow) for pin-supported W8 � 40 wide-flange

steel columns having the following lengths: L � 12 ft, L �
16 ft, and L � 24 ft. Let E � 29 � 103 ksi and �Y � 36 ksi.
DProb. 10.7-2. Determine the allowable compressive axial

loads P (� Pallow) for pin-supported W12 � 65 wide-flange

steel columns having the following lengths: L � 10 ft, L �
20 ft, and L � 30 ft. Let E � 29 � 103 ksi and �Y � 50 ksi.
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that the effective length factor, K, for the beam falls in the

range 0.6 K 0.8. (Recall that K � 0.5 for a fixed-ended

column and K � 1.0 for a pin-ended column.) Using the

AISC formulas, determine the allowable loads for the fol-

lowing effective-length factors: K � 0.6, K � 0.7, and K � 0.8.

Let E � 29 � 103 ksi and �Y � 36 ksi.
DProb. 10.7-11. Repeat Prob. 10.7-10 for a 24-ft-long 

W16 � 40 wide-flange steel column.
DProb. 10.7-12. Repeat Prob. 10.7-10 for a 28-ft-long 

W8 � 40 wide-flange steel column.
DProb. 10.7-13. Using the Aluminum Association column

design formulas, determine the allowable compressive axial

loads P (� Pallow) for 2.5 in. � 2.5 in. (i.e., b � 2.5 in. in Fig.

P10.7-13) pin-supported 2014-T6 aluminum-alloy columns

having the following lengths: L � 3 ft, L � 4 ft, and L � 5 ft.

��

679

DProb. 10.7-18. Determine the maximum allowable length

for the pin-supported 2014-T6 aluminum-alloy pipe column

in Fig. P10.7-18 if do � 5 in., t � 0.5 in., and if the compres-

sive axial load is (a) 75 kips; (b) 150 kips. Use the Aluminum

Association column design formulas.

L

bb

P

P

P10.7-13, P10.7-14, and P10.7-15

DProb. 10.7-14. Using the Aluminum Association column

design formulas, determine the maximum allowable length

for the 3 in. � 3 in. pin-supported 2014-T6 aluminum-alloy

column in Fig. P10.7-14 if the compressive axial load is (a)

150 kips; (b) 175 kips.
DProb. 10.7-15. To the nearest in., determine the mini-

mum cross-sectional dimension b for a square cross-section,

pin-supported 4-ft-long 2014-T6 aluminum-alloy column

(Fig. P10.7-15) if the compressive axial load is (a) 150 kips;

(b) 175 kips. Use the Aluminum Association column design

formulas.
DProb. 10.7-16. Determine the maximum allowable length

for the 2 in. � 4 in. pin-supported 2014-T6 aluminum-alloy

column in Fig. P10.7-16 if the compressive axial load is (a)

100 kips; (b) 150 kips. Use the Aluminum Association col-

umn design formulas, and assume that the column is free to

buckle in any direction.
DProb. 10.7-17. To the nearest in., determine the minimum

cross-sectional dimension b for a b � 2b rectangular-cross-

section pin-supported 2-ft-long 2014-T6 aluminum-alloy col-

umn (Fig. P10.7-17) if the compressive axial load is 100 kips.

Use the Aluminum Association column design formulas,

and assume that the column is free to buckle in any 

direction.

1
16

1
16

L
2b

b

P

P

P10.7-16 and P10.7-17

L

P

P

do

t

P10.7-18 and P10.7-19

DProb. 10.7-19. The pin-supported 2014-T6 aluminum-alloy

pipe column in Fig. P10.7-19 is L � 10 ft long, (a) If the outer

diameter is do � 6 in. and the wall thickness is t � 0.5 in.,

what is the allowable compressive axial load? (b) To the

nearest in., determine the minimum wall thickness t
if the outer diameter of the column is do � 8 in. and the

compressive axial load is 250 kips. Use the Aluminum

Association column design formulas.
DProb. 10.7-20. Determine the allowable compressive axial

loads P (� Pallow) for 4 � 4 (nominal dimensions; see Table

D.8 for actual finish dimensions) S4S timber columns (Fig.

P10.7-20) having the following lengths: L � 6 ft and L �
8 ft. Use the NDS design formula with E � 1800 ksi and 

Fc � 1.2 ksi, and assume “pin supports’’ (i.e., K � 1).
DProb. 10.7-21. Determine the maximum allowable length

for the 4 � 4 (nominal dimensions; see Table D.8) S4S tim-

ber columns in Fig. P10.7-21 if the compressive axial load is

(a) 6 kips; (b) 9 kips; and (c) 12 kips. Use the NDS design

formula with E � 1800 ksi and Fc � 1.2 ksi, and assume “pin

supports’’ (i.e., K � 1).

1
16
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DProb. 10.7-22. The timber column shown in Fig. P10.7-22

frames into heavy beams at its top and at its base, so that par-

tial fixity with K � 0.8 can safely be assumed. The column is 

12 ft long and must support an axial compressive load of P �
30 kips. From Table D.8, select the minimum size of square-

cross-section S4S timber that can be used for this column. Use

the NDS design formula with E � 1800 ksi and Fc � 1.2 ksi.

L

P

b b

P10.7-20 and P10.7-21

P (From beam)

P

12 ft

P10.7-22

DProb. 10.7-23. Determine the allowable compressive axial

loads P (� Pallow) for 4 � 6 (nominal dimensions; see Table

D.8 for actual finish dimensions) S4S timber columns (Fig.

P10.7-23) having the following lengths: L � 6 ft, L � 8 ft, and

L � 10 ft. Use the NDS design formula with E � 1800 ksi

and Fc � 1.2 ksi, and assume “pin supports’’ (i.e., K � 1).

L

P

P

hb

P10.7-23 and P10.7-24

DProb. 10.7-24. From Table D.8, select the minimum-size 

6 � hnom (nominal dimensions) S4S timber column 8-ft long

(Fig. P10.7-24) that will support an axial compressive load of

up to P � 40 kips, Use the NDS design formula with 

E � 1800 ksi and Fc � 1.2 ksi, and assume “pin supports’’ 

(i.e., K � 1).

680
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Section
Suggested

Review

Problems

In this chapter you learned that

there are systems for which it is

necessary to examine the sta-
bility of equilibrium–unstable,
neutrally stable, or stable.

To assess the stability of a struc-

ture, it is slightly displaced from

its original equilibrium configu-

ration to discover the load

required to produce an alter-
nate equilibrium configuration.

An important example of this is

the buckling of columns, that is,

behavior of slender members in

compression. The phenomenon

of buckling can be illustrated

by the simplified model shown

in Fig. 10.4.

The study of the stability of

real columns with distributed

flexibility begins with the

study of the ideal pin-ended
column, for which the buckling

load is called the Euler buck-
ling load Pcr (Eq. 10.16). The

alternate equilibrium configu-

ration is called the buckling
mode (Eq. 10.17).

Pcr the lowest load at which

buckling can occur, and 1(x) is

called the fundamental mode
shape. Note that only the

shape is determined; not the

amplitude.

y

C H A P T E R  1 0  R E V I E W — B U C K L I N G  O F
C O L U M N S

10.1

10.2

681

A simplified model of column buckling 

(Fig. 10.4)

Derive 

Eq. 10.16

and 

Eq. 10.17.

10.2-3 

10.2-7 

10.2-15

P

B

L

x

Rigid
member

Linear
torsional
spring

(a)  The vertical equilibrium
configuration.

Akθ

(b)  A displaced
configuration.

P

B

θ

A

(c)  A free-body
diagram.

P

B

Ax = 0

Ay = P

MAr

θ

P < Pcr

L

A

(a) Ideal column.

B

(c) FBD of entire column.

L*

P

Ay

By

A

B

Ax

(d) FBD of partial column.

x

y, v(x)

x

v(x)

P

A

P

M(x)

P = Pcr

x

(b) Buckled configuration.

A

B

x

v(x)

y, v(x)

Buckling of an ideal pin-ended column 

(Fig. 10.6)

(10.16)

(10.17)y1(x) � C sin apx
L
b

Pcr �
p2EI

L2

10.1-3
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Section
Suggested

Review

Problems

10.3

10.7

Graphs of the Euler formula for structural steel 

and an aluminum alloy. (Fig. 10.8)

The Euler buckling load can be

divided by the cross-sectional

area A of the column to give

the Euler buckling stress
(Eq. 10.18).

(10.18) 

where is called the

radius of gyration of the

column.

The ratio L/r is the key buck-

ling parameter, as is seen in the

plots of the Euler formula in

Fig. 10.8. Notice how buckling

stress (and load) decrease with

increasing L/r ratio.

r � 1I/A

scr �
p2E

(L/r)2

Section 10.3 discusses the ef-

fect that various end condi-

tions (e.g., fixed end, free end,

etc.) have on the buckling load

of a column. Then,

(10.36) 

where KL is called the effective
length of the column.

Figure 10.13 depicts the effec-

tive length of columns with

various end conditions.

scr �
p2E

(KL/r)2

Section 10.7 discusses the

design of centrally loaded
columns.

You should review the column
design procedure, which is an

iterative procedure.

The effective length of various columns.

(Fig. 10.13)

(b) Fixed-pinned
column, K = 0.7.

A

B

Le = 0.7L

P

(a) Pinned-pinned
column, K = 1.

A

B

Le = L

P

A

B

(d) Partially-restrained
column.  0.5 < K < 1.

0.5L < Le < L

P

A

B

(c) Fixed-fixed
column, K = 0.5.

Le = 0.5L

P P

A

B

L

(e) Fixed-free
column, K = 2.

Le = 2L

Column design is governed by formulas provided by the various

engineering societies. You should review the examples of

column design for structural steel columns, aluminum-alloy
columns, and wood columns.

10.7-3 

10.7-13

10.7-21

10.3-1 

10.3-13

Sections 10.4 (Eccentric Loading), 10.5 (Imperfections), and 10.6 (Inelastic Buckling) are “optional’’ sections.
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ENERGY METHODS 11

11.1 INTRODUCTION

In Chapters 1 through 10 we employed the three fundamental concepts of de-

formable-body mechanics (equilibrium, geometry of deformation, and constitutive
behavior of materials) to examine the response of several types of structural mem-

bers to applied loads and/or temperature changes. We determined the distribution

of normal stress and shear stress in members and the deformation of the members.

We also examined the stability of members undergoing axial compression. We turn

now to the important topic of energy methods in deformable-body mechanics.

Before the advent of the digital computer, energy methods were the most powerful

tools available for solving deflection problems, especially statically indeterminate

problems. And now, energy methods form a basis of the finite-element method, the

most popular and most powerful current method for analyzing deformable bodies

(machines, structures, etc.). You will see that the energy methods presented in this

chapter again incorporate the three essentials of deformable-body mechanics—

equilibrium, geometry of deformation, and constitutive behavior of materials.

In mechanics the term work refers to a quantity that is basically ( force �
distance). When work is done on a deformable body, some or all of the work done

on the body goes into strain energy stored in the body. For example, when you

stretch a rubber band by pulling on it, the work that you do on the rubber band is

stored as strain energy.When you release the applied force, the rubber band releases

this energy as it returns to its undeformed shape.

In this chapter we will define a number of work-energy terms: work of external

forces, complementary work, strain energy, complementary strain energy, virtual

displacements, virtual forces, and virtual work. The Work-Energy Principle will be

employed to calculate the deflection of members subjected to single static loads.

Several more powerful energy methods—Castigliano’s Second Theorem, the

Principal of Virtual Displacements, and the Principle of Virtual Forces—will also be

introduced and will be used to solve more complex problems, such as statically in-

determinate problems for structures with several loads acting simultaneously. The

relationship of the energy principles to the Displacement Method and the Force
Method, introduced in Chapter 3 and used in subsequent chapters, will be pointed

out. Finally, energy methods will be used to solve several simple impact-loading
problems.

683
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This section is devoted to providing the definitions of important work-energy terms

that will be used in later sections of this chapter. There, several work-energy princi-

ples are introduced, and deformable-body mechanics problems are solved by use of

these work-energy principles.

Figure 11.1 shows members with three types of applied loads—axial (Fig. 11.1a).

torsional (Fig. 11.1b), and bending (Fig. 11.1c). Below each of these figures is a plot

of the load-deformation curve that might typically be obtained in each case by

slowly increasing the magnitude of the applied load. In the definitions that follow

we will refer primarily to the axial-loading case, but the definitions can easily be 

extended to the other two cases in Fig. 11.1 as well as to more general loading by

forces and couples.

11.2 WORK AND STRAIN ENERGY

FIGURE 11.1 Several load-deformation cases. (To conserve space, only the part of 

the load-deformation curves corresponding to positive loads are shown. Negative loading is,

however, equally permissible.)

Work. Consider the case of axial loading of a slender rod by a single load P, as

indicated in Fig. 11.1a. The work done by the force P to elongate the rod by an

amount e1 will be designated by P(e1), and it is given by the integral of force

times distance

Work (11.1)

On Fig. 11.2 this appears as the area (shaded red) below the P � e curve up to 

e � e1. Since the force varies with elongation (i.e., with “distance”), the integral

expression in Eq. 11.1 must be used to calculate the work done as the force is

increased up to the value P1 � P(e1).

WP (e1) � �
e1

0

P (e) de

W

FIGURE 11.2 Load versus

elongation curve for axial de-

formation; the area represent-

ing the work .W

e

P T

φ
θ

M

(a) Axial load.

(d) Load versus
      elongation.

(b) Torque.

(e) Torque versus
     angle of twist.

(c) Bending couple.

(f) Moment versus
      slope.

P T M

e φ θ

P1

P

P

de

e1 e

dWP = Pde

   WP(e1)
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In a similar manner, the work done by a torsional couple T and by a bending

couple M, respectively, are

(11.2)

If the load-displacement relationship is linear, the curves in Fig. 11.2 become straight

lines, and the area under the curve is triangular. Therefore, for the linear case.

(11.3)WM �
1

2
 MuWT �

1

2
 Tf,WP �

1

2
 Pe,

WT 
(f1) � �

f1

0

T(f) df, WM(u1) � �
u1

0

M(u) du

685
Work and Strain Energy

Fig. 1 An illustration of the work due

to multiple loads.

E X A M P L E 11 . 1

The axial deformation member in Figs. 1a and 1b has the linear load-

elongation curve shown in Fig. 1c. Using the load-elongation curve, ex-

plain why (�1 � �2) (�1) � W(�2).

Plan the Solution The work done by an axial load acting on a linearly

elastic member is given by Eq. 11.3a and is represented by the triangular

area under the load-elongation curve.

Solution From Eq. 11.3a and Fig. 1c, (�1) is the lower-left triangular

area

(1)

The work done by force P, over an elongation �2 only, (�2), is the

upper-right triangular area in Fig. 1c. given by

(2)

and (�1 � �2) is the entire area under the load-elongation curve up to 

� � �1 � �2.

(3)

where the equation P � ke has been used to obtain the P1�2 term from

the bracketed term on the preceding line. Therefore, due to the presence

of the terms in square brackets in Eq. (3),

(4) W (¢1 � ¢2) Z W (¢1) � W (¢2)

 �
1

2
P1¢1 � [P1¢2] �

1

2
P2¢2

 �
1

2
P1¢1 � c 1

2
 P1¢2 �

1

2
 P2¢1 d �

1

2
 P2¢2

 W (¢1 � ¢2) �
1

2
 (P1 � P2)(¢1 � ¢2)

W

W (¢2) �
1

2
 P2¢2

W

W (¢1) �
1

2
 P1¢1

W

W�W

L

P1

P1 + P2

Δ1

Δ2

(a) Load P1
     applied.

(b) Load P2
   added.

P1

P1 + P2

P

P = ke

Δ1 + Δ2Δ1 e

(c) Load versus elongation curve.
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1Note that, although these are the same as the units used to express the moment of a force (e.g., bending

moment or torque), the meaning is quite different. For this reason, some authors express the USCS units

of work and energy as inch-pounds (in.-lb), foot-pounds (ft-lb), inch-kips (in.-k), or foot-kips (ft-k).

The term in square brackets in Eq. (3) corresponds to the darker-

shaded rectangular area in Fig. 1c. It is the additional work done by the

first load P1 when the second load P2 is applied, stretching the rod an 

additional amount �2.

Review the Solution The graphical interpretation of the equations

agrees with the terms of the equations.

The lesson that we learn from this example is that work is not a 

linear function of load (or deformation), so we must exercise care in the

calculation of work, especially when multiple loads are involved.

Strain Energy. As indicated in Section 2.5, a material is said to be elastic (or, to

behave elastically) if the load-deflection path traced on unloading is the same as the

load-deflection path traced on loading. The arrows in Fig. 11.3 denote the fact that

the same load-elongation curve is traced when the load is decreasing as when it is

increasing. The work done on an elastic member during loading is stored in the

member as strain energy, and that strain energy is recovered upon unloading. For an

elastic body, the work, W, done on the body by the applied force is stored as elastic
strain energy, U. That is,

(11.4)

Since the strain energy is equal to the work done on the elastic body, it is repre-

sented by the area that is shaded red in Fig. 11.3.

Work and energy are both expressed in units of force � length. In the USCS sys-

tem of units, work and energy are expressed in pound-inches (lb � in.), pound-feet

(lb � ft), kip-inches (kip � in.), or kip-feet (kip ft).1 In the SI system, the unit of work

and energy is the joule (J), which is equal to one newton-meter (1 J � 1 N m).

Linearly Elastic Behavior. When the material is linearly elastic, the load versus

deflection curve has the form illustrated in Fig. 11.4. In this case it is convenient to

use Eqs. 3.14 and 3.15 and write

(11.5)

where k and f are the stiffness coefficient and flexibility coefficient, respectively,

(f � 1/k). In this case the triangular area that represents the strain energy U can be

expressed in any of the following ways:

(11.6)

It is usually convenient to think of U as being a function of e, that is, U �
1

2
 ke2.

U �
1

2
 Pe �

1

2
 ke2 �

1

2
  fP2

e � fPP � ke,

�
�

U(e) � W (e)|done on elastic body

However, for linearly elastic members the alternative forms listed in Eqs. 11.6 may

sometimes be useful (see Section 11.5), and it is sometimes convenient to think of

the strain energy stored in a linearly elastic member as that is, the average

force times the total elongation.

a1

2
 Pb e,

P

P

ee

   U(e) = Strain
                energy

FIGURE 11.3 An illustra-

tion of strain energy.

P

P

ee

P = ke, e = fP

U

FIGURE 11.4 The load

versus elongation diagram of

a linearly elastic member.
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Fig. 1 Two rods undergoing axial 

deformation.

E X A M P L E  11 . 2

The two linearly elastic rods in Fig. 1 have the same modulus E and total

length, 2L, and are to be compared on the basis of the elastic strain en-

ergy that is stored in each: (a) when the maximum stress in each of the

two rods is the same: and (b) when the total elongation of each of the

two rods is the same.

Plan the Solution Since the maximum axial stress in rod (b)

occurs in section (3), and since A1 � A3 � A, the loads Pa and Pb will be

equal in Part (a). In Part (b) we want eb � ea. Let us begin by plotting 

P – e curves, like Fig. 11.4, for both rods. Then we can easily compare the

values of Ua and Ub for the two cases. We can make use of Eqs. 11.5 (or

3.14 and 3.15) to relate P to e for each rod.

Solution Let subscripts 1 through 3 refer to the elements labeled in 

Fig. 1, and let subscripts a and b refer to the rods in Figs. 1a and 1b,

respectively.

Equilibrium: The free-body diagrams for the three rods elements are

shown in Fig. 2.

(1)

Force-Elongation Relations: From Eqs. 11.5, the equations

(2)

give the force-elongation relations of the individual elements. For com-
patibility of deformation we get

(3)eb � e2 � e3ea � e1,

ei � fiFi � a L
AE
b

i
Fi,  Fi � kiei � aAE

L
b

i
ei

F3 � Pbaa Fb
3

� 0:

F2 � Pbaa Fb
2

� 0:

F1 � Paaa Fb
1

� 0:

si � Fi/Ai, Pb

Pa

Pa

A1 = A

(1)

Pb

Ea = Eb

A3 = A

A2 = nA
(n > 1)

(3)

(2)

L

L

(a)

(b)
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Pb

F1

Pa
(1)

PbF2

F3

(3)(2)

Fig. 2 Free-body diagrams.
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Therefore,

(4)

and, therefore,

(5)

Let us plot Eqs. (5) on the same P � e graph (Fig. 3). Since n 	 1,

kb 	 ka, so the slope of the Pb � eb line is greater than the slope of

the Pa � ea line in Fig. 3. That is, due to its larger cross section, rod

(b) is stiffer.

Strain Energy: From Eqs. 11.6 and Fig. 11.4, strain energy is the triangu-

lar area under the load-deflection curve. The area is given by

(6)

Complete Part (a), the equal-stress case: The maximum stresses in the

two rods are equal if Pa � Pb. From Fig. 3a it is clear that a 	 b. That

is, the rod with enlarged cross section stores less strain energy than the
uniform rod does when the maximum stress in each of the two rods is the
same. In equation form,

Ans.(a) (7)

Complete Part (b), the equal-elongation case: If the elongation of the two

rods is the same, there must be a greater force acting on the stiffer rod.

That is, Pb 	 Pa, as seen in Fig. 3b. In this case. Ub 	 Ua.

Ans.(b) (8)

Therefore, if the two rods are made to elongate the same amount, the 
rod with increased cross section will store more strain energy than the
uniform rod does.

Ub

Ua
�

1

2
kbe2

b

1

2
kae2

a

�
kb

ka
�

2n
n � 1

7 1

Ub

Ua
�

1

2
 fbP2

b

1

2
 faP2

a

�
fb

fa
�

n � 1

2n
6 1

UU

U �
1

2
 ke2 �

1

2
 fP2

Pb � a n
n � 1

b
 

aAE
L
b

 

eb � kbeb

Pa �
1

2
 aAE

L
b  ea � kaea

eb � a L
nAE

b
 

Pb � a L
AE
b

 

Pb � an � 1

n
b

 

a L
AE
b

 

Pb � fbPb

ea � a 2L
AE
b  Pa � faPa

(a) Strain energy relationship
      when Pb = Pa.

P

eeb ea

Pa = Pb

Pb = kbeb

Pa = kaea

Ub

(b) Strain energy relationship
      when eb = ea.

P

eea = eb

Pb

Pa

Pb = kbeb

Pa = kaea

Ua

Ub

Ua

Fig. 3 Strain energy comparisons.
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Review the Solution Since the strain energy discussion above is graphi-

cally based, the answers are correct if we did not make a mistake in 

calculating the f ’s in Eq. (7) and k’s in Eq. (8). We know that rod b is

stiffer because of the enlarged section. Therefore. kb 	 ka. Since this is

true in Eqs. (8), our answers seem to be correct.

Strain Energy Density for Linearly Elastic Bodies. To introduce the con-

cept of strain energy, the simple case of axial deformation of an elastic member by

a single load P was considered above. However, to treat more complex situations we

need to consider how the stored strain energy is distributed throughout the de-

formed body. This leads us to the topic of strain energy per unit volume, or, simply,

strain energy density. Consider a small volume element dV in a linearly elastic rod

undergoing axial deformation, as illustrated in Fig. 11.5.

Let d be the strain energy stored in an elemental volume of a linearly elastic

body, like dV in Fig. 11.5. Furthermore, let the strain energy stored in the elemental

volume be expressed in the form

where is the strain energy density, that is, the strain energy per unit volume at

the location of the differential volume dV. Then, the total strain energy is obtained

by summing the d s over the volume of the entire body, giving the integral 

expression

Total Strain Energy (11.7)

For the uniaxial stress state depicted in Fig. 11.5 we have

where

(11.8)usx
�

1

2
 sx
x

 avg.force � displ.

dU � (1
2 sxdy dz) (
xdx) � usx 

dV

U � �
V

u  dV

U

u

dU � u dV

U

dx

dy

dz

σx
σx

x

y

z

dV = dx dy dz

x

FIGURE 11.5 An element

of volume subjected to uniax-

ial stress �x.
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is the strain energy density for linearly elastic deformation due to a uniaxial stress

state �x. Since �x � E
x, Eq. 11.8 can also be written in the following alternative uni-

axial stress-state forms:

(11.9)

This strain energy density is depicted in the stress-strain diagram in Fig. 11.6. The

strain energy density is the area below the stress-strain curve.

Consider now an elemental volume dV subjected only to shear stress �xy � �yx,

as shown in Fig. 11.7. For this case we have

Therefore, the strain energy density related to �xy is

(11.10)

Since �xy � G�xy, alternative forms of Eq. 11.10 are

(11.11)

In a similar manner, we could derive expressions for the strain energy density

associated with the remaining components of stress. The general expression for

strain energy density in a linearly elastic body is

(11.12)

In the next section we will use this strain-energy-density expression as the basis

for deriving expressions for the strain energy in slender members undergoing axial

deformation, torsion, and bending.

� txzgxz � tyzgyz)

� sz
z � txygxy

u �
1

2
 (sx
x � sy
y

utxy
�

1

2
 
t2

xy

G
�

1

2
 Gg2

xy

utxy
�

1

2
 txygxy

avg. force � displ.

dU � (1
2 txydx dz) (gxydy) � utxy 

dV

usx
�

1

2
 
s2

x

E
�

1

2
 E
2

x
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FIGURE 11.7 An elemen-

tal volume undergoing defor-

mation due to shear stress 

�xy � �yx.

Strain 
Energy 
Density

�x�x

σx = E�x

σx

σx

u
_
 = Strain energy

      density

FIGURE 11.6 Strain energy density for a uniaxial stress state.
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11.3 ELASTIC STRAIN ENERGY FOR VARIOUS 
TYPES OF LOADING

In order to apply work-energy methods to solve problems, we must first obtain 

expressions for the elastic strain energy stored when various types of loads are 

applied—axial loads, torsional loads, and bending loads. We will restrict our atten-

tion in this section to linearly elastic behavior.

Axial Deformation. In Section 3.2 the basic equations for normal stress and 

extensional strain were developed. Recall that, for axial deformation of a mem-

ber such as the one illustrated in Fig. 11.8, and for the special case of E � E(x)

(i.e., the material is homogeneous at any cross section, but its properties may vary

with x),

(11.13)

and

(11.14)

where u(x) is the displacement of the cross section at x and F(x) is the (internal)

force on the cross section at x.Therefore, since dV � A(x)dx for the axial-deformation

member, we can combine Eqs. 11.7, 11.9, 11.13, and 11.14 to get the following 

expressions for strain energy due to axial deformation:

(11.15)

and

(11.16)

where and F, E, A, and u may all be functions of x. We will have ( )¿ K
d( )

dx
;

U �
1

2 �
L

0

EA(u¿)2dx

U �
1

2 �
L

0

F2dx
EA

sx �
F(x)

A(x)


x(x) �
du(x)

dx

occasion to use both of the above expressions for the strain energy of linearly elastic

bars undergoing axial deformation.

x dx
u(x)

(a) Undeformed
member.

(b) Deformed
   member.

FIGURE 11.8 A member

undergoing axial deformation.
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For a uniform linearly elastic rod subjected to axial end loads, as illustrated in

Fig. 11.9, Eq. 11.15 gives

(11.17)

Torsion of Circular Members. Although it is possible to obtain expressions

for strain energy stored in torsional members with various cross sections, here we

will only consider the simplest case of linearly elastic circular rods that are homoge-

neous at each cross section [i.e., G � G(x)], as shown in Fig. 11.10. Recall from 

Eqs. 4.1 and 4.12 that, for this case, the shear strain � is given by

(11.18)

and the shear stress � is related to the internal torque at a cross section by the

equation

(11.19)

Combining Eqs. 11.7, 11.11, 11.18 and 11.19, we obtain the following expression for

the strain energy due to torsion, expressed in terms of the internal torque T:

U �
1

2 �
L

0
�
A

1

G(x)
 cT(x)r

IP(x)
d 2 dAdx

t(x, r) �  

T(x)r

IP(x)

g(x, r) � r 

df(x)

dx

U �
P2L
2EA
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L

P

P

FIGURE 11.9 An end-loaded uniform rod.

x dx

ρ

dρ

(a)

(b)

FIGURE 11.10 A circular rod undergoing torsional deformation.
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or, since 

(11.20)

An alternative expression for U in terms of the twist rate is

or

(11.21)

For a uniform circular linearly elastic rod subjected to end torques T, as shown

in Fig. 11.11, Eq. 11.20 gives

(11.22)

Bending of Beams—Flexural Strain Energy. A beam, like the one in Fig.

11.12, has flexural stress �x and shear stress �xy that vary with position in the

beam. From Eq. 11.12 it can be seen that the contributions of normal stress and

shear stress to the strain energy can be treated separately. We begin by consider-

ing the contribution of the flexural stress �x (and strain 
x), and we employ the

Bernoulli-Euler beam theory of Sections 6.2 and 6.3. Recall from Eq. 6.3 that the

U �
T2L
2GIp

U �
1

2 �
L

0

GIp(f¿)2dx

U �
1

2 �
L

0
�
A

G(x)  cr 

df(x)

dx
d 2 dAdx

f¿

U �
1

2 �
L

0

T2dx
GIp

Ip � �
A

 
r2 dA,
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x

x

y, v(x)

dx

(a) (b)

y

y
z

dA

FIGURE 11.12 A beam undergoing flexural and shear deformation.

L

T

T

FIGURE 11.11 A uniform, end-loaded torsion member.
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extensional strain 
x is related to the local radius of curvature, (x), of the deflec-

tion curve and to the deflection (x) by

(11.23)

where y is the distance from the neutral axis of the cross section. When Young’s

modulus is independent of position in the cross section, that is, E � E(x), the flex-

ural stress �x is related to the internal bending moment, M(x), by the flexure

formula, Eq. 6.13, that is, by

(11.24)

From Eqs. 11.7, 11.9, 11.23, and 11.24 we get the following equations for the strain

energy due to flexure:

or

(11.25)

where the subscript � emphasizes the fact that this is the strain energy due to 
flexural stress. In terms of the curvature �(x), the strain energy due to flexure is

given by

or

(11.26)

Bending of Beams—Shear-Strain Energy. The shear stress in a beam also

contributes to the strain energy that is stored in the beam. In Section 6.8 an equilib-

rium analysis led to the shear-stress formula of Eq. 6.67, namely

(11.27)

where V(x) is the transverse shear force. Combining Eqs. 11.7, 11.11, and 11.21,

we get

Ut �
1

2 �
L

0
�
A

1

G(x)
 cV(x)Q(x, y)

I(x)t(y)
d 2 dAdx

txy �
V(x)Q(x, y)

I(x)t(y)

Us �
1

2 �
L

0

EI(y–)2 dx

U �
1

2 �
L

0
�
A

E(x) c �y

r(x)
d 2dAdx �

1

2 �
L

0
�
A

E(x) ad2y(x)

dx2
b2

 y2dAdx

y

Us �
1

2 �
L

0

M2dx
EI

Us �
1

2 �
L

0
�
A

1

E(x)
 c�M(x)y

I(x)
d 2dAdx

sx(x, y) �
�M(x)y

I(x)


x(x, y) �
�y

r(x)
� �y 

d2y(x)

dx2

y
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or

(11.28)

To simplify this expression for U�, let us define a new cross-sectional property fs,

called the form factor for shear. Let

(11.29)

(The form factor is a dimensionless number that depends only on the shape of the

cross section, so it rarely actually varies with x.) Combining Eqs. 11.28 and 11.29 we

get the following expression for the strain energy due to shear in bending:

(11.30)

The form factor for shear must be evaluated for each shape of cross section. For

example, for a rectangular cross section of width b and height h, the expression

was obtained in Example Problem 6.14. Therefore, from Eq. 11.29 we get

(11.31)

The form factor for other cross-sectional shapes is determined in a similar manner.

Several of these are listed in Table 11.1. The approximation for an I-section or box

section is based on assuming that the shear force is uniformly distributed over the

depth of the web(s).

fs �
bh

( 1
12bh3)2 �

h/2

�h/2

1

b2
 c b

2
 ah2

4
� y2b d 2 

bdy �
6

5

Q �
b
2

 ah2

4
� y2b

Ut �
1

2 �
L

0

fsV
2dx

GA

fs 
(x) �

A(x)

I2(x)
�
A

Q2(x, y)

t2(y)
 dA

Ut �
1

2 �
L

0
 
c V2(x)

G(x)I2(x)
�
A

Q2(x, y)

t2(y)
  dA d  dx
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Section fs

Rectangle
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I-section or 

box section
�

A
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9

6

5
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E X A M P L E  11 . 3

Using the form factor approximation for I-sections in Table 11.1, deter-

mine the ratio of the shear strain energy U� to the flexural strain energy

U� for the wide-flange beam shown in Fig. 1.2 Assume that E � 2.6G, and

express your answer in terms of the depth-to-length ratio h/L.

Plan the Solution We can use equilibrium to determine expressions for

M(x) and V(x) that can be substituted into Eqs. 11.25 and 11.30, respec-

tively, to calculate U� and U�.

Solution

Equilibrium: From the free-body diagram in Fig. 2.

(1)

Strain Energy: From Eq. 11.25, the strain energy due to flexure is 

given by

(2a)

and from Eq. 11.30, the strain energy due to transverse shear is

(2b)

From Table 11.1, fs can be approximated by

(3)

For the cross section shown in Fig. 1a,

(4)

 fs �
A

Aw
�

62

30
� 2.07

 I �
1

12
 [bh3 � (b � tw)(h � 2tf)

3] � 0.009480h4

 A � 2btf � (h � 2tf)tw �
62

1024
 h2 � 0.060547h2

fs �
A

Aweb

Ut �
1

2 �
L

0

fsV
2dx

GA

Us �
1

2 �
L

0

M2dx
EI

M(x) � �PxaaMb
a

� 0:

V(x) � �Pa Fy � 0:

x
V(x)

M(x)a

P

y

Fig. 2 Free-body diagram.

h

b

(a)

(b)

tw

tw = tf =     h, b =   h

tf

1—
32

1–
2

L

P

y

x

Fig. 1 A wide-flange beam.

2The shape of this cross section is approximately that of a W8 � 13 beam.
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Combining Eqs. (1) and (2), we get

(5)

Therefore,

(6)

Using the given ratio of E/G � 2.6, together with other values from Eqs. (4),

we get

Ans. (7)

A value of U� /U� � 0.05 (i.e., 5%) corresponds to an L/h ratio of

approximately 7, which is a relatively short beam. Therefore, shear strain
energy and, correspondingly, shear deformation, may be neglected
except in the case of short, stubby beams.

Review the Solution The answer in Eq. (7) is dimensionless, as it

should be. Furthermore, the dependence on h/L seems reasonable. That

is, shear becomes important when the length of the beam is too short to

have large values of bending moment. Finally, we should check the

answer by rechecking each formula and calculation.

Ut
Us

�
3EIfs

GAL2
� 2.5 a h

L
b2

Ut
Us

�

fsP
2L

2GA

P2L3

6EI

 Us �
1

2
 a 1

EI
b�

L

0

(�Px)2dx �
P2L3

6EI

 Ut �
1

2
 

fs

GA �
L

0

(�P)2dx �
fsP

2L

2GA

11.4 WORK-ENERGY PRINCIPLE FOR 
CALCULATING DEFLECTIONS

In the remaining sections of this chapter, we will examine several energy principles,

that is, several ways in which energy methods can be used to solve deformable-body

problems. The simplest (but most limited) of these is the principle of work and en-
ergy. We will consider only the case of slowly applied loading, so that the kinetic

energy (e.g., 1/2 mass � velocity-squared) can be ignored.We will not consider other

forms of energy such as thermal energy, chemical energy, and electromagnetic

energy. Therefore, if the stresses in a body do not exceed the elastic limit, all of the
work done on a body by external forces is stored in the body as elastic strain energy.

The formula

(11.32)

is a statement of the Work-Energy Principle. This principle is not restricted to lin-

early elastic behavior. The next two example problems illustrate the use of the

Wext � U Work-Energy
Principle
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above Work-Energy Principle to calculate the displacement due to a single load
applied to a deformable body.

E X A M P L E  11 . 4

Use the Work-Energy Principle to calculate the transverse deflection of

the beam in Fig. 1a and the end slope of the beam in Fig. 1b.Assume that

both beams remain linearly elastic under the given loads, and let 

EI � constant. Neglect shear strain energy of the beams.

Plan the Solution We can use Eqs. 11.3a and 11.3c to give the work

done by the external loads P and M0, respectively. The strain energy in

each case can be determined by the use of Eq. 11.25. Finally, the deflec-

tion � and slope � will result from applying the Work-Energy Principle,

Eq. 11.32.

Solution In the following solution, let subscript a apply to the beam

in Fig. 1a and subscript b to the beam in Fig. 1b, and let subscript 1

apply to the span 0 � x � L and the subscript 2 apply to the span L �
x � 2L.

Equilibrium: To obtain expressions for M(x) for each beam, we first

draw the necessary free-body diagrams.

From Fig. 2a,

(1a)

From Fig. 2b,

(1b)Ma1 � �PxaaMb
C1

� 0:

By � 2PaaMb
C

� 0:

Fig. 1 Deflection of the beams.

(a)

L

x
CB

A

L

x

P

(b)

L

x
FED

L

x

Δ

M0

θ

PP

M0

(d)

LL

P

M0

Ey Fy

Fx M0

(f)

x

L
Ey

(a)

By Cy

Cx

C1

(b)

x
Va1

Ma1

C3

(e)

x
Vb1

Mb1

Vb2

Mb2C4

(c)

x

L
By

Va2

Ma2C2

Fig. 2 Free-body diagrams.
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From Fig. 2c,

(1c)

From Fig. 2d,

(1d)

From Fig. 2e,

(1e)

From Fig. 2f,

(1f)

Strain Energy: The strain energy stored in a beam due to flexure is given

by Eq. 11.25 (modified for length 2L),

(2)

Combining Eqs. (1) and (2) we get

(3a)

(3b)

Work of External Loads: Equations 11.3a and 11.3c give

(4a-b)

Work-Energy Principle: Applying the Work-Energy Principle, Eq. 11.32,

we get

Ans. (5a)

Ans. (5b)u �
4

3
 
M0L
EI

Wb � Ub:

¢ �
2

3
 
PL3

EI
Wa � Ua:

Wb �
1

2
 M0uWa �

1

2
 P¢,

Ub �
1

2 �
L

0

(�M0)2dx

EI
�

1

2 �
2L

L

cM0

L
 (x � 2L) d 2dx

EI
�

2M2
0L

3EI

Ua �
1

2 �
L

0

(�Px)2dx

EI
�

1

2 �
2L

L

[P(x � 2L)]2dx

EI
�

P2L3

3EI

U �
1

2 �
2L

0

M2dx
EI

�
1

2 �
L

0

M2
1dx

EI
�

1

2 �
2L

L

M2
2dx

EI

Mb2 � �M0 �
M0

L
 (x � L) �

M0

L
 (x � 2L)aaMb

C4

� 0:

Mb1 � �M0aaMb
C3

� 0:

Ey �
M0

L
aaMb

F
� 0:

Ma2 � �Px � 2P(x � L) � P(x � 2L)aaMb
C2

� 0:
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Calculating the displacement of various points in a “complex” structure, like a

planar truss, is not a simple matter. However, if the “right question” is asked, the

Work-Energy Principle provides a simple, straightforward way to calculate displace-

ments, as the next example problem illustrates.

Review the Solution The preceding answers can be checked by apply-

ing the method of superposition of deflections discussed in Section 7.6

and using data from Tables E.1 and E.2 of Appendix E. The results are

shown in Fig. 3.

A “ballpark” estimate of each answer can be obtained by just ignor-

ing the slope at B and E. From Table E.1 this would give estimates of

u 7
M0L
EI

¢ 7
PL3

3EI
,

Fig. 3

A B C

D E F

PL3
——
3EI

PL3
——
3EI

M0L
——
3EI

M0L
——

EI

E X A M P L E  11 . 5

For the two-bar truss in Fig. 1, use the Work-Energy Principle to compute

the displacement �B of node B in the direction of the load P. Let A1 �
A2 � 1.2 in2, and E1 � E2 � 10 � 103 ksi. The members remain linearly

elastic under the given loading.

Plan the Solution For each member in the truss, we can use Eq. 11.17

to determine the strain energy, using the member axial forces obtained

from equilibrium of the joint at B. Since strain energy is a scalar quan-

tity, the total strain energy is the sum of the strain energies in the two

members. Since the structure remains linearly elastic, and since �B is in

the same direction as P, the work of the external load is given by 

Eq. 11.3a, as in the previous example. Finally, the Work-Energy Principle,

Eq. 11.32, will lead to an equation for the unknown displacement �B.

Solution

Equilibrium: Since the truss in Fig. 1 is statically determinate, we can

compute the member forces by using only equilibrium equations and the

free-body diagram shown in Fig. 2.

(1a)

(1b)

Strain Energy: Since strain energy is a scalar quantity,

(2)U � U1 � U2

�F1 �
4

5
 (�P) �

4

5
 P � 0 S F1 �

8

5
 Pa Fx � 0:

�
3

5
 F2 �

3

5
 P � 0 S F2 � �Pa Fy � 0:

Fig. 1 A two-member planar truss.

30 in.

(1)

(2)

A

C

B

P = 5 kips

ΔB

3

4

x

y

40 in.

Fig. 2 The free-body diagram.

F1

B

F2

P = 5 kips

3

3

4

4

5

x

y
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The Work-Energy Principle provides a relatively simple, straightforward proce-

dure for calculating the displacement of a body at the point of application of a sin-

gle load and in the direction of the load, as illustrated in Example Problems 11.4 and

11.5. However, suppose the two loads, P and M0, are applied slowly and

For each member, the strain energy is given by Eq. 11.17. Therefore.

(3)

Therefore,

(4)

Work of External Load: The work of the external load P is

(5)

since, as noted above, the structure is linear, and �B is in the same direc-

tion as P.

Work-Energy Principle: From Eq. 11.32,

(6)

Therefore,

and, finally,

Ans. (7)

Review the Solution We could solve this problem by the method dis-

cussed in Section 3.10. However, we just need to see if our answer is rea-

sonable. We know that the elongation of a single axial member is given

by ei � FiLi/AiEi (Eq. 3.13). Therefore,

Without carrying out the geometrical calculations necessary to relate e1

and e2 to �B, we can see that our answer in Eq. (7) is reasonable.

 e2 �
(�5 kips)(50 in.)

(1.2 in2)(10 � 103 ksi)
� �0.0208 in.

 e1 �
(8 kips)(40 in.)

(1.2 in2)(10 � 103 ksi)
� 0.0267 in.

¢B � 0.0635 in.

2.5¢B � 0.15875

Wext � U

Wext �
1

2
 P¢B �

1

2
 (5 kips)(¢B in.) � 2.5¢B kip � in.

U � 0.15875 kip � in.

 U �
(8 kips)2(40 in.) � (�5 kips)2(50 in.)

2(1.2 in2)(10 � 103 ksi)

 U �
F2

1L1

2A1E1

�
F2

2L2

2A2E2
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simultaneously to a beam, as illustrated in Fig. 11.13. Following the procedure of

Example Problem 11.4, we have

(11.33)

Then, substitution of these moments into Eq. 11.25 gives

(11.34)

The work done by P and M0 when they are applied simultaneously to the beam is

(11.35)

It is clear that we cannot use the Work-Energy Principle, Wext � U, to determine

either � or � since there are two unknowns and only one equation.

In conclusion, the Work-Energy Principle is useful only for determining the dis-
placement at the point of application of a single load and in the direction of that
load. And, of course, it applies only to elastic deformation. Therefore, we now turn

to more powerful energy methods.

Wext �
1

2
 P¢ �

1

2
 M0 u

U �
P2L3

3EI
�

5PM0L2

6EI
�

2M2
0L

3EI

 M2(x) � aP �
M0

L
b (x � 2L)

 M1(x) � �Px � M0

702
Energy Methods

L

x

L

P

Δ

M0

θ

FIGURE 11.13 A beam with two loads.

11.5 CASTIGLIANO’S SECOND THEOREM; 
THE UNIT-LOAD METHOD

In this section we examine two closely related energy methods that may be used for

calculating displacements of linearly elastic deformable bodies—Castigliano’s Second
Theorem3 and the Unit-Load Method. Prior to the advent of the finite element method,
these two energy methods were the most powerful techniques available for calculat-

ing deflections of moderately complex statically indeterminate structures.

Castigliano’s Second Theorem. We restrict our attention to deformable bod-

ies that behave linearly under the action of independent loads, P1, P2, . . . , PN, plus,

possibly, distributed loads and/or additional concentrated loads. Furthermore, let us

designate the displacements that correspond to the above N loads as �1, �2, . . . , �N.

3The First Theorem and Second Theorem of Italian engineer Alberto Castigliano (1847–1884) appeared

in his 1873 dissertation for the engineer’s degree at Turin. Italy. [Ref. 11-1] Castigliano’s First Theorem is

discussed in Section 11.7.
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That is , let �i be the displacement at the point of application of load Pi in the direc-

tion of load Pi.

Castigliano’s Second Theorem can be stated as follows:4

Among all possible equilibrium configurations of a linearly elastic deformable
body or system, the actual. configuration is the one for which

(11.36)

where �i is the displacement corresponding to force Pi, and U is the strain energy
expressed as a function of the loads.

In words, Eq. 11.36 says that the partial derivative of the strain energy of a structure
with respect to any load is the displacement that corresponds to that load. As noted in

Eq. 11.36, the strain energy must be expressed as a function of the loads. The terms

“load” and “displacement” are to be understood in the generalized sense (e.g., a

force and the corresponding translational displacement, or a torque and the corre-

sponding angle of twist where the torque is applied).

Typically, the strain energy is related to the loads through expressions like Eqs.

11.15, 11.20, 11.25, and 11.30, that is, through expressions like

(11.37)

where F(x), T(x), M(x), and V(x) are related to the P’s by equilibrium equations,

thus guaranteeing that only equilibrium states are considered. It is convenient to

combine Eqs. 11.36 and 11.37 initially, which gives

(11.38)

Of course, if a system consists of several members, Eqs. 11.37 and 11.38 will have to

include summations over all members in the system.This will be illustrated in exam-

ple problems involving planar trusses.

Castigliano’s Second Theorem Applied to Statically Determinate
Problems. Figure 11.13 was used to point out a severe limitation of the Work-

Energy Principle, namely that it can be used to calculate deflections only when just a

single load is applied.We will use the beam in Fig. 11.13 to illustrate the case with which

displacements can be calculated using Castigliano’s Second Theorem, even when mul-

tiple loads are applied. As noted in the statement of the theorem, we must express the

strain energy U as a function of the loads, incorporating equilibrium in the process.

� �
L 

0

M(x) 

0M(x)

0Pi
 dx

EI
� �

L 

0

fsV(x) 

0V(x)

0Pi
 dx

GA

¢i � �
L

0

 F(x) 

0F(x)

0Pi
 dx

AE
� �

L

0

 T(x) 

0T(x)

0Pi
 dx

GIp

U � �
L

0

F2dx
2AE

� �
L

0

T2dx
2GIp

� �
L

0

M2dx
2EI

� �
L

0

fsV
2dx

2GA

 i � 1, 2, . . . , N

 ¢i �
0U(P1, P2, . . . , PN)

0Pi

703
Castigliano’s Second Theorem; 

the Unit-Load Method

4The theorem is stated here without derivation. It is a special case of the Cross-Engesser Theorem, which

is derived and discussed in Section 11.8.

Castigliano’s 
Second 
Theorem
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E X A M P L E  11 . 6

Use Castigliano’s Second Theorem to solve for the slope � and displace-

ment � at end A of the uniform, linearly elastic beam shown in Fig. 1.

Neglect shear deformation of the beam.

Plan the Solution We can use Castigliano’s Second Theorem, Eq. 11.36,

to determine � and � directly. The strain energy for this situation was

given in Eq. 11.34 (Section 11.4) in conjunction with Fig. 11.13.

Solution In Eq. 11.34 the strain energy for the beam in Fig. 1 was given

as a function of the loads P and M0 as

(1)

Castigliano’s Second Theorem. Eq. 11.36, gives the following equations

for determining � and �:

(2)

Therefore, combining Eqs. (1) and (2) we get

Ans. (3)

Review the Solution The first check we should make is to check the

dimensions of each term to be sure that the answers are dimensionally cor-

rect.We see that they are. See Example Problem 11.4 for additional magni-

tude checks that could be performed, for example, using the following data

from Table E.1 of Appendix E for the two separate load cases in Fig. 2.

uM �
M0L
EI

uP �
PL2

2EI

¢M �
M0L2

2EI
¢P �

PL3

3EI

¢ �
2PL3

3EI
�

5M0L2

6EI

u �
5PL2

6EI
�

4M0L
3EI

∂

u �
0U

0M0

¢ �
0U
0P

,

U �
P2L3

3EI
�

5PM0L2

6EI
�

2M2
0L

3EI

Fig. 1

B

θ

A C

EI = const

x

M0

Δ

LP L

θP

P

(a)

ΔP

θM

(b)

ΔM

M0

Fig. 2
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Castigliano’s Second Theorem Applied to Statically Indeterminate
Problems. When a structure is statically indeterminate and has independent ex-

ternal loads, P1, P2, . . . , PN, and we write the strain energy in terms of forces using

equilibrium relations to give us F(x), T(x), M(x), and so forth, the strain energy will

also involve unknown redundant forces R1, R2, . . . , RNR. That is, we will get U �
U(P1, P2, . . . , PN; R1, R2, . . . , RNR). The displacements that correspond to the NR re-

dundant forces are all zero (i.e., we imagine that the system is cut so that the redun-

dants that we have chosen appear as known forces, but the system is not really cut).

Therefore, we have NR equations that enable us to solve for the NR redundants. We

also get N equations to solve for the displacements under the N external loads.Thus,

Castigliano’s Second Theorem applied to statically indeterminate bodies is given by

the following two equations:

Among all possible equilibrium configurations of a statically indeterminate,
linearly elastic body, the actual equilibrium configuration is the one that satisfies
the equations

(11.39)

where U is the strain energy of the body expressed as a function of the N applied loads
Pi and the NR redundant forces Ri, and where �i is the displacement component of the
point of application of load Pi in the direction of that load.5

To illustrate the use of these equations, we will solve a problem similar to

Example Problem 3.20 of Section 3.10. This example problem illustrates the use of

a dummy load to obtain the displacement when there is no real load that corre-

sponds to the required displacement.

i � 1, 2, . . . , N¢i �
0U
0Pi

,

i � 1, 2, . . . , NR0 �
0U
0Ri

,
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Castigliano’s Second Theorem; 

the Unit-Load Method

Castigliano’s 
Second 
Theorem

E X A M P L E  11 . 7

A three-element truss has the configuration shown in Fig. 1. Each mem-

ber has a cross-sectional area A and is made of material whose modulus

is E. A horizontal load, PxB, is applied to the truss at node B.

Using Castigliano’s Second Theorem in the form of Eqs. 11.39, with

F2 as the redundant force, solve for (a) the member forces F1, F2, and F3;

(b) the horizontal displacement uB at B; and (c) the vertical displacement

B at B.

Plan the Solution To determine F2 we will need to use the first of Eqs.

11.39, letting the single redundant (R1) be F2. We can use the second of

Eqs. 11.39 to solve directly for the displacement uB that corresponds to

the horizontal load PxB. Since there is no load at B corresponding to the

vertical displacement B that is required in Part (c), we will need to in-

troduce a dummy load PyB. After carrying out the differentiation with

respect to PyB to get B, we can then set PyB � 0.y

y

y

Fig. 1

(1)

(2)
(3)L

C
D

A

3–
5

L
4–
5

PxB

uB

vBB

y

x

5Equation 11.39a is sometimes referred to as the Principle of Least Work.
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Equation 11.17 gives the strain energy stored in a two-force, linearly

elastic rod.

Solution (a) Use Castigliano’s Second Theorem to determine the mem-
ber forces.

Equilibrium: The strain energy expression that we utilize in Eqs. 11.39

must be expressed in terms of forces in a manner such that equilibrium

is automatically satisfied. Therefore, we begin by writing equilibrium

equations for the free body in Fig. 2.To determine B [in Part (c)] we will

need to have a force acting in the y direction at B.Therefore, on the free-

body diagram in Fig. 2, a “dummy force” PyB is included. We let F2 be the

redundant force, and use equilibrium equations to write F1 and F3 in

terms of F2.

(1)

Strain Energy: Equation 11.6c can be used to express the strain energy

in member i in terms of the axial force Fi. Thus,

(2)

where fi � (L/AE)i, the flexibility coefficient for member i. Combining

Eqs. (1) and (2) and summing for the three-element system, we get

(3)

Castigliano’s Second Theorem: To determine the redundant force F2, we

use the first of Eqs. 11.39, that is,

(4)

Differentiating the strain energy expression in Eq. (3) with respect to F2,

with PyB � 0, we get

Solving for F2, we get the expression

(5)F2 �
20f1PxB

16f1 � 25f2 � 9f3

�
4

5
 f1 aPxB �

4

5
 F2b � f2F2 �

3

5
 f3 a� 

3

5
 F2b � 0

0U
0F2

� 0

U �
1

2
 f1 aPxB �

4

5
  F2b

2

�
1

2
 f2F2

2 �
1

2
 f3  aPyB �

3

5
 F2b

2

Ui �
1

2
 fiF

2
i

F3 � PyB �
3

5
 F2a Fy � 0:

F1 � PxB �
4

5
 F2a Fx � 0:

y

Fig. 2 Free-body diagram.

F3

3
4

x

y

F1

F2

PxBB

5

PyB
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The flexibility coefficients are

Finally, the redundant force F2 is

This answer can be combined with Eqs. (1) to give

Ans. (a) (6)

(b) Determine the horizontal displacement uB. We use the second of Eqs.

11.39 in the form

(7)

Combining Eqs. (3) and (7) (with PyB � 0) gives

or

Ans. (b) (8)

(c) Determine the vertical displacement B. Corresponding to the dummy

load PyB, we write the second of Eqs. 11.39 in the form

(9)

Thus,

or

Ans. (c) (10)yB � �
2

15
 
PxBL
AE

yB � f3 a�3

5
 F2b � a�3

5
b a3

5
 fb a10

27
 PxBb

yB �
0U

0PyB
`
PyB�0

y

uB �
76

135
 
PxBL
AE

uB � f1 aPxB �
4

5
 F2b � a4

5
 fb a19

27
 PxBb

uB �
0U

0PxB

F3 �
�2

9
 PxBF2 �

10

27
 PxB,F1 �

19

27
 PxB,

F2 �

20 a4

5
 fb PxB

16 a4

5
 fb � 25f � 9 a3

5
 fb

�
10

27
 PxB

f3 �
3

5
  ff2 � f,f1 �

L1

A1E1

�
4

5
 a L

AE
b �

4

5
 f,
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Review the Solution The element forces in Eqs. (6) all have the dimen-

sions of force, and the displacements in Eqs. (8) and (10) also have the

correct dimensions. The signs of F1 and F2 indicate tension, which is cor-

rect for PxB acting to the right: and with F2 pulling down on node B, F3

must be pushing up, as it is. To check further, we could re-solve the prob-

lem using the Displacement Method, as in Example 3.20, or we could use

the Force Method, which should give us the same expression for F2 that

we got in Eq. (5).

The Unit-Load Method. Suppose that we need to calculate the value of the dis-

placement � at point C in the beam shown in Fig. 11.14a. In Fig. 11.14a are shown

all of the real loads applied to the beam. (There could be a real load corresponding

to the desired displacement �, but the load P in Fig. 11.14a could also be a dummy

load that is actually zero.) To calculate the displacement � we could use Eq. 11.38,

but instead we will derive and use a variation of Eq. 11.38 called the Unit-Load
Method.

Since this is a linear problem, the internal forces F(x), T(x), and so forth are

linear functions of each of the loads, including P. Therefore, if we evaluate

FIGURE 11.14 Illustration of the unit-load method.

A

(a)  A beam with axial and bending loads. (b)  The beam with a unit load where
      displacement Δ is required.

B

P

Pu = 1

C

C*Δ

the answer that we get is the same as if we were to evaluate F(x) for single
0F(x)

0P
,

load of Pu � 1. This leads to a method for calculating displacements called the Unit-
Load Method. Figure 11.14b shows the beam with a unit load for the value of P
where displacement � is to be obtained. Let F(x), T(x), etc, be the internal resultants
due to the real loads (Fig. 11.14a); and let Fu(x), Tu(x), etc, be the internal resultants
due to the unit load, Pu � 1 (Fig. 11.14b). Then Eq. 11.38 can be written,

(11.40)

� �
L

0

M Mudx
EI

� �
L

0

fsV Vudx

GA

 ¢ � �
L

0

F Fudx
AE

� �
L

0

T Tudx
GIp Unit-Load 

Method

E X A M P L E  11 . 8

Use the Unit-Load Method to determine the slope, �, at the tip of the

uniform, linearly elastic cantilever beam with linearly varying distributed

load, as shown in Fig. 1. Neglect shear deformation.
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Fig. 1

Plan the Solution We can use the bending moment term in Eq. 11.40.

We will need to put a unit couple at A corresponding to the desired 

angle �.

Solution

Unit Load: To calculate the angle �, we need to place a unit couple at A,

as shown in Fig. 2.

θ

A

x

B

L

w0

C2

Mθ = 1

Mu(x)

Vu

C1

M(x)

w0x
–––
L

V(x)x

(a)

(b)

A

Mθ = 1

B

Fig. 2 Unit-load case.

Equilibrium: We need M(x) based on the real loads in Fig. 1 and Mu(x)

based on the unit couple in Fig. 2. Figure 3 shows the appropriate free-

body diagrams.

(1a)

(1b)

Unit-Load Calculation: From Eq. 11.40,

(2)

Ans. (3)

Review the Solution The solution in Eq. (3) is dimensionally correct.

For this simple problem we can check the answer in Table E.1 of

Appendix E.

 u �
w0L3

24EI

 u � �
L

0

MMu dx
EI

� �
L

0

1

EI
 a�w0x3

6L
b (�1) dx

Mu(x) � �1aaMb
C2

� 0:

M(x) � � aw0x
L
b ax

2
b ax

3
b � � 

w0x3

6L
aaMb

C1

� 0:

As a second example of the Unit-Load Method, and also as an example of a

statically indeterminate problem, consider a statically indeterminate truss similar to

the one in Example Problem 11.7. (Note that we must employ a unit load correspon-

ding to each redundant force that we choose, and then set the resulting displace-

ments of the redundants to zero.)

For trusses, the unit-load equation can be written as the following sum of mem-

ber contributions:

(11.41)¢ � a
N

i�1

fiFiFui � a
N

i�1

aF FuL
AE

b
i

Fig. 3 Free-body diagrams.

Unit-Load
Method
(Trusses)
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E X A M P L E  11 . 9

A four-element truss has the configuration shown in Fig. 1. Each mem-

ber has a cross-sectional area A and modulus of elasticity E. Horizontal

and vertical loads are applied at node B. Use the Unit-Load method to

determine the member forces F1 through F4. Let F2 and F4 be the two

redundant forces.

Plan the Solution We will need to write equilibrium equations for the

real forces. We can use a free-body diagram for this. Since there are four

unknown forces and only two equations of equilibrium, there are two re-

dundant forces, which are to be F2 and F4. We can employ the Unit-Load

Method of Eq. 11.41. However, since there is no displacement at C cor-

responding to F2 or at E corresponding to F4, we need to apply a unit

load at each of these places and set the corresponding displacement in

the unit-load equation to zero.

Solution

Equilibrium: The equilibrium equations relating the real forces can be

obtained by use of Fig. 2. Thus,

(1)

Since we have two redundants, we need two unit-load cases. The

free-body diagrams for these are shown in Fig. 3. We will designate the

two unit-load cases by and superscripts, rather than by sub-

script u. From Fig. 3a,

(2)

F¿3 � � 

3

5a Fy � 0:

F¿1 � � 

4

5a Fx � 0:

F¿4 � 0F¿2 � 1,

( � )¿ˇ¿( � )¿

F3 � PyB �
3

5
 F2 �

3

5
 F4a Fy � 0:

F1 � PxB �
4

5
 F2 �

4

5
 F4a Fx � 0:

Fig. 1

3L–––
5

4L–––
5

3L–––
5

E

A

D

B

PyB

PxB

C

(4)

(1)

(2)
(3)

x

y

E

F4

F1

F2

F3

A

D

B

C

3

3

4

4 PyB

PxB

F4′ = 0

F1′

F2′ = 1
F3′

F4″ = 1

F1″

F2″ = 0
F3″

(a) (b)

Fig. 3 Unit-load free-body diagrams.

Fig. 2 Free-body diagram with real

forces.
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From Fig. 3b,

(3)

Unit-Load Calculation: Since the members of this truss are uniform, we

can use Eq. 11.41, that is,

(4)

But, we have two unit-load cases corresponding to redundants F2 and F3.

Therefore, from Eq. (4) we have

(5)

The flexibility coefficients are given by

so

(6)

Substituting Eqs. (1), (2), (3), and (6) into Eqs. (5) we get

(7)

This gives us two simultaneous algebraic equations to solve for the

redundants F2 and F4. Once F2 and F4 are determined, the remaining

� a3

5
 fb aPyB �

3

5
 F2 �

3

5
 F4b a3

5
b � fF4(1)

0 � a 4

5
 fb aPxB �

4

5
 F2 �

4

5
 F4b a�4

5
b � 0

� a3

5
 fb aPyB �

3

5
  F2 �

3

5
 F4b a�3

5
b � 0

0 � a4

5
 fb aPxB �  

4

5
 F2 �

4

5
 F4b

 

a�4

5
b � fF2(1)

f3 �
3

5
 ff2 � f4 � f,f1 �

4

5
  a L

AE
b �

4

5
 f,

fi � a L
AE
b

i

0 � a
4

i�1

fiFiF–i0 � a
4

i�1

fiFiF¿i ,

¢ � a
4

i�1

fiFiFui

F–3 �
3

5a Fy � 0:

F–1 � �
4

5a Fx � 0:

F–4 � 1F–2 � 0,
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To calculate displacements for a truss with many members, it is convenient to

tabulate the contributions of the various members to the sum in Eq. 11.41, as illus-

trated by the following example problem.

member forces F1 and F3 can be obtained from Eqs. (1), the equilibrium

equations for the real forces. Equations (7) simplify to

(8)

Solving for F2 and F4 we get

Ans. (9)

and, combining Eqs. (1) and (9) we get

Ans. (10)

Review the Solution All answers in Eqs. (9) and (10) obviously have

the correct dimension of force. A positive force PxB should put members

1, 2, and 4 in tension; and since the vertical components of the resulting

values of F2 and F4 balance out, F3 should not depend on PxB. Equations

(9) and (10) exhibit these effects of PxB. A similar analysis shows that

Eqs. (9) and (10) properly reflect the effect of PxB also.

F1 �
125

253
 PxB

F3 �
125

179
 PyB

∂

F2 �
80

253
 PxB �

45

179
 PyB

F4 �
80

253
 PxB �

45

179
 PyB

∂

37F2 � 216F4 � 80PxB � 45PyB

216F2 � 37F4 � 80PxB � 45PyB

E X A M P L E  11 . 1 0

Determine the horizontal displacement uD at node D that results when

load P is applied downward at node C, as shown in Fig. 1. All members

have the same value of AE.

Plan the Solution We will need to use equilibrium of the truss joints to

determine the Fi’s due to the applied load P, and we will also use equi-

librium to compute the Fui’s due to a unit horizontal force at D. Then, uD

will be given by Eq. 11.41.

Solution

Equilibrium of Real Forces: Either the Method of Joints or the Method
of Sections can be used to determine the Fi’s due to P. The relevant free-

body diagrams are not shown, but the results are shown in Fig. 2.

L   3––––
2

L   3––––
2

L   3––––
2

L/2 uD

A B

C

P

D

Fig. 1
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6In the present solid-mechanics context, the relevant definition of the-word virtual is “being in essence

or effect, but not in fact.” [Ref.: Webster’s New Collegiate Dictionary.]

(1) (2) (3) (4) (5)
Member Li Fi Fui FiFuiLi

AB

AC L

BC L

BD L

CD

a
5

i�1

� �
2

3
 PL

2

3
 PL

2

3

P13

3
13L

�
413

27
 PL

213

9

�2P
3

�413

27
 PL

�213

9

2P
3

813

27
 PL

213

9

4P
3

�
4

3
 PL

2

3

�2P13

3
13L

Equilibrium of Virtual Forces Due to Unit Load: For a unit load applied

at D in the direction of uD, equilibrium solutions give the Fui’s shown in

Fig. 3.

Unit-Load Deflection Calculation: Table 1 gives the values of the terms

in the unit-load equation (Eq. 11.41).

(1)

Ans. (2)

Review the Solution The answer is dimensionally correct. It also makes

sense that pulling down on node C would tend to pull node D to the left,

so the sign of the answer is reasonable.

uD � �
2

3
 
PL
AE

uD � a
5

i�1

FiFuiLi

AiEi

A
B

C

P
P––
3

D

P   3––––
3

(T)

2P   3–––––
3

(C)

2P–––
3

4P–––
3

(T)

2P–––
3

(C)
2P–––
3

(T)

Fig. 2 Real forces Fi.

A B

C
D

2––
3

(T)

2––
3

(T)

2–––
3  3

(T)
2–––

3  3
(C)

2–––
3  3

(C)

1–––
3  3

1–––
3  3

1
1

Fig. 3 Forces Fui due to a unit load.

*11.6 VIRTUAL WORK

Of the two energy methods discussed so far, Castigliano’s Second Theorem (Section

11.5) was shown to have much broader applicability than the Work-Energy
Principle (Section 11.4). For example, it was shown that Castigliano’s Second

Theorem can be used to calculate deflections of statically indeterminate structures

having several loads. In Sections 11.6 and 11.7 we now introduce very powerful

strain-energy methods that are based on the concepts of virtual displacements and

virtual work. Then, in Section 11.8 complementary-energy methods that are based

on virtual forces and complementary virtual work are presented.6

T A B L E  1 Unit-Load Deflection Calculations
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Virtual Displacements and Virtual Work. Consider the pin that connects

the three two-force members of the planar truss in Fig. 11.15a to be a “particle” that

is acted on by the forces shown in Fig. 11.15b. (A similar truss was analyzed in

Example Problem 3.20.) When there are no loads on the truss, the truss is unde-

formed, and the pin is at its initial position, B. When loads Px and Py are applied, the

pin moves a distance u in the x direction and a distance in the y direction to its

(true) equilibrium position, B*. That is, u and are the components of the real dis-
placement of pin B. Now, imagine that the pin moves infinitesimal distances �u in

the x direction and � in the y direction. These infinitesimal, imaginary displace-

ments are called virtual displacements.7

A virtual displacement is an infinitesimal, imaginary displacement, denoted by 
the symbol that is consistent with all kinematic constraints. That is, virtual 
displacements must satisfy the same boundary conditions and compatibility condi-
tions that the real displacements must satisfy. Real forces are not altered by virtual
displacements.

(Note carefully the distinction between the true displacements u and y caused by

the loads, and the infinitesimal virtual displacements that “exist” only in our imagi-

nation.)

Virtual work, designated by �W, is the work done by real forces when virtual displace-
ments occur. The real forces are assumed to remain constant.

To be precise, virtual work is the work that would be done if the points of applica-

tion of the forces were to actually move through the (imaginary) virtual displace-

ments. Hence, for the example in Fig. 11.15b,

(11.42)dW � aa Fxb du � aa Fyb dy

d( � ),

y

y

y

714
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FIGURE 11.15 An example of real displacements and virtual displacements.

(1)

(2)

(a) A three-bar planar truss. (b) Real displacements and virtual displacements.

(3)

A

C
D

B
Px

Py

u

x

y

v

Px

Equilibrium position,
B* under loads Px and Py

Virtual
position, B′

Undeformed
position, B

F1

Py

F3

F2

u

δu

v
δv

7Although the Greek letter � has previously been used to denote displacements themselves, in the 

remainder of this chapter the symbol � will be reserved for use as the virtual operator, much the same

as the letter d is the differential operator in dx, dV, and so forth. Capital delta (�) will be used for 

displacement.
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Equilibrium, and the Principle of Virtual Displacements. At position B*

the pin in Fig. 11.15b is in static equilibrium. From Newton’s Second Law,

(11.43)

at the equilibrium position. Therefore, the following statement holds:

If a particle is in equilibrium under a system of forces, then for any virtual displacement,
the virtual work �W is zero.

The converse, which is called the Principle of Virtual Displacements, is also true.8

If the virtual work done on a particle is zero for any arbitrary kinematically admissible
virtual displacements, then the particle is in equilibrium.

Thus, if, for arbitrary virtual displacement from a given configuration.

(11.44)

then the given configuration is an equilibrium configuration. Referring back to Eq.

11.42, if �W � 0 regardless of the (nonzero) values that we might pick for �u and � ,

then it must be true that 

Virtual Work for Deformable Bodies. The Principle of Virtual Dis-

placements can be extended to any collection of particles—we just get more virtual

displacements and more equilibrium equations, but only one virtual work. For ex-

ample, if there were two particles, we would get

But, we are interested in applying virtual work methods to deformable bodies. Let

the (deformable) spring AB and (rigid) block C in Fig. 11.16 comprise a system that

is in equilibrium under the action of a static load P. Since every particle in the spring

AB and block C is in equilibrium, we can say that �W � 0 applies to the entire sys-

tem. But the force P is the only external force that can do work, because it is the

only external force whose point of application can move.Therefore, the virtual work

done by the external force is

dWext � Pdu

dW � c aa Fxb
1 

du1 � aa Fyb
1 

dy1 d � c aa Fxb
2 

du2 � aa Fyb dy2 d

©Fx � ©Fy � 0.

y

Principle of Virtual
DisplacementsdW � 0

a Fy � 0a Fx � 0,

715
Virtual Work

8This is also sometimes called the Principle of Virtual Work.

FIGURE 11.16 A system in equilibrium.

L0

A B
C P

System boundary
u δu
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In addition, if block C were to undergo a virtual displacement �u, there would be

some virtual work done by the internal forces in the deformable spring.Thus, we can

state the following Principle of Virtual Displacements for a deformable system:

If the virtual work done on a deformable system during any kinematically admissible
displacements (changes from a given configuration) of the system is zero, then the sys-
tem is in equilibrium in the given configuration.

(11.45)

In Eq. 11.45, �Wint is the virtual work done by internal forces in the system under

consideration.

What is �Wint and how is it calculated? Let us isolate just the spring in Fig. 11.16

and call it our “deformable system,” as depicted in Fig. 11.17a. And let us suppose

that this is a nonlinear elastic spring whose force versus elongation curve is shown

in Fig. 11.17b. The system is in equilibrium in Fig. 11.17a because the applied force

Fs(u1) corresponds to the displacement u1. Therefore, we can say that

We know that so

That is, the virtual work done by the internal forces in an elastic deformable body

when the body undergoes virtual displacements is equal to the negative of the

virtual work done by the external forces acting on the deformable body alone.

Therefore, referring to Fig. 11.17b, we see that the virtual work of internal forces

and the strain energy are related by

(11.46)

where �U is the infinitesimal, imaginary increment in the strain energy that would

result from the body undergoing a virtual displacement �u, as indicated in Fig.

11.17b.

We will need to obtain �U when the strain energy is expressed as a function of

several displacements, say U � U(q1, q2, . . . , qn), where the q’s are independent 

dWint � �dU

dWint�u1
� �Fx(u1)du

dWext�u1
� Fs(u1)du,

dWext � dWint � 0

dW � dWext � dWint � 0

716
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FIGURE 11.17 A nonlinear, elastic spring treated as a deformable system.

L0

A B
Fs(u1)

Fs(u1)

Fs(u)

u1
u

Fs

System boundary

(a) A deformable system. (b) Force-elongation curve.

u1 δu

δu

δU
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displacements. Then �U can be determined in the same manner as the differential

dU, namely by

(11.47)

Equation 11.47 gives the virtual strain-energy change due to virtual displacements

�q1, �q2, etc. Its use is illustrated in the following section.

dU �
dU
0q1

 dq1 �
0U
0q2

 dq2 � . . . �
0U
0qn

 dqn

717
Strain-Energy Methods

*11.7 STRAIN-ENERGY METHODS

Principle of Virtual Displacements. By combining Eqs. 11.45 and 11.46 we

arrive at the Principle of Virtual Displacements applied to elastic bodies, which can

be stated as follows:

Among all kinematically admissible configurations of an elastic deformable body, the
actual equilibrium configuration is the one satisfies Eq. 11.48 when the body undergoes
arbitrary virtual displacements from that configuration.

(11.48)

A kinematically admissible configuration is a configuration that satisfies all relevant

kinematic boundary conditions and all relevant equations of deformation compati-

bility.

In the next example problem we apply the Principle of Virtual Displacements

to a problem that could also be solved by the Work-Energy Principle of Section

11.4. Then, in Example Problem 11.12, Eq. 11.48 will be used to solve a deflection

problem that cannot be solved by the method of Section 11.4.

Principle of Virtual
Displacements

dWext � dU

E X A M P L E 11.11

For the two-segment rod in Fig. 1, use the Principle of Virtual

Displacements for deformable bodies to solve for the following: (a) the

displacement uB of node B; and (b) the internal forces F1 and F2 in the

two elements of the statically indeterminate rod system.

The rod properties are A1, E1, L1, and A2, E2, L2, respectively.

Plan the Solution Using the compatibility of displacements at node B
and using a strain energy formula from Eq. 11.6, we can determine an

expression for U(uB), the strain energy of the two-bar system in terms

of the displacement of node B. The load PB does virtual work when

node B moves (actually, when it is imagined to move) through a virtual

Fig. 1

(2)PB

L1

A (1) CB

L2

uB

c11EnergyMethods.qxd  9/10/10  6:13 PM  Page 717



displacement �uB. Thus, we can apply Eq. 11.48 to get an equation of

equilibrium for node B.

Solution (a) Determine uB, the displacement of node B.

Strain Energy: It will simplify notation if we use the element stiffness 

coefficients

(1)

Then, using Eq. 11.6b we can write the total strain energy as

(2)

where ei is the elongation of rod element i.

Geometry of Deformation: According to the Principle of Virtual

Displacements, we are to consider only “kinematically admissible defor-

mations.” Therefore, the kinematics of deformation, including the com-

patibility of the displacements of the two rods at node B, must be 

incorporated into the strain energy so that all kinematic requirements

will be automatically satisfied.

(3)

Then, combining Eqs. (2) and (3), we get the strain energy in a form that

automatically guarantees that all kinematic requirements are satisfied:

(4)

Virtual Work of the External Force: The point of application (node B) of

external force PB is imagined to move through a virtual displacement

�uB (in the same direction as uB), doing virtual work

(5)

Principle of Virtual Displacements: From Eq. 11.48.

(6)

Since the strain energy U is a function of a single displacement uB,

Eq. 11.47 reduces to

(7)

Substituting Eqs. (5) and (7) into Eq. (6) we get

PBduB � (k1 � k2)uBduB

dU �
dU
duB

 duB � (k1 � k2) uBduB

dWext � dU

dWext � PBduB

U �
1

2
 (k1 � k2) u2

B

e2 � �uBe1 � uB,

U � U1 � U2 �
1

2
 k1e2

1 �
1

2
 k2e2

2

k2 �
A2E2

L2

k1 �
A1E1

L1

,

718
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Castigliano’s First Theorem. The Principle of Virtual Displacements. Eq. 11.48,

can be used to formulate the equations of equilibrium of any elastic body. When the

deformation of the body can be characterized by a finite number of independent

displacements, Eq. 11.47 provides a convenient procedure for expressing �U in

terms of the virtual displacements �qi. The virtual work of external forces can then

be expressed in the form

(11.49)

where N is the number of independent displacements, qi. The Pi’s are called gener-
alized forces. The correct values or expressions for the Pi’s are determined by 

formulating �Wext.

Combining Eqs. 11.47 and 11.49, we get the following form of the Principle of

Virtual Displacements:

But, since the above sum is required to be zero for any arbitrary �qi’s and since the

�qi’s are independent, we get

(11.50)
Castigliano’s
First Theoremi � 1, 2, . . . , NPi �

0U
0qi

,

a
N

i�1

aPi �
0U
0qi
b dqi � 0

dWext � a
N

i�1

Pidqi

or

(8)

The Principle of Virtual Displacements states that the system is in equi-

librium if Eq. (8) is satisfied for any arbitrary virtual displacement, in this

case for arbitrary �uB. Therefore, the expression in square brackets in

Eq. (8) must vanish, giving

Ans. (9)

where k1 and k2 are given in Eqs. 1.

(b) Determine the element forces, F1 and F2. From Eq. 3.15.

(10)

Therefore, combining Eqs. (3), (9), and (10), we get

Ans. (11)

Review the Solution We could check this solution by using the methods

of Chapter 3. Since ki has the dimensions of F/L, the dimensions in 

Eq. (9) are correct.The force PB has to stretch rod AB and also compress

rod BC. Therefore, the denominator in Eq. (9) correctly reflects the 

addition of k1 and k2 in resisting PB.

F2 �
�k2PB

k1 � k2

F1 �
k1PB

k1 � k2

,

Fi � kiei

uB �
PB

k1 � k2

[(k1 � k2)uB � PB]duB � 0

719
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This equation is called Castigliano’s First Theorem. It can be viewed as an alterna-

tive form of the Principle of Virtual Displacements when the deformation of the

elastic system can be characterized by N discrete displacement coordinates, qi.

Equation 11.50 produces equilibrium equations written in terms of displacements.

The following example problem could be solved by applying the Principle of

Virtual Displacements. However, we will use the slightly shorter route of using

Castigliano’s First Theorem. This example problem demonstrates the power of

Castigliano’s First Theorem to provide solutions to problems that cannot be solved

by the Work-Energy Principle of Section 11.4.

720
Energy Methods

E X A M P L E  11 . 1 2

A three-element truss has the configuration shown in Fig. 1. A horizon-

tal load of 4 kips is applied to the truss through a pin at node B. Each

member has a cross-sectional area of 1.2 in2, and all of them are made of

aluminum (E � 10 � 103 ksi). Use Castigliano’s First Theorem to deter-

mine u and y, the horizontal and vertical displacements, respectively, at

node B.

Plan the Solution The strain energy of an element can be written in

terms of its elongation by using Eq. 11.6b. The elongation of each ele-

ment can be related to the nodal displacements u and y through Eq. 3.26.

Since there are two nodal displacements, we will have two corresponding

virtual displacements �u and �y. Using Castigliano’s First Theorem, Eq.

11.50, we will get two equilibrium equations to solve simultaneously for u
and y.

Solution

Strain Energy: We can borrow part of this solution from Example

Problem 3.20 (Section 3.10).

(1)

where �i is defined in Fig. 2.

Using Eq. 11.6b, we can write the total strain energy in the three-bar

truss as

(2)

From Eq. 3.26, the elongation of each element can be related to the

nodal displacements u and y by

(3)ei � u cos ui � y sin ui

U � U1 � U2 � U3 �
1

2
 k1e2

1 �
1

2
 k2e2

2 �
1

2
 k3e2

3

sin u3 � 1.0cos u3 � 0.0,k3 � aAE
L
b

3

� 400 kips/in.,

sin u2 � 0.6cos u2 � 0.8,k2 � aAE
L
b

2

� 240 kips/in.,

sin u1 � 0.0cos u1 � 1.0,k1 � aAE
L
b

1

� 300 kips/in.,

Fig. 1

(1)

(2) (3)

A

C
D

B Px = 4 kips

u

x

y

v

30 in.

40 in.

Fig. 2 Notations for truss element.

y

(i)

x

Fi

Fi

θi
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Although only linearly elastic systems have been considered in the example

problems used to illustrate the Principle of Virtual Displacements and Castigliano’s

First Theorem, these methods only require that the system be elastic, not necessar-

ily linear.9

9See Ref. 11-2, Section 10.6, for an example that treats a truss with nonlinearly elastic members.

Then,

(4)

Combining Eqs. (2) and (4), together with k’s from Eq. (1), we get

(5)

Virtual Work of the External Force: The horizontal force Px acting

through a horizontal virtual displacement of �u inches does virtual work

given by

For this case, Eq. 11.49 takes the form

(6)

where

(7)

Castigliano’s First Theorem: From Eq. 11.50, the two equations of equi-

librium for this truss are given by

(8)

so, differentiating Eq. (5) with respect to u and y and combining the 

results with Eqs. (7) and (8), we get

(9)

The left-hand sides of these two equations are exactly the same as those

of the nodal equilibrium equations in terms of nodal displacements that we

got in Eq. (4) of Example Problem 3.20 by employing the Displacement
Method. The right-hand sides are just the nodal force components Px and

Py. The solution of Eqs. (9) is

Ans. (10)

Review the Solution We got essentially the same equations of equilib-

rium by energy methods as we got by using the Displacement Method in

Example Problem 3.20.

 y � �2.22(10�3) in.

 u � 9.38(10�3) in.

 115.2u � 486.4y � 0 kips

 453.6u � 115.2y � 4 kips

0U
0y

� Py
0U
0u

� Px,

Py � 0 kipsPx � 4 kips,

dWext � Pxdu � Pydy

dWext � 4du kip � in

U � [150u2 � 120(0.8u � 0.6y)2 � 200y2]

e3 � ye2 � 0.8u � 0.6y,e1 � u,
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Displacement Method and Finite-Element Analysis. Note that the primary

solution in Example Problem 11.11 was a solution for the nodal displacement uB,

and recall from earlier chapters (e.g., Chapters 3, 4, and 7) that this was a character-

istic of Displacement-Method solutions. Also, the use of Castigliano’s First Theorem

in Example Problem 11.12 produced essentially the same two nodal equilibrium

equations that were obtained by use of the Displacement Method in Example

Problem 3.21. We can conclude that the Principle of Virtual Displacements and
Castigliano’s First Theorem provide alternative ways to formulate a Displacement-
Method solution for deformable-body mechanics problems. The Principle of Virtual

Displacements is the basis upon which most Finite Element Analysis computer

codes are developed.

722
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*11.8 COMPLEMENTARY-ENERGY METHODS

In the previous section, two Strain-Energy Methods—the Principle of Virtual
Displacements and a related form called Castigliano’s First Theorem—were intro-

duced and were shown to be very useful energy methods. They were also shown to

be directly related to the Displacement Method and, therefore, to Finite Element
Analysis. In the present section Complementary-Energy Methods are introduced

and are shown to be closely related to the Force Method, which was introduced in

Section 3.9.

Complementary Work and Complementary Strain Energy. The comple-
mentary work W c done by an axial force P is defined by the following integral:

(11.51)

As illustrated in Fig. 11.18a, this represents the area above the load-elongation

curve. Note that complementary work is expressed as a function of force, not as a

function of displacement, as work is. As in Eqs. 11.2, similar complementary work

integrals can be written for torsional and bending loads.

For an elastic body, the complementary work W c done on the body is stored as
complementary strain energy Uc, which is, therefore, defined as

(11.52)Uc(P) � W c(P)�done on elastic body

W c(P1) � �
P1

0

e(P) dP

FIGURE 11.18 Complementary work and complementary strain energy.

P1

P

dP

e1e e

   W c(P1)

dW c = edP

(a) The area representing 
      complementary work.

(b) The areas representing strain
      energy and complementary
      strain energy.

P

P

ee

 U c(P) = Complementary
           strain energy

   U(e) = Strain
                energy
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As indicated in Fig. 11.18b complementary strain energy is the area above the load-

elongation curve up to the value of the applied load. For linearly elastic axial defor-

mation it is convenient to express the complementary strain energy of a member in

the form

(11.53)

Virtual Forces and Complementary Virtual Work. Virtual displacements,

�u, �qi, and so forth, were defined in Section 11.6 and used in the formulation of 

analytical methods based on virtual work. Recall that a virtual displacement was 

defined as an imaginary, infinitesimal displacement that does not affect the forces in

a body and that is consistent with the geometric compatibility conditions of the

body. In contrast, a virtual force is defined as follows:

A virtual force, �F, is an infinitesimal, imaginary force that, together with other virtual
forces applied to a body in equilibrium, does not affect the equilibrium state of the body.

Figure 11.19 illustrates real forces Pi and virtual forces �Pi (including real cou-

ples Mi and virtual couples �Mi) applied to a deformable body. The body in Fig.

11.19 is in equilibrium under the action of the (real) applied loads P1, P2 . . . , M1, and

so forth. The virtual forces and couples are arbitrary, but they must also satisfy the

same equilibrium equations as the real forces. Therefore, when virtual forces are 

applied as external loads, virtual stresses are induced within the body so that equi-

librium of every part of the body is maintained. Figure 11.20a shows an axial load

P1 applied to a rod, and Fig. 11.20b depicts the resulting virtual normal stress ��x

required at cross-section x to maintain equilibrium of the free body in Fig. 11.20b
when P1 is increased to P1 � �P.

Complementary virtual work is defined as follows:

Complementary virtual work, designated by �W c, is the work done by virtual forces
without altering the configuration of the body on which the virtual forces act.

Complementary
Strain EnergyUc(Fi) �

1

2
fiF

2
i

723
Complementary-Energy

Methods

P1 + δP1

P3 + δP3

P2 + δP2

M2 + δM2
M1 + δM1

FIGURE 11.19 An illustration of virtual forces.

P1 P1 + δP

e1

x

(a) (b)

(  x1 + δ  x) Aσ σ

x1 =   x(x)⎪P = P1
σ σ

L

FIGURE 11.20 Virtual force and virtual stress.
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Complementary virtual work is illustrated in Fig. 11.21a. As indicated in Fig. 11.21b,

complementary strain-energy density is the area above the stress-strain curve.

Principle of Virtual Forces. The Principle of Virtual Forces, or the Principle of
Complementary Virtual Work, states that:

Among all possible equilibrium states, the actual state of a body is the one that satisfies
deformation compatibility.

In equation form, the Principle of Virtual Forces is given by

(11.54)

In Example Problem 11.13 this principle is applied to a statically determinate

problem, illustrating how the Principle of Virtual Forces leads to deformation-

compatibility equations. In Example Problem 11.14 it is applied to a statically

indeterminate problem.

Principle of
Virtual Forces

dW c
ext � dUc

724
Energy Methods

FIGURE 11.21 (a) Complementary work and complementary virtual work; (b) comple-

mentary strain-energy density and virtual change in complementary strain-energy density.

(a)

P1 + δP
P1

P

e1
e

(b)

�x1
�x

U
c
(σx1

)

σx

σx1
 + δσx

σx1

δW  c = eδP

δU
c
 = �x1

δσx

W  c(P1)

Complementary
virtual work

Virtual change in
complementary strain-energy
density

Complementary
work

Complementary
strain-energy
density

E X A M P L E  11 . 1 3

Two elastic, but not necessarily linearly elastic, rod elements are con-

nected together at B and loaded by axial forces PB and PC, as shown in

Fig. 1.

The displacements of B and C under loads PB and PC are uB and uC

respectively. Show that “among all equilibrium states of this system, the

state that satisfies Eq. 11.54 is the kinematically admissible state, that is,

the state that satisfies deformation compatibility.”

Plan the Solution The force versus elongation (Fi vs ei) curve for each

(nonlinearly elastic) element can be assumed to be similar to that in

Fig. 11.18b. The part of the statement that says “among all equilibrium

states” can be satisfied by relating internal forces F1 and F2 to the external

loads PB and PC through the use of free-body diagrams and equilibrium

Fig. 1

PCPB

uB uCA B
(2)

C
(1)
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equations. The “deformation compatibility” in this problem consists of

relating the elongations e1 and e2 to the displacements uB and uC (e.g., see

Chapter 3). The complementary virtual work terms will be uB�PB, e1 �F1,

and so forth.

Solution

Equilibrium: Both real forces and virtual forces must satisfy equilib-

rium. Since this is a statically determinate rod system, we can directly re-

late the internal forces F1 and F2 to the external forces PB and PC

through equilibrium equations based on the free-body diagrams in Fig. 2.

The same is true for virtual forces. Equilibrium must hold for the real

forces and also when arbitrary virtual forces are added. Therefore, we

must have

and

and

(1)

Principle of Virtual Forces: For each element the internal forces are 

assumed to be related to the elongations by a curve having the form 

indicated in Fig. 3. Therefore, for element i the virtual force �Fi does an

amount of complementary virtual work ei�Fi, as indicated in Fig. 3. This

is the change in complementary energy in element i.
The Principle of Virtual Forces, Eq. 11.54, states that

(2)

Writing out the contributions to each side of this equation we get

(3)

The virtual forces must satisfy the virtual-force equilibrium equations in

Eqs. (1). Substituting these into Eq. (3) gives

(4)

or

(5)

Then, since �PB and �PC are arbitrary [as long as equilibrium is satisfied;

which it is by the step from Eq. (3) to Eq. (4)], Eq. (5) requires that

Ans. (6)

These are the equations of deformation compatibility for this problem.

Review the Solution We started by guaranteeing that the virtual forces

would always satisfy equilibrium, applied the Principle of Virtual Forces,

and arrived at sensible expressions for the kinematic relationships between

uC � e1 � e2uB � e1,

(e1 � uB)dPB � (e1 � e2 � uC)dPC � 0

uBdPB � uCdPC � e1(dPB � dPC) � e2(dPC)

uBdPB � uCdPC � e1dF1 � e2dF2

dW c � dUc

dF2 � dPCF2 � PCaa Fb
2

� 0:

dF1 � dPB � dPCF1 � PB � PCaa Fb
1

� 0:

Fig. 2 Free-body diagrams.

Fig. 3 Force-elongation curve for an

element.

ei
ei

Fi

δFi δU i
c

PC + δPC

PC + δPC

PB + δPB

F1 + δF1

F2 + δF2

(2)

(2)

(1)

(a) FBD 1.

(b) FBD 2.
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Next we consider a statically indeterminate problem.This will enable us to illus-

trate the relationship between the Principle of Virtual Force and the Force Method,

which was discussed in Chapters 3, 4, and 7.

nodal displacements and elongations. Therefore, we illustrated the state-

ment of the Principle of Virtual Forces, as requested. Although we 

allowed for possible nonlinear material behavior, this application did not

involve material properties directly, since we were not asked to solve for

uB and uC in terms of the loads.

E X A M P L E  11 . 1 4

The external force P is applied to the rigid block in Fig. 1 in such a man-

ner that the two rods that support the block undergo equal elongations.

Let the rod elements be linearly elastic with flexibility coefficients fi (see

Eq. 3.14). Use the Principle of Virtual Forces, Eq. 11.54: (a) to obtain the

compatibility equations for this system, and (b) to obtain the internal

forces in the two rods.

Fig. 1

PB

P

u
L1

L2

(2)

(1)

Plant the Solution Part (a) should be a repeat, more or less, of Example

Problem 11.13. In Part (b) we can employ the linearly elastic force-

elongation relationships, ei � fiFi, and see if this gets the desired expres-

sions for F1 and F2. This problem is statically indeterminate, however, so

we can expect to have to identify one of the Fi’s as a redundant force.

Solution

(a) Obtain the compatibility equations.

Equilibrium: The block in Fig. 2 must be in equilibrium under the action

of the real forces, and also when virtual forces are added to the real

forces. Therefore,

and (1)

Since there is only one equilibrium equation for real forces (and, corre-

spondingly only one equilibrium equation for virtual forces), this is a

statically indeterminate problem. Let us select F1 as the redundant force

dF1 � dF2 � dPF1 � F2 � Pa F � 0:

P + δP

F1 + δF1

F2 + δF2

Fig. 2 Free-body diagram.
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(and �F1 as the redundant virtual force). Then, Eqs. (1) can be expressed

in the form

and (2)

Principle of Virtual Forces: The Principle of Virtual Forces, Eq. 11.54,

states that

(3)

Complete Part (a) by determining the compatibility equations: If we write

in terms of e1 and e2 directly, as we did in Example Problem 11.13,

we will get the requested compatibility equations.

(4)

Substituting Eq. (2b) into Eq. (4), we get

(5)

or

(6)

But, since equilibrium is satisfied for any �P and any �F1 because of the

step from Eq. (4) to Eq. (5), Eq. (6) requires that

Ans. (a) (7)

Therefore, the Principle of Virtual Forces has produced a complete set of

compatibility equations for this problem.

(b) Determine the axial forces F1 and F2. If we insert the force-elongation

relations for the two rod elements, we will be able to solve for the forces

in the rods. In the present problem, the rods are linearly elastic. We

need the equations in the form e � e(F ). Therefore, let us use Eq. 3.14

written as

(8)

Substituting Eqs. (2a) and (8) into Eq. (7b) we get

and, solving for the redundant force F1, we get

Ans. (b) (9a)F1 �
f2P

f1 � f2

f1F1 � f2(P � F1)

e2 � f2F2e1 � f1F1,

e1 � e2e2 � u,

(u � e2)dP � (e1 � e2)dF1 � 0

udP � e1dF1 � e2(dP � dF1)

udP � e1dF1 � e2dF2

dUc

dW c
ext � dUc

dF2 � dP � dF1F2 � P � F1

727
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The Crotti-Engesser Theorem. The Principle of Virtual Displacements,

Eq. 11.48, was rephrased as Castigliano’s First Theorem by incorporating the ex-

pression

for the virtual work of external forces. In an analogous manner, when bodies are

loaded by discrete forces the complementary virtual work can be written in the form

(11.55)

where the Pi’s can include couples, and where ui is the displacement (or rotation)

that corresponds to the force (or couple) Pi. Since the complementary strain energy

is fundamentally a function of the applied loads, an expression analogous to 

Eq. 11.47 can be written for �Uc, as follows:

(11.56)

Inserting Eqs. 11.55 and 11.56 into Eq. 11.54, the Principle of Virtual Forces, and

noting that the virtual forces are independent, we get

(11.57)

This is called the Crotti-Engesser Theorem.10 It applies to nonlinearly elastic bodies

as well as linearly elastic bodies, as is illustrated by the next example problem.

Crotti-Engesser
Theorem

i � 1, 2, . . . , Nui �
0Uc

0Pi
,

dUc � a
N

i�1

0Uc

0Pi
dPi

dW c � a
N

i�1

uidPi

dWext � a
N

i�1

Pidqi

This redundant force can be substituted back into Eq. (2a) to give the

other internal force

Ans. (9b)

Note that the use of the Principle of Virtual Forces leads us naturally to

a Force-Method solution of this statically indeterminate problem.

Review the Solution Using the Principle of Virtual Forces, we arrived

at the compatibility equations that we could have written down “by 

inspection.” However, we also arrived at a solution for internal forces

that we can verify by noting that the solution for the forces in Eqs. (9)

satisfies equilibrium, F1 � F2 � P, and compatibility, f1F1 � f2F2.

F2 �
f1P

f1 � f2

10The Crotti-Engesser Theorem is named after the Italian engineer Francesco Crotti (1839–1896) who

developed it in 1878, and the German engineer Friedrich Engesser (1848–1931), who independently 

derived the theorem in 1889. Engesser introduced the notion of complementary energy. [Ref. 11-1]
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E X A M P L E  11 . 1 5

Axial loads PB and PC are applied, as shown in Fig. 1a, to a two-element

rod system whose elements both behave according to the nonlinear

force-elongation curve in Fig. 1b. Using the Crotti-Engesser Theorem,

determine expressions for uB and uC in terms of the loads PB and PC and

the material constant D.

Plant the Solution The complementary strain energy of an element 

is the shaded area above the curve in Fig. 1b. We can obtain by 

integration. To get Uc(PB, PC) we must relate the Fi’s to the P’s by equilib-

rium equations. Then we can directly apply Eq. 11.57, the Crotti-Engesser

Theorem.

Solution

Equilibrium: This is the same configuration as the one in Example

Problem 11.13, where we got

and

and
(1)

Complementary Strain Energy: From Eqs. 11.51 and 11.52,

(2)

For the two-element system, then,

(3)

which, when combined with Eqs. (1), gives

(4)

Crotti-Engesser Theorem: Since Eq. (4) incorporates both equilibrium

and force-elongation information, we apply the Crotti-Engesser

Theorem, which takes care of the geometric compatibility aspect of the

solution. Then,

Ans. (5)

Review the Solution For this simple example, we can see “by inspec-

tion” that uB � e1, and uC � e1 � e2. Then, using from Fig. 1b,

and substituting the equilibrium expressions for the Fi’s, we get the 

answers in Eq. (5).

ei � DF 3
i

uB �
0Uc

0PB
� D(PB � PC)3

uC �
0Uc

0PC
� D[(PB � PC)3 � P3

C]

∂

Uc �
D
4

[(PB � PC)4 � P4
C ]

Uc �
1

4
 DF4

1 �
1

4
 DF4

2

Uc
i (Fi) � �

Fi

0

edF � �
Fi

0

DF3dF �
1

4
DF4

i

dF2 � dPCF2 � PC

dF1 � dPB � dPCF1 � PB � PC

Uc
i (Fi)

Fig. 1

(b) Nonlinear element
      force-elongation curve.

(a) A 2-element rod system.

PCPB

uB uC
A B

(2)
C

ei
e

e = DF3

F

Fi

Ui
c

(1)
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The Crotti-Engesser Theorem Applied to Statically Indeterminate
Systems. Example Problem 11.14 treats a statically indeterminate problem from

the standpoint of the Principle of Virtual Forces. Let us select a set of NR redundant

forces to use in solving a statically indeterminate problem, and let these be called

R1, R2, . . . , . Then the complementary strain energy can be expressed in terms of

the applied loads and these redundants. The displacements that correspond to the

redundant forces are all zero (i.e., the system is not really cut, but we imagine that

it is cut so that the redundants that we have chosen appear as known forces).

Therefore, the Crotti-Engesser Theorem applied to statically indeterminate systems
is given by the following two equations. First, the NR redundant forces are deter-

mined by

(11.58)

Then, the displacements that correspond to the loads Pi can be obtained from

(11.59)

We will now use Eq. 11.58 to re-solve Example Problem 11.14.

i � 1, 2, . . . , Nui �
0Uc(P1, P2, . . . , PN ; R1, . . . , RNR

)

0Pi
,

i � 1, 2, . . . , NR

0Uc(P1, P2, . . . , PN ; R1, . . . , RNR
)

0Ri
� 0,

RNR

730
Energy Methods
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For the system in Example Problem 11.14, which consists of two linearly

elastic rods connected to a rigid block, use Eq. 11.58 to solve for the re-

dundant force F1.

Plant the Solution For linearly elastic rods, Eq. 11.53 gives an expres-

sion for Uc. If we incorporate the equilibrium equation (see Example

Problem 11.14) into this we will get Uc in terms of P and F1 (R1 � F1 �
redundant force). Then we can apply Eq. 11.58 to get an equation for F1.

Solution

Equilibrium: From Eq. (2) of Example Problem 11.14,

(1)

Complementary Strain Energy: From Eq. 11.53,

(2)

Selecting F1 as the redundant and combining Eqs. (1) and (2), we get

(3)Uc �
1

2
 f1F2

1 �
1

2
 f2(P � F1)2

Uc �
1

2
 f1F2

1 �
1

2
 f2F2

2

F2 � P � F1
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By comparing Eqs. 11.36 and 11.57 you will note that Castigliano’s Second 

theorem is a special case of the Crotti-Engesser Theorem for the case of linearly

elastic behavior, when the complementary strain energy Uc is equal to the strain en-

ergy U, as illustrated in Fig. 11.22. For use with Castigliano’s theorem (Eq. 11.36) the

strain energy is written in terms of forces instead of displacements. We will there-

fore refer to Castigliano’s Second Theorem and the Unit-Load Method as Special
Linear Methods. Table 11.2 summarizes the features of the Strain-Energy Methods
of Section 11.7, the Complementary-Energy Methods of Section 11.8, and the Special
Linear Methods of Section 11.5.

Crotti-Engesser Theorem: With F1 taken as the redundant, Eq. 11.58

becomes

(4)

Then, the result of combining Eqs. (3) and (4) is

or

Ans. (5)

which is the same solution (a Force-Method solution) that we got in

Example Problem 11.14.

Review the Solution No further checking is necessary, since we got the

same answer that we got in Example Problem 11.14. If we take �Uc/�P
using Eq. (3), we directly get the equation for the displacement, that is,

into which we can substitute F1 from Eq. (5).

u � f2(P � F1)

F1 �
f2P

f1 � f2

f1F1 � f2(P � F1) � 0

0Uc

0F1

� 0

P

P

ee

P = ke, e = fP

U

U
c

FIGURE 11.22 The load

versus elongation diagram of

a linearly elastic member.

Strain-Energy Methods Complementary-Energy Methods Special Linear Methods

Functional dependencies: Functional dependencies: Functional dependencies:

�W(displ.), �U(displ.) �W c(forces), �Uc(forces) �W(forces), �U(forces)

Compatibility implicitly required. Equilibrium implicitly required. Equilibrium implicitly required.

Uses virtual displacements. Uses virtual forces. Uses virtual forces.

Produces equilibrium equations in Produces compatibility equations in Produces compatibility equations in

terms of displacements. terms of forces. terms of forces.

Material may be nonlinear. Material may be nonlinear. Material must be linear.

T A B L E  1 1 . 2 Comparison of Energy Methods
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So far we have assumed that all loads are applied slowly until each reaches its max-

imum value and then remains at this static-loud value.When forces are applied more

rapidly, like wave loading of an offshore oil platform or impact loading of an auto-

mobile during a collision, it is necessary to turn to the topic of structural dynamics

to determine the time-dependent behavior of the dynamically loaded deformable

body.11 Here we make simplifying assumptions that enable us to see that there is

definitely a difference between the response of a deformable body to static loading

and its response to dynamic loading.

We begin by employing a “massless” linear spring as the deformable member.

Later we will generalize to bars, beams, and other deformable bodies. In the first

case we consider a weight W that falls from height h onto the massless, linear spring

with spring constant k (i.e., P � k�). In the second case we consider a mass that is

moving with speed y when it strikes the spring.

A. Gravitational Potential Energy Converted to Strain Energy of a
“Massless” Linear Spring. Let weight W be dropped from height h onto a

massless, linear spring, and assume that no energy is lost during the initial contact of

the weight with the spring. Three positions are identified in Fig. 11.23a: (1) the posi-

tion where the weight is released from rest, (2) the position where the weight 

initially contacts the spring, and (3) the lowest position reached by the weight,

where the spring has its maximum compression, �max, and where the weight is 

(momentarily) stopped.

If no energy is lost during the impact, we can equate the gravitational potential

energy lost by the weight in falling through the distance (h � �max) to the increase

in strain energy in the spring when it is compressed by an amount �max. Then,

(11.60)

Solving for the positive root of this quadratic equation in �max, we get

(11.61)

But W/k is the static compression, �st, that would occur if the weight W were slowly

lowered onto the spring. Therefore, Eq. 11.61 can be recast in the convenient form

(11.62)

This equation says that �max � 2�st, with

(11.63)¢max � 2¢st

¢max � ¢st c1 � a1 �
2h
¢st

b1/2 d

¢max � aW
k
b � c aW

k
b2

� 2h aW
k
b d 1/2

W(h � ¢max) �
1

2
 k¢2

max

*11.9 DYNAMIC LOADING; IMPACT

11For example, see Fundamentals of Structural Dynamics, 2nd Edition, by Roy R. Craig, Jr. and Andrew

J. Kurdila, [Ref. 11-3].

FIGURE 11.23 Impact

loading—falling-weight case.

h

(1)

Δmax
k

(2)
(3)

W

P

Δ

U =    kΔ21–
2

P = kΔ

(a)

(b)
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if the weight is suddenly released when it is just touching the spring, that is, at posi-

tion (2) in Fig. 11.23a.

At position (3) in Fig. 11.23a, where the spring is at its maximum compression,

�max, the force exerted on the spring by the weight (and vice versa) has a magnitude

(11.64)

where �max is given by Eq. 11.61 or 11.62.

B. Kinetic Energy Converted to Strain Energy of a “Massless” Linear
Spring. Figure 11.24 shows a mass that is moving with speed v at the instant when

it makes contact with a massless, linear spring. If we assume that no energy is lost in

the impact process, then energy is conserved, and the kinetic energy of the mass at

position (1) in Fig. 11.24 is converted to strain energy stored in the spring in posi-

tion (2). Then,

(11.65)

or

(11.66)

As in Case A, the maximum force exerted on the spring by the mass is given by 

Eq. 11.64, with �max, in the present case, given by Eq. 11.66.

C. Impact on Deformable Bodies. Figure 11.25 depicts as sliding collar that

drops from height h, makes contact with a flange on the end of a linearly elastic rod,

and stretches the rod by an amount �max. The analysis of Case A can be applied to

this system and other deformable bodies if we make the following assumptions:

• The mass of the impacted deformable body is negligible in comparison with

the impacting mass.

• The impacting mass is rigid.

• No energy is lost in the impact.

¢max �
B

My2

k

1

2
 My2 �

1

2
 k¢2

max

Pmax � k¢max

733
Dynamic Loading; Impact

FIGURE 11.24 Impact

loading—moving-mass case.

(1)

Δmax

(2)
v

k

M

Frictionless
surface

FIGURE 11.25 Impact loading of a uniform rod.

v = 0

h

Uniform
rod

Flange

Sliding
collar

W = mg
L

v

g

v = 0

Δmax

(a) (b) (c)
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These assumptions lead to conservative answers. That is, the deformation and

stresses calculated are greater than the actual values would be if energy losses and

other factors hinted at above were completely accounted for.

With the preceding assumptions, we do not have to consider conservation of

momentum upon impact or consider stress waves in the impacted body; we can just

apply the results obtained previously for a “massless” spring. Equations 11.62 and

11.66 can be used to determine �max for the respective two types of impact, with an

equivalent stiffness. k, determined for the particular elastic body impacted.

However, to determine the maximum stress caused by the impact, we must apply

the dynamic load Pmax of Eq. 11.64 to the particular body impacted (e.g., rod, beam,

etc.). The next two example problems illustrate the effect of impact loading on 

deformable bodies.

734
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E X A M P L E  11 . 1 7

For the rod and sliding collar of Fig. 11.25, (a) determine an expression

for �max as a function of W, A, E, h, and L. (b) If the weight is dropped

from a height of h � 40�st, determine the value of the impact amplifica-
tion factor �max/�st, (c) Determine the maximum impact stress �max in

terms of the static stress �st, the drop height h, and the rod parameters.

Solution

(a) Determine �max, the maximum displacement. We could use either Eq.

11.61 or 11.62, taking � to be positive for elongation, rather than for

compression as in the original derivation. Let us use Eq. 11.62.

(1)

If the weight were to be lowered slowly onto the flange of the rod, we

would get the static elongation

(2)

Combining Eqs. (1) and (2), we get the desired expression

Ans. (a) (3)

(b) Determine the impact amplification factor. For h � 40�st, Eq. (1) gives

Ans. (b) (4)

(c) Determine the maximum impact stress. Since for

axial deformation, Eq. (1) can be converted directly to the following 

s � E� � E a¢
L
b

¢max

¢st

� 10

¢max �
WL
AE
c1 � a1 �

2AEh
WL

b1/2 d

¢st �
W
k

�
WL
AE

¢max � ¢st c1 � a1 �
2h
¢st

b1/2 d
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equation for �max:

Ans. (c) (5)

It is left as an exercise for the reader (Probs. 11.9-8, 11.9-9) to show

that impact loading of a rod with enlarged cross section over a portion of

its length produces a higher maximum stress than the stress given by 

Eq. (5) for a uniform rod. Thus, from the standpoint of elastic energy ab-

sorption, a rod with uniform cross section is preferable to a rod with

nonuniform cross section.

smax � sst c1 � a1 �
2Eh
Lsst

b1/2 d

E X A M P L E  11 . 1 8

A diver is springing on the diving board shown in Fig. 1. On a particular

bounce, the diver reaches a height h above the end of the board. Treat

the diver as a rigid mass that falls from a height h, and assume that the

diving board is much lighter than the diver (e.g., a fiberglass board might

be very light) and is straight when the diver strikes it at the very end.

(a) Determine the maximum deflection of the tip of the diving board.

Express your answer in terms of W, h, and the parameters of the diving

board—E, I, and L. (b) Determine the maximum flexural stress caused

by the diver’s “impact.” Express your answer in terms of the maximum

static flexural stress and the parameters of the diving board.

Neglect shear deformation and neglect any energy loss during

impact. Also neglect the mass of the diving board, and assume that 

EI � const.

Plan the Solution We can use the results of Example Problem 11.4 to

determine an expression for k to use in Eq. 11.62 for �max. In Part (b) we

can use Eq. 11.64 to determine the maximum force that the diver exerts

on the beam. Then we can use the flexure formula, Eq. 6.13, with the

maximum bending moment produced by Pmax.

Solution

(a) Determine the maximum deflection at the tip of the diving board.

This deflection can be determined from Eq. 11.62, which we can write in

the form

(1)

From Example Problem 11.4, the deflection � at the tip of the beam 

(diving board) in Fig. 2 is

(2)¢ �
2

3
 
PL3

EI

¢max �
W
k

 c1 � a1 �
2kh
W
b1/2 d

Fig. 2 The deflection caused by a tip

load.

Fig. 1

W

h

L L

B

EI = const

A

C

L L

BA

Δ

P

C
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Since k is defined by P � k�, for this beam configuration and loading

(3)

Therefore, Eqs. (1) and (3) may be combined, giving the desired answer

Ans. (a) (4)

(b) Determine the maximum flexural stress. For the free body in Fig. 3,

Therefore, the beam loading is symmetric about B, and the maximum

bending moment along the beam occurs at B, where MB � �PL. We 

obtain the maximum impact force at the tip, A, by combining Eq. 11.64

and Eq. (3), giving

(5)

so the maximum bending moment is

(6)

Let c be the distance from the neutral axis to the top fibers of the

beam. Then, from the flexure formula, Eq. 6.13,

(7)

Let �st be the maximum flexural stress in the beam under static loading

(e.g., with the diver standing on the end of the diving board). Then,

(MB)st � �WL, so

(8)

Finally, we can combine Eqs. (4), (7), and (8) to get the following 

expression relating �max and �st:

Ans. (b) (9)

(Note that this expression differs from the answer for axial impact on a

rod, whereas the same expression, Eq. 11.62, relates �max to �st for both

problems.)

smax � sst c1 � a1 �
3Ehc

sstL
2
b1/2 d

sst �
WLc

I

smax �
�(MB)maxc

I
� a3Ec

2L2
b ¢max

(MB)max � �a3EI

2L2
b¢max

Pmax � a3EI

2L3
b¢max

Cy � �PaaMb
B

� 0:

¢max �
2WL3

3EI
c1 � a1 �

3EIh

WL3
b1/2 d

k �
3EI

2L3

Fig. 3 Free-body diagram.

Cy

B

By

A

P

L L

C

736

 c11EnergyMethods.qxd  9/10/10  7:24 PM  Page 736



11.10 PROBLEMS

DProb. 11.3-5. (a) Determine the strain energy U stored 

in the uniform aluminum rod shown in Fig. P11.3-5a. Let 

Eal � 10(103) ksi and PB � 6 kips. (b) Determine the strain

energy stored in the rod if PE � 6 kips and the diameter over

half of the length of the rod is increased to d2 � 1.25 in., as

illustrated in Fig. P11.3-5b.

Problems 11.3-1 through 11.3-15. These problems deal
with the strain energy stored in various members under-
going axial deformation. Assume that the stress distribu-
tion is uniform at every cross section, even where there is
a sudden change in the cross-sectional area.

Prob. 11.3-1. A uniform aluminum-alloy rod with cross-

sectional area A � 1 in2 and length L � 50 in. is subjected to

an axial load P, as shown in Fig. P11.3-1. Let Eal � 10(103) ksi.

(a) Sketch a load versus elongation diagram (i.e., load P ver-

sus elongation e) for elongations from 0 in. to 0.250 in. (Hint.

Recall Eq. 3.15.) (b) Calculate the strain energy U stored in

the rod when P � 40 kips, and indicate on your P � e dia-

gram of Part (a) the area that represents this strain energy.

P11.3-1 and P11.3-2

Prob. 11.3-2. A uniform steel rod with a diameter of d �
30 mm and a length L � 1.5 m is subjected to an axial load

P as shown in Fig. P11.3-2. Let Est � 200 GPa and �Y �
250 MPa. (a) Determine the minimum value of P at which

yielding would occur. (b) Calculate the strain energy U
stored in the rod when P reaches the yield load PY deter-

mined in Part (a).
DProb. 11.3-3. The stepped rod shown in Fig. P11.3-3 is sub-

jected to equal axial loads of magnitude P at section B and

at section C. (a) If A1 � 2A, A2 � A, L1 � L2 � L, and E1 �
E2 � E, determine: (1) the strain energy U1 in the rod AB,

(2) the strain energy U2 in rod BC, and (3) the total strain 

energy U. (b) Would less strain energy be stored in rod AC
if the rod were uniform, that is, if A1 � A2 � A? Justify your

yes or no answer.

L

e

P

d

P11.3-3

L L

(2)(1)

A B
P

P

C

P11.3-4

L/2

(2)

L/2

(1)
A B CP

3P

P11.3-5, P11.3-6, and P11.4-1

Prob. 11.3-6. (a) Determine the value of the force PE that

would cause the stepped rod in Fig. P11.3-6b to have the

same elongation as the rod in Fig. P11.3-6a when PB �
6 kips. Let Eal � 10(103) ksi. (b) Determine the strain energy

stored in each of the two rods under the loads specified in

Part (a).
DProb. 11.3-7. Let Ua be the strain energy stored in a uni-

form rod of cross-sectional area A and length L whose mod-

ulus of elasticity is E, as illustrated in Fig. P11.3-7a. If the

cross-sectional area of the rod is changed to �A (� < 1 means

that the area is decreased; � 	 1 means that the area is in-

creased) over a portion of the length equal to �L (0 
 � 
 1)

determine an expression for the ratio of strain energy in the

stepped bar to the strain energy in the uniform bar, that is,

determine an expression for Ub/Ua in terms of the parame-

ters � and �.

4 ft

(a) (b)

(1)

A

B
PB PE

d1 = 1.0 in.

2 ft
2 ft

C
D

E

d1 = 1.0 in.
d2 = 1.25 in.

(2)
(3)

P11.3-7

*Prob. 11.3-8. Two types of steel bolts are being considered

for a particular application for which energy-storage capacity

L

(a) (b)

(1)

A
A

B
P P

λL

C
D

E(2)
(3)

A
αA

L

Prob. 11.3-4. Determine the strain energy U stored in the

uniform member shown in Fig. P11.3-4 if the modulus of

elasticity is E and the cross-sectional area is A.
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is important. Bolt A has threads along its entire length, but

bolt B has a larger-diameter shank over a 3-in. portion of its

original length.When the nut is tightened, a 3.5-in. section of

each bolt will be under a tension of 5 kips. The diameter of

the threaded portion to be used in calculating the tensile

stress is 0.432 in., and the diameter of the unthreaded shank

portion of bolt B is 0.500 in. Letting Est � 30(103) ksi for

both bolts, determine the strain energy stored in each bolt.

Prob. 11.3-12. The cross-sectional areas of the four mem-

bers of the pin-jointed truss shown in Fig. P11.3-12 are 

A1 � A2 � 1 in2, A3 � A4 � 1.5 in2, Determine the total strain

energy U stored in the truss when a vertical load P � 2 kips

is applied at D. All members are made of steel with 

Est � 30(103) ksi.

P11.3-8

Prob. 11.3-9. Determine an expression for the strain energy

U stored in a solid conical frustum (Fig. P11.3-9) having a

maximum diameter of dA, a minimum diameter of dB, and a

length of L. Let the modulus of elasticity be E and the axial

load be P.

Bolt A Bolt B
P11.3-11 and P11.4-4

3

4

(2)

(1) B

P

A

L

C

P11.3-12 and P11.4-5

Prob. 11.3-13. The cross-sectional areas of the three mem-

bers of the pin-jointed truss shown in Fig. P11.3-13 are A1 �
A2 � 500 mm2, and A3 � 800 mm2. Determine the total strain

energy U stored in the truss when a load P � 5.2 kN is ap-

plied at B, as shown. All members are made of aluminum

alloy with Eal � 70 GPa.

(2)(3)

(4)

(1)

D

P

A B

40 in. 30 in.
C

30 in.

P11.3-13

Prob. 11.3-14. A uniform rod AB of length L and cross-

sectional area A hangs under its own weight from a rigid

1 m

1 m

A
C

B

(1)

(2)

(3)

1 m

12

5

P = 5.2 kN

P11.3-9 and P11.4-2

Prob. 11.3-10. The width of the 0.5-in.-thick steel plate

shown in Fig. P11.3-10 (E � 29(103) ksi) varies linearly from

h1 � 4 in. to h2 � 2 in. over a length L � 12 in. (a) Determine

the strain energy Ua stored in this plate when it is subjected

to a load P � 2 kips. (b) Determine the strain energy Ub

stored in the plate if the load P is increased to the value that

causes initial yielding in the plate. Let �Y � 36 ksi.

L

A

B

P
dB

dA

P11.3-10 and P11.4-3

Prob. 11.3-11. The two members of the pin-jointed truss

shown in Fig. P11.3-11 have the same modulus of elasticity E
and the same cross-sectional area A. Determine the total

strain energy U stored in the truss in terms of the load P, the

length L, E, and A.

4 in.

t = 0.5 in.

1 in.

1 in.

L = 12 in.

A
B

P
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support at A as illustrated in Fig. P11.3-14. If the rod is

made of linearly elastic material with modulus of elasticity

E and specific weight � (i.e., weight per unit volume), deter-

mine the strain energy U stored in the rod in terms of �, E,

A, and L.

twist diagram for torques ranging from 0 kip � in. to 10 kip � in.

(Hint: Recall Eq. 4.21.) (b) Calculate the strain energy U
stored in the rod when T � 4 kip � in., and indicate on your

T � 	 diagram of Part (a) the area that represents this strain

energy.

Prob. 11.3-17. The stepped rod in Fig. P11.3-17 is subjected

to equal external torques T0 at section B and at end C. The

shear modulus of the rod is G, and the dimensions of the rod

are d1 � 1.5d, d2 � d, and L1 � L2 � L, (a) Determine (1)

the strain energy U1 stored in rod AB. (2) the strain energy

U2 stored in rod BC, and (3) the total strain energy U. (b)

Would less strain energy be stored in rod AC if the rod were

uniform, that is, if d1 � d2 � d? Justify your answer.

P11.3-14

*Prob. 11.3-15. Determine an expression for the strain en-

ergy U stored in a vertically hanging solid conical frustum

having a maximum diameter d1, a minimum diameter d2, and

a length L (Fig. P11.3-15). Let the modulus of elasticity be E
and the specific weight (i.e., the weight per unit volume) be �.

L

A

B

g

P11.3-17

A

B
C

(2)

(1)

L

L

d1

T0

T0 d2

P11.3-18

Prob. 11.3-19. A uniform tubular aluminum-alloy shaft 

(G � 3.8(103) ksi) with outside diameter do � 1.25 in, and

length L � 2 ft is subjected to a torque T � 3 kip � in.

(Fig. P11.3-19). (a) If the maximum shear stress in the shaft is 

10 ksi, determine the value of the inside diameter, di, of the

shaft, and (b) determine the strain energy stored in the shaft.

Prob. 11.3-18. A uniform torsion rod is subjected to an end

torque T, as shown in Fig. P11.3-18. The rod has a diameter

d � 30 mm and a length L � 1.5 m. If the maximum shear

stress in the rod is 60 MPa, how much strain energy is stored

in the rod? Let G � 70 GPa.

L

d

B

A

T

P11.3-19 and P11.4-6

2 ft

do = 1.25 in.di

T = 3 kip · in.

B

A

φA

P11.3-15

Prob. 11.3-16. A uniform aluminum-alloy rod with circular

cross section of diameter d � 1 in. and length L � 50 in. is

subjected to an end torque T as shown in Fig. P11.3-16. Let

G � 4(103) ksi. (a) Sketch a torque versus total angle-of-

d2

d1

L

A

B

g

P11.3-16

L

d

T

φ = angle of twist

Problems 11.3-16 through 11.3-25. These problems deal
with the strain energy stored in various members under-
going torsional deformation. Assume that the stress dis-
tribution obeys Eq. 4.11 at every cross section, even
where there is a sudden change in the diameter of the
cross section.
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Prob. 11.3-20. Determine the strain energy stored in the 

tapered bar in Fig. P11.3-20. Express your answer in terms of

T0, L, dA, dB, and the shear modulus G.

Prob. 11.3-24. A torque TB is applied to the uniform rod AC
as shown in Fig. P11.3-24. The rod is attached to rigid sup-

ports at ends A and C. Determine the total strain energy 

U(	B) stored in the rod. Express your answer in terms of the

length L, the polar moment of inertia Ip, the shear modulus

G, and the angle of twist 	B. The torque TB will not appear

explicitly in your answer.

P11.3-20 and P11.4-7

Prob. 11.3-21. The uniform torsion rod shown in Fig. 11.3-21

is subjected to a distributed torque of constant magnitude t0

(torque per unit length). Derive an expression for the total

strain energy stored in the rod. Express your answer in terms

of t0, d, L, and the shear modulus G.

L

A

B

φB

T0

dB

dA

P11.3-24 and P11.4-9

Prob. 11.3-25. Torques TB and TC are applied to the uniform

rod AD, as shown in Fig. P11.3-25. The rod is attached to

rigid supports at A and D. Determine an expression for the

total strain energy in the rod, U(	B, 	C) where 	B and 	C are

the angles of twist at sections B and C, respectively. Express

your answer in terms of 	B, 	C, the length L, the polar 

moment of inertia Ip, and the shear modulus G. The torques

TB and TC will not appear explicitly in your answer.

φB

(2)

(1)

L

2L

CB

TB

A

P11.3-25

DProb. 11.3-26. Four gears are attached to a shaft that trans-

mits torques as shown in Fig. P11.3-26. (a) Determine the

φC

φB

(3)
(2)

(1)

L

L
L

D
C

B

TB
TC

A

P11.3-26

1000 N · m

2000 N · m

400 N · m

600 N · m

d3

L3

L2

L1
d2

d1A
B

C

D

P11.3-21

Prob. 11.3-22. (a) Determine the strain energy U stored in

the uniform aluminum rod AB shown in Fig. P11.3-22a. Let

G � 4(103) ksi and TB � 5 kip � in. (b) Determine the strain

energy stored in the rod CE if TE � 5 kip � in, and the diame-

ter over half the length of the rod is d2 � 1.25 in., as illustrated

in Fig. P11.3-22b.

x

L

t0

d

P11.3-22, P11.3-23, and P11.4-8

Prob. 11.3-23. (a) Determine the value of the torque TE that

would cause the stepped rod CE in Fig. P11.3-23b to have

the same total angle of twist that the uniform rod AB in 

Fig. P11.3-23a would have when TB � 5 kip � in. Let G �
4(103) ksi. (b) Determine the strain energy stored in each of

the two rods under the torques specified in Part (a).

4 ft

(a) (b)

(1)

d1 = 1.0 in.A

B

TB TE

C
D

E(2)
(3)

2 ft
2 ft

d1 = 1.0 in.

d2 = 1.25 in.
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required diameters d1 through d3 if the allowable shear

stress for each segment of the shaft is 80 MPa. (b) Determine

the strain energy stored in the shaft if the three segments

have the diameters determined in Part (a), the shear modu-

lus of the shaft is G � 80 GPa, and the shaft lengths are 

L1 � L2 � L3 � 1 m.
DProb. 11.3-27. A stepped steel shaft is subjected to the

three torques shown in Fig. P11.3-27. (a) Determine the re-

quired diameters d1 through d3 if the allowable shear stress

for each segment of the shaft is 12 ksi. (b) Determine the

strain energy stored in the shaft if the three segments have

the diameters determined in Part (a) and the shear modulus

of the shaft is G � 11.5(103) ksi. (Recall Section 4.4.) (b) Determine the strain energy stored

in the shaft under the given loading.

Prob. 11.3-30. A stepped, solid shaft has the dimensions

shown in Fig. P11.3-30 and is made of material with shear

modulus G. The shaft is stress-free when its ends are fixed to

rigid structures at ends A and D. A single torque TC is ap-

plied to the shaft at node C. Determine an expression for the

total energy in the rod. U(	B, 	C), where 	B and 	C are the

angles of rotation at sections B and C, respectively. Express

your answer in terms of 	B, 	C, the length L, the polar mo-

ment of inertia Ip, and the shear modulus G. The torque TC

will not appear explicitly in your answer.

P11.3-27

Prob. 11.3-28. A tubular shaft has the dimensions shown in

Fig. P11.3-28 and is made of brass with a shear modulus G �
40 GPa. A strain gage mounted at 45� to the axis of the shaft

gives a strain reading of � � 2.00(10�3). (a) Determine the

value of the applied torque T that produces the given exten-

sional-strain reading. (Recall Section 4.4.) (b) Determine the

strain energy stored in the shaft under the stated loading.

(1)

10 kip · in.

6 kip · in.

2 kip · in.
A

B
C

D

40 in.
40 in.

40 in.

(2)

(3)

P11.3-28 and P11.4-10

*Prob. 11.3-29. The two-segment solid stepped shaft in Fig.

P11.3-29 is stress-free when it is welded to rigid structures at

ends A and C. The diameters of the segments are d1 � 1.250

in. and d2 � 0.875 in., and the shaft is made of steel with a

shear modulus G � 11(103) ksi. With torque TB applied at

node B, as shown, a strain gage mounted on segment 1 at 

45� to the axis of the shaft gives a strain reading of � �
1.20(10�3). (a) Determine the value of the applied torque

TB that produces the given extensional-strain reading.

do = 30 mm

B

A

45°

T

di = 20 mm
L = 500 mm

P11.3-29 and P11.4-11

45°(1)

(2)

TB

d2

L1 = 20 in.

L2 = 10 in.

d1

A

B C

P11.3-30 and P11.4-12

DProb. 11.3-31. A wood cantilever beam with rectangular

cross section has a concentrated load P applied at end A as

shown in Fig. P11.3-31a. (a) Determine an expression for

(1)

(2)
(3)

d3 = d
d2 = d

L1 = 2L

L2 = L
L3 = L

d1 = 2d

A

B C
D

TC

P11.3-31

L/2 L/2L

h

b

P P

(a) (b)

Problems 11.3-31 through 11.3-42 deal with the strain en-
ergy stored in various linearly elastic beams. Except for
Probs. 11.3-31 and 11.3-36, all beams are uniform, that
is, EI � const.
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the flexural strain energy, U�a, stored in this uniform beam.

(b) To strengthen the beam, planks of the same wood and of

width b, thickness h/4, and length L/2 are bonded to the top

and bottom of the right half of the original beam, giving the

stepped beam shown in Fig. P11.3-31b. Determine the flex-

ural strain energy. U�b, for this beam, and discuss why U�b is

less (or more, if that is the case) than U�a.

Prob. 11.3-32. Let the concentrated load P in Example

Problem 11.3 be replaced by a uniformly distributed load of

intensity w0 over the entire length L. (a) Determine an ex-

pression for the strain-energy ratio, U
 /U� similar to the first

part of Eq. (7) in this example. (b) Using the dimensions of

the wide-flange beam in Example Problem 11.3, simplify

your answer in Part (a) to the form given in the second part

of Eq. (7) of the example.

its width varies linearly from b0 at x � 0 to 3b0 at x � L.

Determine an expression for the flexural strain energy, U�,

stored in this beam when a concentrated transverse load P is

applied at x � 0.

For Problems 11.3-33 through 11.3-35. (a) determine the
flexural strain energy, U� , and (b) determine the bending
shear strain energy, U� .

Prob. 11.3-33. For the beam in Fig. P11.3-33, E � 200 GPa

and G � 80 GPa.

P11.3-33 and P11.4-13

Prob. 11.3-34. For the W8 � 21 beam in Fig. P11.3-34,

E � 30(103) ksi and G � 11.5(103) ksi.

A

B

M0 = 4 kN · m

C 100 mm

0.5 m 1.5 m
60 mm

P11.3-36 and P11.4-17

DProb. 11.3-37. A uniform, rectangular beam AC is to be

simply supported and is to support a concentrated trans-

verse load P at its midspan, as shown in Fig. P11.3-37a. The

cross-sectional dimensions are b and 2b. (a) Compare the

flexural strain energy U�b that would be stored in the beam

if it is placed in orientation “b” (i.e., with the 2b dimension

vertical) with the flexural strain energy U�c that would be

stored in the beam if it is placed in orientation “c,” with the

2b dimension horizontal. (b) Compare the maximum flex-

ural stress values for the two configurations.

x
L

BA

P

h

b0 b(x) 3b0

P11.3-37 and P11.3-38

DProb. 11.3-38. (a) Repeat Prob. 11.3-37, but this time com-

pare the shear strain energy U
b that would be stored in the

beam if it is placed in orientation “b” (i.e., with the 2b dimen-

sion vertical) with the shear strain energy U
c that would be

stored in the beam if it is placed in orientation “c,” with the

2b dimension horizontal. (b) Compare the maximum shear

stress values for the two configurations.

Prob. 11.3-39. Determine an expression for the flexural

strain energy, U�, stored in the uniform, simply supported

beam shown in Fig. P11.3-39. The flexural rigidity. EI, is 

constant.

L/2

A

(a)

(b) (c)

C
B

P

L/2

2b

2bb

b

P11.3-34 and P11.4-14

Prob. 11.3-35. For the beam in Fig. P11.3-35. E � 70 GPa

and G � 26 GPa.

4 ft 1 ft

A B C

P = 12 kips

P11.3-35

*Prob. 11.3-36. The cantilever beam AB in Fig. P11.3-36 has

a constant depth h and constant modulus of elasticity E, but

1 m 1 m2 m

100 mm

60 mm

P = 1 kN P = 1 kN
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Prob. 11.3-40. Determine an expression for the flexural

strain energy, U�, stored in the uniform, propped-cantilever

beam shown in Fig. P11.3-40. (see Prob. 7.4-1 for this figure.)

Express your answer as a function of w0 , the intensity of the

applied uniformly distributed load, and RA, the redundant

reaction at A. The flexural rigidity, EI, is constant.

Prob. 11.3-41. Determine an expression for the flexural

strain energy, U�, stored in the fixed-fixed beam AB shown

in Fig. P11.3-41. (See Prob. 7.4-5 for this figure.) Express

your answer as a function of w0, the maximum intensity of

the linearly varying distributed load, and RA and MA, the

redundant reactions at x � 0. The flexural rigidity, EI, is

constant.

*Prob. 11.3-42. A uniform cantilever beam AB has an in-

clined concentrated load P applied at the centroid of the

cross section at end A as shown in Fig. P11.3-42. Determine

an expression for the total strain energy, U�, associated with

normal stress �. Express your answer as a function of the

load P, the inclination angle �, the modulus of elasticity E,

and the dimensions of the beam—b, h, and L. Start your 

solution with Eqs. 11.7 and 11.9a.

Prob. 11.4-4. Determine the vertical displacement �B in the

direction of the load P acting on the two-member truss in

Fig. P11.3-11.

Prob. 11.4-5. Determine the vertical displacement �D in the

direction of the load P acting on the four-member truss in

Fig. P11.3-12.

Prob. 11.4-6. Using the data and figure of Prob. 11.3-19, de-

termine the angle of twist, 	A, at end A of the tubular shaft

in Fig. P11.3-19.

Prob. 11.4-7. If the end diameters of the tapered shaft in 

Fig. P11.3-20 are dA � 2d and dB � d, determine the angle 

of twist of the shaft, 	B.

Prob. 11.4-8. Use the Work-Energy Principle to solve Prob.

11.3-23a.

Prob. 11.4-9. For the torsion rod in Fig. P11.3-24, determine

an expression relating the twist angle 	B and the applied

torque TB.

Prob. 11.4-10. Using the data and figure of Prob. 11.3-28,

determine the angle of rotation of end B, 	B, when the strain

gage reads � � 2.0(10�3).

Prob. 11.4-11. Using the data and figure of Prob. 11.3-29,

determine the angle of rotation of joint B, 	B, when the

strain gage reads � � 1.20(10�3).

*Prob. 11.4-12. The stepped, solid shaft in Fig. P11.3-30 is

made of a material with shear modulus G and is subjected to

a single applied torque TC. Determine an expression for the

resulting angle of rotation, 	C, at joint C.

Prob. 11.4-13. Considering only flexural strain energy and

using the data and figure for the uniform rectangular beam

in Prob. 11.3-33, determine the angle of rotation �B in the di-

rection of the moment M0 � 4 kN � m applied at point B.

Prob. 11.4-14. Considering only flexural strain energy, and

using the data and figure for the W8 � 21 wide-flange beam

in Fig. P11.3-34, determine the vertical displacement �C in

the direction of the load P � 12 kips acting at end C.

Prob. 11.4-15. The uniform, cantilever beam with rectangu-

lar cross section, shown in Fig. P11.4-15, is made of linearly

elastic material with modulus of elasticity E and Poisson’s

ratio . Determine expressions for �B� and �B
, the contri-

butions to the displacement at B that are related, respec-

tively, to the flexural strain energy U� and the shear strain

energy U
.

n

In Problems 11.4-1 through 11.4-20 use the Work-Energy
Principle to calculate the required linear or angular dis-
placement.

P11.3-39

L/2

A C
B

L/2

w0

P11.3-42

Prob. 11.4-1. Using the data and figures of Prob. 11.3-5, de-

termine the displacement �B due to the load PB � 6 kips act-

ing on the uniform rod in Fig. P11.3-5a and the displacement

�E due to the load PE � 6 kips acting on the stepped rod in

Fig. P11.3-5b.

Prob. 11.4-2. Derive an expression for the displacement �B

due to the axial load P acting at end B of the tapered bar in

Fig. P11.3-9. Let dA � 2d and dB � d.

Prob. 11.4-3. Using the data and figures of Prob. 11.3-10, de-

termine the displacement �B due to a load P � 2 kips acting

on the tapered bar in Fig. P11.3-10.

x
L

y

x
α A
P

B
h

b

P11.4-15

Prob. 11.4-16. Use the Work-Energy Principle to obtain an

expression for the deflection �B (flexure only) under the load

P for the simply supported beam in Fig. P11.4-16, EI � const.

L

A
h

b
B

P
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*Prob. 11.4-17. Determine an expression for the tip deflec-

tion �A, for the tapered beam in Prob. 11.3-36. Consider 

flexure only.

Prob. 11.4-18. Use the Work-Energy Principle to determine

the slope �A under the couple M0 applied at end A of the 

uniform simply supported beam in Fig. P11.4-18. Let 

EI � const, and consider flexure only.

supported uniform beam shown in Fig. P11.5-1. (See Prob.

11.4-16 for this figure.) EI � const.

Prob. 11.5-2. Determine an expression for the rotation

angle �B produced by the external couple M0 applied at

point B of the simply supported uniform beam shown in Fig.

P11.5-2. EI � const.

P11.4-16, P11.5-1, and P11.5-26

A
B

P

a

C

L

P11.4-18

Prob. 11.4-19. Use the Work-Energy Principle to determine

the deflection �B under the load P on the W150 � 24 wide-

flange, simply supported beam in Fig. P11.4-19. Let E � 200

GPa, and consider flexure only.

A
EI = const

M0

B

L

P11.5-2

Prob. 11.5-3. Determine the rotation angle �A produced by

the external couple M0 applied at end A of the beam AC
shown in Fig. P11.5-3. (See Prob. 11.4-20 for this figure.) 

EI � const.

Prob. 11.5-4. Determine the vertical deflection �C under the

load P applied at end C of the beam in Fig. P11.5-4. Let

Ewood � 1,600 ksi, and see Table D.8 for the cross-sectional

dimensions of the 6 � 8 wood beam.

A C

B

M0

a b

P11.5-4 and P11.5-28

Prob. 11.5-5. Determine the vertical deflection �B under the

load P applied at point B to the W310 � 143 structural steel

beam in Fig. P11.5-5. Let Esteel � 200 GPa.

12 ft 6 ft

6 × 8 struct.
timber

A B C

P = 2 kips

P11.5-5 and P11.5-29

Prob. 11.5-6. Determine an expression for the vertical de-

flection �A under the load P acting at end A of the uniform

beam in Fig. P11.5-6. Let EI � const.

4 m 8 m

P = 75 kN

W 310 × 143
A B C

P11.5-6

L
B

A

P
w0

P11.4-19

Prob. 11.4-20. Use the Work-Energy Principle to determine

the slope �A under the couple M0 � 2100 kip � in. applied at

end A of the W16 � 100 wide-flange beam in Fig. P11.4-20.

Let E � 30 � 103 ksi, and consider flexure only.

4 m 2 m

A B

P = 12 kN

C

P11.4-20, P11.5-3, and P11.5-27

100 in. 100 in.

A B C
M0

In Problems 11.5-1 through 11.5-16 use Castigliano’s
Second Theorem, Eq. 11.36 (or Eq. 11.38), to solve each
of these statically determinate problems.

Prob. 11.5-1. Determine an expression for the vertical dis-

placement. �B, under the load at point B on the simply
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Prob. 11.5-7. Use Castigliano’s Second Theorem to solve

Prob. 7.6-15.

Prob. 11.5-8. Use Castigliano’s Second Theorem to solve

Prob. 7.6-16.

Prob. 11.5-9. Use Castigliano’s Second Theorem to solve

Prob. 7.6-14.

Prob. 11.5-10. Use Castigliano’s Second Theorem to solve

Prob. 7.6-19.

Prob. 11.5-11. Use Castigliano’s Second Theorem to solve

Prob. 7.6-17.

*Prob. 11.5-12. Two segments, AB and BC, of 4 � 2 �
0.1875 structural steel tubing are welded together at B to

form the L-shaped frame ABC shown in Fig. P11.5-12. Use

Castigliano’s Second Theorem to determine the vertical dis-

placement �C under the load P � 500 Ibs at C. Let E �
29(103) ksi. (Be sure to include the effects of both bending

and stretching of segment AB on the displacement at C.)

A � 2.02 in 2, I � 1.29 in4

Fig. P11.5-14.The points A, B, and C lie in a horizontal plane.

Let the modulus of elasticity, E, the shear modulus, G, and

the moment of inertia, I, be constant over the lengths AB
and BC, and ignore the joint dimensions at B. Neglect shear

deformation due to bending of segments AB and BC. (Note:

Segment AB undergoes both bending and torsion. The polar

moment of inertia is Ip � 2I.)

P11.5-12

Prob. 11.5-13. Determine the horizontal component, uB, of

the displacement of point B due to flexure of the curved

beam shown in Fig. P11.5-13. Assume that the radius of cur-

vature, R, of the centerline of the bar is large relative to the

radial depth of the cross section so that the straight-beam

elastic flexure formula holds. Express your answer in terms

of P, R, E, and I.

30 in.

40 in.

B

A

C

P = 500 lbs

P11.5-13

Prob. 11.5-14. Determine an expression for the vertical dis-

placement �C under the vertical load P that acts at end C
of the equal-leg, right-angle-joined pipe ABC shown in

θ

R

B

A

P

uB

P11.5-14

Prob. 11.5-15. For the truss in Fig. P11.5-15, determine the

horizontal displacement uB due to the horizontal load Px

applied at joint B. Let E � 30(103) ksi, Px � 1.5 kips, A1 � 1 in2,

A2 � 2 in2, a � 24 in., and � � 30�.

z

x

y
45°

45°

P

C

L

L

B

A

P11.5-15 and P11.5-36

Prob. 11.5-16. For the truss in Fig. P11.5-16, determine the

downward vertical displacement due to the weight W
that is suspended from the pin at B. Let E � 200 GPa, A1 �
800 mm2, A2 � 1600 mm2, and W � 10 kN.

yB

a a

β β

B
Px

uB

vB

A

(1) (2)

C

P11.5-16 and P11.5-37

1.2 m

(1)

(2)1.6 m

W

A

B

vB

uB

C
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Prob. 11.5-17. The uniform (EI � const) propped-cantilever

beam in Fig. P7.4-3 supports a linearly varying load of max-

imum intensity w0 (force per unit length). Use Castigliano’s
Second Theorem: (a) to determine the (redundant) reaction

RA, and (b) to determine the slope, �A, of the beam at end A.

Prob. 11.5-18. For the uniformly loaded propped-cantilever

beam in Fig. P7.4-2, determine expressions for: (a) the

(redundant) reaction RB, and (b) the slope of the beam at

end B.

*Prob. 11.5-19. The uniform (EI � const) propped-

cantilever beam in Fig. P7.4-7 supports a concentrated load

P at point B. Use Castigliano’s Second Theorem: (a) to deter-

mine the reaction RA at end A, and (b) to determine the

vertical displacement, �B, of the beam at the point of appli-

cation of load P.

*Prob. 11.5-20. The uniform fixed-fixed beam in Fig. P7.4-8

is subjected to a concentrated load P at distance a from end

A. Use Castigliano’s Second Theorem: (a) to determine the

reaction RA and MA at end A, and (b) to determine the ver-

tical displacement, �B, of the beam at the point of applica-

tion of load P.

Prob. 11.5-21. The uniform continuous beam in Fig. P7.4-10

supports a uniformly distributed load of intensity w0 on the

span AB. Use Castigliano’s Second Theorem: (a) to deter-

mine the reaction RB at the central support, and (b) to deter-

mine the slope �C of the beam at end C.

*Prob. 11.5-22. For the non-uniform beam AC in Fig. P7.4-

11, use Castigliano’s Second Theorem: (a) to determine the

reactions RA and MA at end A, and (b) to determine the

slope �B of the beam at the central support, B.

Prob. 11.5-23. For the uniform fixed-fixed beam AC in Fig.

P7.4-9, use Castigliano’s Second Theorem to determine the

fixed-end reactions RA and MA.

Prob. 11.5-24. For the uniform fixed-fixed beam AC in Fig.

P7.7-2, use Castigliano’s Second Theorem: (a) to solve for the

fixed-end reaction, RA and MA, and (b) to solve for the trans-

verse displacement �B at node B.

Prob. 11.5-25. For the nonuniform fixed-fixed beam shown

in Fig. P7.6-55a, use Castigliano’s Second Theorem: (a) to

solve for the fixed-end reactions RA and MA, and (b) to solve

for the transverse displacement �B at node B.

Prob. 11.5-28. Use the Unit-Load Method to solve Prob.

11.5-4.

Prob. 11.5-29. Use the Unit-Load Method to solve Prob.

11.5-5.

*Prob. 11.5-30. For the uniform simply supported beam in

Fig. P11.5-30, determine the vertical displacement �B at

midspan and the slope �C at end C. (See Prob. 7.6-30 for 

Fig. P11.5-30.)

Prob. 11.5-31. For the uniform cantilever beam in Fig P11.5-

31, use the Unit-Load Method to determine the vertical

displacement �A and the slope �A at the free end A. The

maximum load intensity (at B) is w0 (force per unit length).

In Problems 11.5-17 through 11.5-25 use Castigliano’s
Second Theorem, Eqs. 11.39, to solve these statically in-
determinate problems.

Problems 11.5-26 through 11.5-39. Use the Unit-Load
Method to solve each of these statically determinate
problems.

Prob. 11.5-26. Use the Unit-Load Method to solve Prob.

11.5-1.

Prob. 11.5-27. Use the Unit-Load Method to solve Prob.

11.5-3.

P11.5-31

Prob. 11.5-32. Use the Unit-Load Method to solve Prob.

7.6-15.

Prob. 11.5-33. Use the Unit-Load Method to solve Prob.

7.6-16.

*Prob. 11.5-34. For the beam-rod system described in Prob.

7.6-21 and shown in Fig. P7.6-21, use the Unit-Load Method
to determine the vertical displacement �B and slope �B of

end B when beam AB is subjected to a uniformly distributed

load as shown.

Prob. 11.5-35. For the beam described in Prob. 7.6-20 and

shown in Fig. P7.6-20, use the Unit-Load Method to deter-

mine the vertical displacements �B and �C under the load P
and at end C, respectively. Consider both bending of the

beam AC and stretching of the rod CD.

Prob. 11.5-36. Use the Unit-Load Method to determine the

vertical displacement B of joint B of the two-member truss

described in Prob. 11.5-15 and shown in Fig. P11.5-15.

Prob. 11.5-37. Use the Unit-Load Method to determine the

horizontal displacement uB of joint B of the two-member

truss described in Prob. 11.5-16 and shown in Fig. P11.5-16.

Prob. 11.5-38. The symmetric five-member pin-jointed truss

shown in Fig. P11.5-38 has a height H � 2 m and a span 

y

L

A B

w0

P11.5-38

L/2

(1) (2)

(3)
(5)

(4)

L/2

C

u

v

B

A

P

D

H
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L � 6 m. A load P � 60 kN acts vertically through the joint

at B. The cross-sectional area of each tension member is

1200 mm2 and of each compression member is 3200 mm2.

The truss members are made of steel with Esteel � 200 GPa.

Use the Unit-Load Method: (a) to calculate the vertical dis-

placement, yB, of joint B, and (b) to calculate the horizontal

displacement, uC, of joint C.

Prob. 11.5-39. Each of the six members of the planar truss

shown in Fig. P11.5-39 has an axial rigidity AE. The truss is

loaded by equal vertical forces P at joints D and E.Use the Unit-
Load Method to determine the horizontal and vertical compo-

nents, uE and yE, respectively, of the displacement of joint E.

Prob. 11.5-43. Use the Unit-Load Method to solve Prob.

11.5-21, Let RB be the redundant force.

Prob. 11.5-44. Use the Unit-Load Method to solve Prob.

11.5-23. Let RA and MA be the redundant reactions.

Prob. 11.5-45. Use the Unit-Load Method to solve Prob.

11.5-25. Let RA and MA be the redundant reactions.

Prob. 11.5-46. Use the Unit-Load Method to determine the

(redundant) reactions RA and MA for the uniform fixed-

fixed beam with linearly varying load, as shown in Fig. P7.4-

5. Let EI � const.

Prob. 11.5-47. For the uniformly loaded beam in Fig. P7.4-6,

use the Unit-Load Method: (a) to determine the (redundant)

force F2 in the hanger rod, and (b) to determine the vertical

displacement, yB, of the rod-supported end B.

Prob. 11.5-48. For the two-span beam AC in Fig. P7.7-10, use

the Unit-Load Method: (a) to determine the two (redun-

dant) reactions RA and RB, and (b) to determine the slope,

�A, of the beam at end A.

Prob. 11.5-49. For the nonuniform two-span continuous

beam in Fig. P7.6-53a, use the Unit-Load Method: (a) to de-

termine the (redundant) reaction RA, and (b) to determine

the slope angle, �A, at end A.

Prob. 11.5-50. For the nonuniform two-span continuous

beam in Fig. P7.6-54a, use the Unit-Load Method: (a) to de-

termine the (redundant) reaction RA, and (b) to determine

the slope angle, �A, at end A.

Prob. 11.5-51. For the nonuniform two-span continuous

beam in Fig. P7.7-15, use the Unit-Load Method: (a) to deter-

mine the (redundant) reaction RA, and (b) to determine the

slope angle, �A, at end A.

*Prob. 11.5-52. For the two-span nonuniform beam AC in

Fig. P7.6-56a, use the Unit-Load Method: (a) to determine

three redundant reactions RA, MA, and RB; and (b) to deter-

mine the slope angle, �B, at the central support B.

Prob. 11.5-53. The truss members in Fig. P3.10-13 have the

following axial rigidities: (AE)2 � (AE)3 � AE, and (AE)1 �
2AE. A horizontal load P is applied to the truss at joint A.

(a) Use the Unit-Load Method to determine the (redundant)

force F1 in member (1): then, determine the other two mem-

ber forces. (b) Use the Unit-Load Method to determine uA

and yA, the horizontal displacement and the vertical dis-

placement, respectively, of joint A.

Prob. 11.5-54. Each of the three truss members in Fig.

P3.10-16 has a length L, and modulus of elasticity E. The

cross-sectional areas of the members are A1 � A2 � A, and

A3 � 2A. A horizontal load P acts on the truss at joint A.

(a) Use the Unit-Load Method to determine the (redundant)

force F3 in member (3); then, determine the other two mem-

ber forces. (b) Use the Unit-Load Method to determine uA

and yA, the horizontal displacement and the vertical dis-

placement, respectively, of joint A.

Prob. 11.5-55. For the truss in Fig. P3.10-19: A1 � A2 � A3 �
1.0 in2, E1 � E2 � E3 � 30(103) ksi, and P � 15 kips. (a) Use

the Unit-Load Method to determine the (redundant) force

F1 in member (1): then, determine the other two member

forces. (b) Use the Unit-Load Method to determine uA and

Problems 11.5-40 through 11.5-55. Use the Unit-Load
Method to solve the following statically indeterminate
problems.

P11.5-39

L L
P P

uE

vE

A C

B D E

L

(1)

(2)
(6)

(4)

(3) (5)

Prob. 11.5-40. By combining Eqs. 11.39 and 11.40, show that

the Unit-Load Method for statically indeterminate struc-

tures can be expressed by the following equations:

where Fri, Tri, and so forth, are the distributions of force,

torque, and so forth, due to a unit value of the redundant Ri;

and Fui, Tui, and so forth, are the distributions of force,

torque, and so forth, due to a unit value of force (or couple)

Pi where the linear displacement (or angular displacement)

is to be determined. (The latter unit “forces” may be

“dummy forces” if no actual load is applied where displace-

ment is to be determined.)

Prob. 11.5-41. Use the Unit-Load Method to solve Prob.

11.5-17. Let RA be the redundant force.

Prob. 11.5-42. Use the Unit-Load Method to solve Prob.

11.5-18. Let RB be the redundant force.

i � 1, 2, . . . , N� �
L

0

M Mui dx

EI
� �

L

0

fsVVui dx

GA
,

¢ui � �
L

0

F Fui dx

AE
� �

L

0

T Tui dx

GIp

i � 1, 2, . . . , NR� �
L

0

M Mri dx

EI
� �

L

0

fsVVri dx

GA
,

0 � ¢ri � �
L

0

F Fri dx

AE
� �

L

0

T Tri dx

GIp
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yA, the horizontal displacement and the vertical displace-

ment, respectively, of joint A.

Prob. 11.7-4. A single axial force P is applied at node C of

the three-segment rod shown in Fig. P11.7-4. (a) Using the

Principle of Virtual Displacements, determine expressions

for the axial displacements uB and uC of nodes B and C re-

spectively. (b) Determine the forces F1, F2, and F3 in the

three segments of the rod.

E � constA2 � A,A1 � A3 � 2A,

Problems 11.7-1 through 11.7-10. Use the Principle of
Virtual Displacements, Eq. 11.48, to solve each of these
problems.

Prob. 11.7-1. (a) For the two-segment rod in Fig. P11.7-1,

use the Principle of Virtual Displacements to determine an

expression for the axial displacement uB at the point of ap-

plication of the axial force P. (b) Determine the axial forces

F1 and F2 in segments (1) and (2) respectively.

E � constA2 � A,A1 � 2A,

P11.7-1

Prob. 11.7-2. (a) For the two-segment rod in Fig. P11.7-2,

use the Principle of Virtual Displacements to determine an

expression for the axial displacement uB at the point of ap-

plication of the axial force P. (b) Determine the axial forces

F1 and F2 in segments (1) and (2) respectively.

P � 20 kipsE � 10(103)  ksi,

A2 � 1.2 in2A1 � 1.0 in2,

LL

P C
(1) (2)

A B
uB

P11.7-2

Prob. 11.7-3. A rigid beam is supported by three columns,

as shown in Fig. P11.7-3. (a) Use the Principle of Virtual
Displacements to determine the vertical displacement y

(taken positive downward) of the beam when a vertical load

P � 540 kN is applied. (b) Determine the axial forces F1 �
F3 and F2 carried by the respective columns.

E � 200 GPaA2 � 2000 mm2,

A1 � A3 � 3500 mm2

25 in. 40 in.

P

B
C

(2)(1)

A

uB

Prob. 11.7-5. Use the Principle of Virtual Displacements to

solve Prob. 3.4-1.

P11.7-4 and P11.7-12

Prob. 11.7-6. For the truss in Fig. P11.7-6, A1 � A2 � A3 �
1.0 in2, E � 30(103) ksi, and Px � 10 kips.

Prob. 11.7-7. For the truss in Fig. P11.7-7, A1 � A2 � 1000

mm2, A3 � 2000 mm2, E � 70 GPa, and Px � 100 kN.

LLL

A B

uB uC

CP D

(1) (2) (3)

Problems 11.7-6 through 11.7-10. For each of the pin-
jointed trusses shown, (a) use the Principle of Virtual
Displacements to determine the horizontal and vertical
displacements of joint D, uD and vD, respectively, and (b)
determine the axial force in member (1), that is, the force
in member AD.
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P11.7-3

2 m

a

(1)
(2)

(3)

v

a

P

1 m

P11.7-6 and P11.7-17

Px

C

D

B

A

uD

vD

40 in.

40 in.

30 in.
(1)

(2)

(3)
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Prob. 11.7-8. For the truss in Fig. P11.7-8, A1 � A2 � A3 �
A, and E � const.

Prob. 11.7-14. Use Castigliano’s First Theorem to solve

Prob. 3.8-15. Let � be the displacement variable, and express

Castigliano’s First Theorem in the form:

Prob. 11.7-15. The rigid beam AC in Fig. P11.7-15 (see Prob.

3.6-17 for this figure) is supported by three vertical rods that

are attached to the beam at points A, B, and C. When the

rods are initially attached to the beam, the three rods are

stress-free. (a) Use Castigliano’s First Theorem to solve for

the vertical displacements uA and uC of points A and C when

downward loads PA � 8 kips and PC � 2 kips are applied to

the beam at ends A and C, respectively. (b) Calculate the

axial stresses, �1, �2, and �3 resulting from the given loading,

Prob. 11.7-16. Solve Prob. 11.7-15 with PA � 16 kN and 

PC � 4 kN and with the following properties of the structure:

Prob. 11.7-17. Use Castigliano’s First Theorem to solve

Prob. 11.7-6.

Prob. 11.7-18. Use Castigliano’s First Theorem to solve

Prob. 11.7-7.

Prob. 11.7-19. Use Castigliano’s First Theorem to solve 

11.7-9.

Prob. 11.7-20. Use Castigliano’s First Theorem to solve

Prob. 11.7-10.

Prob. 11.9-1. If, instead of being released from rest at posi-

tion (1) in Fig. 11.23a, the weight W has a downward speed y

at position (1), determine an expression (similar to Eq.

11.62) for the maximum deflection of the spring.
DProb. 11.9-2. A uniform rod like the one shown in Fig.

11.25 has a diameter d and length L, and it is to be used to

absorb the impact loading from a falling mass. Determine

the total amount of elastic strain energy that can be ab-

sorbed by the rod if it is made of the following metals: (a)

2014-T6 aluminum alloy, (b) 6061-T6 aluminum alloy, (c)

ASTM-A36 structural steel, and (d) Ti-6AL-4V titanium

alloy.

Let d � 1 in, and L � 40 in., and express your answers

in units of kip � in.
DProb. 11.9-3. Repeat Prob. 11.9-2 for a rod whose dimen-

sions are d � 30 mm and L � 1 m. Express your answers in

units of kN � m.

E � 100 GPaL � 1 m,A � 500 mm2,

E � 30(103) ksiL � 30 in.,A � 1.0 in2,

dU
du

� M0 � P(a � b)

P11.7-10 and P11.7-20

(1)

(2)
(3)

uD

vD

A

B C

D

P

L3–
5

L4–
5

60°

P11.7-7 and P11.7-18

Prob. 11.7-9. For the truss in Fig. P11.7-9, A1 � A2 � A,

A3 � 2A, and E � const.

Prob. 11.7-10. For the truss in Fig. P11.7-10, A1 � A2 � A3 �
A, and E � const.

2 m

2 m

3 m

2 m
(1)

(2) (3)A

D
uD

Px

vD

B
C

P11.7-8, P11.7-9, and P11.7-19

Prob. 11.7-11. Use Castigliano’s First Theorem to solve Prob.

3.8-4. Use uB and uC as the two displacement unknowns.

Prob. 11.7-12. Use Castigliano’s First Theorem to solve Prob.

11.7-4. Use uB and uC as the two displacement unknowns.

Prob. 11.7-13. Use Castigliano’s First Theorem to solve

Prob. 3.8-14. Let � be the displacement variable, and express

Castigliano’s First Theorem in the form:

dU
du

� M0 � P(a � b)

L (1)
(2)

30° 30°
(3)

uDvD

A B C

D

P
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In Problems 11.9-4 through 11.9-11 assume that the mate-
rial remains linearly elastic and that the three assumptions
regarding Impact on Deformable Bodies are satisfied.
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Prob. 11.9-4. As shown in Fig. P.11.9-4, a weight W � 200 lb

is dropped from a height h � 20 in. and lands on the top of

a 4-in.-square aluminum alloy post (E � 10 � 103 ksi and

�Y � 60 ksi) whose length is L � 2 ft. The aluminum post

rests on a rigid base. Determine the maximum compressive

stress in the post, the maximum shortening of the post, and

the impact magnification factor, �max/�st.

segment, and neglect stress-concentration effects due to the

change of cross section. (Stress Concentration is discussed in

Section 12.2.) Hint: Use the methods of Section 3.3 to deter-

mine an equivalent stiffness factor, k, for the stepped bar. (b)

Determine an expression for the maximum impact axial

stress, �max, in terms of the maximum static stress, �st, the

drop height h, and the rod dimensions and modulus of elas-

ticity. (c) Determine an expression for the ratio of the maxi-

mum impact stress determined in Part (b) to the maximum

stress that a uniform bar of cross-sectional area A and length

2L would experience under impact loading by a weight W
dropped from height h.

Prob. 11.9-9. The stepped ASTM-A36 structural steel rod in

Fig. P11.9-9 has equal-length segments of length L, with

cross-sectional areas A (diameter � d) and 2A. Determine

the maximum axial impact stress in the rod if a collar of

weight W is dropped from height h above the flange at the

bottom of the rod. Neglect the energy stored in the short

transition segment, and neglect stress-concentration effects

due to the change of cross section. (The topic of Stress

Concentration is discussed in Section 12.2.) Hint: Use the

methods of Section 3.3 to determine an equivalent stiffness

factor, k, for the stepped rod. Let d � 0.5 in., L � 20 in.,

W � 20 lb, and h � 2 in.

*Prob. 11.9-10. A drop test is used to test the impact per-

formance of automobile bumpers. Assume that the bumper

is a uniform simply supported beam and that mass m is

dropped from height h, impacting the beam at distance al.
from support A (0  a 
 1/2), as shown in Fig. P11.9-10. (a)

Derive an expression that relates the maximum flexural

stress due to impact, �max, to the drop height and other 

parameters: W, E, I, c, a, and L. (b) Specialize your answer

to Part (a) for the case a � 1/2.

Prob. 11.9-5. From what height h1 must the weight W � 200 lb

in Prob. 11.9-4 be dropped if the impact causes a maximum

stress in the post of �Y /4? From what height h2 must it be

dropped if the impact causes a maximum stress in the post of

�Y /2?

Prob. 11.9-6. The collar mass in Fig. 11.25 slides down a uni-

form 6061-T6 aluminum-alloy rod of diameter d, impacting

against the flange at the bottom of the rod. Determine the

maximum stress in the rod if: (a) the collar is released from

rest at distance h � ha above the collar: (b) the collar is re-

leased from rest at h � 0, that is, when it is just in contact

with the collar; and (c) the collar is lowered slowly onto the

flange. Let m � 50 kg, d � 25 mm, L � 1.25 m, and ha � 0.5 m.

Prob. 11.9-7. Repeat Prob. 11.9-6 Parts (a) through (c) using

the following data for the rod and the mass: W � 500 lb,

d � 2 in., L � 50 in., and h � 20 in. (d) From what height

would the 500-lb weight have to be dropped to cause the rod

to yield? (e) What weight, if dropped from a height of h �
20 in., would cause the rod to yield?

*Prob. 11.9-8. The stepped rod in Fig. P11.9-8 has cross-

sectional areas 2A and A. (a) Determine an expression for

the maximum elongation of the rod as a function of W, E, A,

L, and h. Neglect the energy stored in the short transition

P11.9-4 and P11.9-5

g

L

W h

P11.9-8 and P11.9-9

L

W

h

g L

P11.9-10

W

aL

EI = const

L

A
B

C

750

*Prob. 11.9-11. A mass m is dropped from height h, impact-

ing the uniform cantilever beam AC at point B, at a distance

aL from the cantilevered end as shown in Fig. P11.9-11, A.

Determine an expression that relates the maximum tip de-

flection. (�C)max, to the drop height h and location (0  a 
 1)

and to other parameters: m, E, I, c, and L.

P11.9-11

Bh

aL
L

A

W

ΔC

x
C

EI = const
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Section
Suggested

Review

Problems

Chapter 11 discusses energy methods as 

applied to axial deformation, torsion, and
bending. Most derivations and examples

are applied to axial deformation, as will be

done in this Chapter Review.

Work and energy are two related mechani-

cal quantities; both have the dimension of

force � displacement.

C H A P T E R  1 1  R E V I E W — E N E R G Y  M E T H O D S

Work–

(11.1)Wp(e1) � �
e1

0

P(e) de

W

11.2

Strain Energy–

(11.4)U(e) � W(e)done on elastic body

UThe total strain energy that is stored in an

elastic member is equal to the area under

the load-displacement curve (P – e curve

for axial deformation).

Axial deformation. Load versus elongation.

(Fig. 11.1a) (Fig. 11.2)

e

P

P1

P

P

de

e1 e

dWP = Pde

   WP(e1)

Strain energy for axial deformation 

of an elastic member. (Fig. 11.3)

P

P

ee

   U(e) = Strain
                energy

Strain Energy Density u

Strain energy density for

uniaxial stress. (Fig. 11.6)

The strain energy density is given by

(11.12)

and, the total strain energy is given by

(11.7)U � �
V

u dV

 � txygxy � txzgxz � tyzgyz)

u �
1

2
 (sx�x � sy�y � sz�z

Energy methods are most frequently ap-

plied to linearly elastic bodies. In this case,

the strain energy density is useful.

For a linearly elastic isotropic material, the

strain energy density is given by Eq. 11.12

and the total strain energy by Eq. 11.13.

u

�x�x

σx = E�x

σx

σx

u
_
 = Strain energy

      density
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Sections 11.6 through 11.8 are optional sections that present other important energy methods and suggest how these methods

are related to the displacement method, the force method, and the finite element method. Section 11.9 is an optional section
that discusses energy solutions for problems that involve impact loading.

752

Section
Suggested

Review

Problems

11.3

Work-Energy Principle

If the stresses in a body do not exceed the elastic

limit, all of the work done on the body by external

forces is stored in the body as strain energy.

(11.32)Wext � U

Section 11.3 illustrates the calculation of

the strain energy stored in members under-

going axial deformation, torsion, and bend-
ing. You should review this section and

note the formulas presented in it (e.g., Eqs.

11.15, 11.16, 11.20, 11.21, 11.25, and 11.26).

Section 11.4 presents the work-energy prin-
ciple. This principle, which is not restricted

to linearly elastic behavior, is useful only

for determining the displacement at the

point of application of a single load and in

the direction of that load.

11.3-3

11.3-9

11.3-13

11.3-23

11.3-33

11.4-5

11.4-9
11.4

Castigliano’s Second Theorem

Among all possible configurations of a linearly

elastic, deformable body, or system, the actual con-

figuration is the one for which

(11.36)

where �i is the displacement corresponding to the

force Pi, and U is the strain energy expressed as a

function of the loads.

¢i �
0U(P1, P2, . . . , PN)

0Pi

Section 11.5-presents two very important

energy principles:

• Castigliano’s Second theorem and
the

• Unit-Load Method.

In Section 11.5, Castigliano’s Second theo-

rem is applied to statically determinate 
systems and to statically indeterminate 
systems.

11.5-1

11.5-6

11.5-14
11.5
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SPECIAL TOPICS RELATED 
TO DESIGN

12

12.1 INTRODUCTION

12.2 STRESS CONCENTRATIONS

In previous chapters many design problems have been presented. Typically you

have been asked to determine the size of the cross section of a member or connec-

tor (bolt, pin, etc.) given the load and given the allowable stress or deflection. In this

chapter you will be introduced to several additional important design-related topics

that you will encounter again in future courses on design of structures and/or

machines. Section 12.2 on Stress Concentrations discusses the effect of holes, notches,

or changes of cross section on the stresses due to axial loading, torsion, or bending.

Section 12.3 on Failure Theories indicates how mechanical properties obtained from

simple uniaxial tension or compression testing may be used to predict yielding or

brittle fracture of members subjected to more complex loading conditions. Finally,

in Section 12.4 on Fatigue and Fracture you will learn how repeated loading and

unloading of a member causes small cracks to grow in length, eventually leading to

a fatigue failure.

753

The key formulas

enable one to calculate the normal stress due to axial loading, the shear stress due

to torsion, and the flexural stress due to bending, respectively. These formulas may

be used only so long as the cross section of the member is relatively uniform, that

is, there are no abrupt changes in cross section. In Section 2.10 it was noted that

these formulas do not hold in the immediate vicinity of points of application of

load, but that away from that vicinity, St. Venant’s Principle ensures the validity of

the above formulas for bodies of uniform cross section. The increase of stress due

s � �
My

I
t �

Tr

Ip
,s �

F
A

,
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to localized application of a load or due to nonuniformity of the cross section is

called a stress concentration. In the design of load-bearing members it is important

to avoid stress concentrations whenever possible and to properly account for them

when they do exist, particularly if the member is made of brittle material or is sub-

jected to a fluctuating load (see Section 12.4). We will briefly examine the effect of

stress concentrations in members subjected to axial loading, torsional loading, and

bending.

Stress Concentration—Axial Loading. The last picture in the color insert de-

picts the stress-concentration effects due to a centrally located circular hole in an

axially loaded flat bar, as computed by use of the finite element method. Holes,

notches, or abrupt changes in cross section produce stress concentrations in axially-

loaded members.

Figure 12.1b shows the stress concentration due to a centrally located circular
hole in a flat bar in tension. The maximum normal stress occurs at the edge of the

hole on the cross section a – a, which passes through the center of the hole. In

Figure 12.2 a shoulder fillet of radius r is used to smooth the transition between

the wider portion of the bar and the narrower portion. The maximum normal

stress for this case occurs on section b – b, where the fillet joins the narrower part

of the bar.

The stress distribution due to a stress concentration like the ones in Figs. 12.1

and 12.2 may be determined analytically through the use of the theory of elasticity

[Ref. 12-1], or numerically by using finite element analysis [Refs. 12-2, 12-3] (see

the last color-insert photo), or experimentally through the use of photoelasticity

[Ref. 12-4]. The exact distribution of stress is not of great importance, but the

maximum value of stress is very important. This maximum stress, �max, may be

754
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PP P

a

a

2r

d––
2

d––
2

D

(a) Flat bar with
centrally located hole.

(b) Stress distribution on
section a–a.

nomσ

maxσ

FIGURE 12.1 Stress concentration in an axially loaded flat bar with circular hole.

PP

b

r

b

D Pd nomσ

maxσ

(a) Flat bar with
reduced section.

(b) Stress distribution on
section b–b.

FIGURE 12.2 Stress-concentration in an axially loaded flat bar with abrupt change in

cross section. (Copyright © Boeing)
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related to the average stress on the net cross section, the nominal stress �nom, by

defining the stress-concentration factor as

(12.1)

For linearly elastic behavior, the stress-concentration factor is a function of the

geometry of the member and the type of load applied (i.e., axial, torsion, bending).

Formulas for the stress-concentration factor for many types of loading and geome-

try are given in Ref. 12-5; and many graphs may be found in Ref. 12-6, from which

the graphs in this section were obtained. Values of the stress-concentration factor

given in these references and in the figures presented in this section are based on

linearly elastic behavior and are valid only as long as the computed value �max does

not exceed the proportional limit of the material.

K �
smax

snom
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Stress Concentrations

0
2.0

2.2

2.4

K

2.6

2.8

0.1 0.2 0.3 0.4

2 r/D

0.5 0.6 0.7 0.8

PP 2r

t = thickness

d––
2

d––
2

D

K = ,    nom = P—
td

σ   max——
   nom

σ
σ

3.0

FIGURE 12.3 Stress-concentration factor K for a flat bar with centrally located circular

hole (tension). (Adapted from Ref. 12-6. Reprinted by permission of J. Wiley & Sons. Inc.)

0
1.0

2.0K

0.1 0.2 0.3

r/d

PP

t = thickness

r

K = ,    nom = P—
td

σ   max——
   nom

σ
σ

3.0

= 2.0D––
d

= 1.3D––
d

= 1.2D––
d = 1.1D––

d

= 1.5D––
d

1.05

1.02

D d

FIGURE 12.4 Stress concentration factor K for a flat bar with shoulder fillets (tension).

(Adapted from Ref. 12-6. Reprinted by permission of J. Wiley & Sons, Inc.)
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Figure 12.3 shows the effect of hole size on the stress-concentration factor for a

flat bar with centrally located circular hole. Note that as the radius of the hole ap-

proaches zero, the stress-concentration factor approaches the value three. So, a very

small hole can have a very damaging effect on a member. Fatigue cracks, which are

discussed in Section 12.4, frequently are initiated at just such small holes.

From Fig. 12.4 it may be observed that as r 0 the stress concentration factor

increases rapidly. With no fillet (i.e., for r � 0) the theoretical stress concentration

factor would be infinitely large because of the sharp 90� reentrant corner.Therefore,

good design practice requires that such sharp corners be avoided and that generous

fillets be provided.

S
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Special Topics Related 
to Design

E X A M P L E  1 2 . 1

An aluminum bar has the dimensions shown in Fig. 1. If the allowable

stress is �allow � 200 MPa, determine the maximum axial force Pallow that

can be carried by the bar.

Solution Figure 12.4 may be used to estimate the stress concentration

factor for this bar with shoulder fillets. For the bar in Fig. 1,

Since there is a curve for D/d � 1.50, we can directly estimate that 

K � 1.74.

The allowable load is based on the average stress in the smaller cross

section, so

and when the stress reaches �allow at the points of stress concentration,

Therefore,

Ans. Pallow � 9.20 kN

 Pallow � a200 MPa

1.74
b (80 mm2) � 9.20 kN

Ksnom � sallow � 200 MPa

Pallow � snomAmin � snom(80 mm2)

 
r
d

�
4 mm

16 mm
� 0.25

 
D
d

�
24 mm

16 mm
� 1.50

Fig. 1

4 mm

PP

4 mm

t = thickness = 5 mm

16 mm24 mm

Stress Concentration—Torsion. The torsion formula which was

derived in Chapter 4, may be used to determine the shear-stress distribution on the

cross section of a homogeneous linearly elastic rod with uniform circular cross

section. In order for this formula to be valid, the cross section in question must

not be near a point where torque is applied to the rod by a gear, pulley, or flange,

t � Tr/Ip,
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or to a point where there is a sudden change in the diameter of the cross section.

Figure 12.5 shows three such situations where stress concentration occurs in circu-

lar rods loaded in torsion.

Applications like the two shown in Fig. 12.5a and 12.5b are considered in

courses on machine design. Here we will only consider the stress concentration in

the vicinity of a change in cross section, as illustrated in Fig. 12.5c and Fig. 12.6.

Based on St. Venant’s Principle, the shear-stress distributions at sections a – a and

c – c, which are more than 1 diameter away from the region of diameter change, may

be determined by the torsion formula

(12.2)

These linear shear-stress distributions are illustrated in Figs. 12.6b and 12.6d, respec-

tively. But, as indicated in Fig. 12.6c, the maximum shear stress in a stepped torsion

rod with shoulder fillet occurs at section b – b, where the fillet joins the smaller-

diameter portion of the rod. The stress-concentration factor for torsion is defined as

(12.3)

since the nominal maximum shear stress would occur at the outer fibers of the

smaller cross section, as indicated in Fig. 12.6d.

Figure 12.7 gives the value of the stress-concentration factor K for various

geometries of stepped shafts. As was discussed above for axial loading of a stepped

bar, the stress-concentration factor for torsion of a stepped shaft approaches infin-

ity as the fillet radius r approaches zero. Therefore, in order to minimize the effect

of the torsional shear-stress concentration characterized by Fig. 12.7, one should

provide a fillet with the largest radius that is practical for the particular design. (The

application of the stress-concentration factor to torsion problems is virtually identi-

cal to the application to axial deformation problems, as illustrated in Example

Problem 12.1. Therefore, no torsion example is provided, although there are home-

work exercises on this topic.)

Stress Concentration—Bending. In Chapter 6 the flexure formula, namely

� � �My/I, was derived for bending of a uniform beam having a plane of symmetry.

This formula is valid only so long as there is no abrupt change in cross section and

no concentrated load or reaction at or very near the cross section of interest. Here

we will consider only two cases where stress concentrations occur in beams—the

K �
tmax

tnom
� tmax apd3

16T
b

t �
Tr

Ip
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FIGURE 12.5 Three situa-

tions that produce stress con-

centration in circular shafts

subjected to torsion.

(b) Gear on shaft.

(c) Stepped shaft.

(a) Flanged
      connection.

FIGURE 12.6 A stepped torsion rod.

D d

r

a c

T

b

(a) Stepped shaft subjected to torsion. (b) Section a – a. (c) Section b – b. (d) Section c – c.

T max
max)a( nom

a b c

ττ
τ
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case of a rectangular beam with abrupt change of cross section (Fig. 12.8), and that

of a rectangular beam with symmetric, U-shaped notches (Fig. 12.9). Other cases are

considered in Refs. [12-5, 12-6].

The stress-concentration factor for bending is defined as

(12.4)

with �nom being the nominal maximum stress at the reduced cross section, based on

the flexure formula. Figures 12.8 and 12.9 present values of the stress-concentration

factor K based on the data from Ref. [12-6]. These figures clearly indicate the desir-

ability of avoiding fillets and notches with small radius r.

The stress-concentration factors presented in Figs. 12.8 and 12.9 are based on

linearly elastic behavior, so values of �max obtained by using Eq. 12.4 are valid only

K �
smax

snom

� smax a td2

6M
b
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0
1.0

1.2

1.4

1.6

1.8

K

0.1 0.2 0.3

r/d

r

K = ,    nom = 16T——
πd3

τ   max——
   nom

τ
τ

2.0

T

T

= 0.9d––
D

= 0.8d––
D

= 0.6d––
D

= 0.5d––
D

D d

FIGURE 12.7 Torsional stress-concentration factor K for a stepped shaft with shoulder

fillet. (Adapted from Ref. 12-6. Reprinted by permission of J. Wiley & Sons, Inc.)

0
1.0

2.0K

0.1 0.2 0.3

r/d

3.0

= 3D––
d

= 2D––
d

1.50

1.20

1.02

1.10

1.05

K = ,    nom = 6M–—
td2

σ   max——
   nom

σ
σ

t = thickness

MM

r

D d

FIGURE 12.8 Stress concentration factors for pure bending of flat bars with fillets

(Adapted from Ref. 12-6. Reprinted by permission of J. Wiley & Sons, Inc.)
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if the proportional limit of the material is not exceeded. Otherwise, if the material

is ductile, plastic deformation will occur in the vicinity of the stress concentration,

resulting in stresses that are smaller than the value of �max given by Eq. 12.4.
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0
1.0

2.0K

0.1 0.2 0.3

r/d

3.0

K = ,    nom = 6M–—
td2

σ   max——
   nom

σ
σ

t = thickness

D

2r

MM d

= 1.2D––
d

= 1.1D––
d

= 1.5D––
d

1.05

2.0

FIGURE 12.9 Stress-

concentration factors for pure

bending of flat bars with 

U-shaped notches. (Adapted

from Ref. 12-6. Reprinted by

permission of J. Wiley & 

Sons, Inc.)

E X A M P L E  1 2 . 2

The flat bars in Fig. 1 are subjected to pure bending. By what percentage

can the maximum moment in the bar be increased by removing material

in order to convert the deep grooves of Fig. 1a to the semicircular

grooves as illustrated in Fig. 1b? Assume that both bars have the same

thickness t and are made of the same material (i.e., they have the same

allowable stress).

Solution The stress concentration factors for the two beams in Fig. 1 can

be estimated from the curves in Fig. 12.9. The required parameters are

From Fig. 12.9 we estimate that

From Eq. 12.4,

(1)

But, since �max � �allow is the same for both bars, and since they have the

same dimensions t and d, Eq. (1) gives

M2

M1

�
K1

K2

smax � Ksnom � K a6M

td2
b

K2 � 1.61K1 � 2.06,

r2

d2

�
1

4

r1

d1

�
1

8
,

D1

d1

�
D2

d2

� 1.5,

Fig. 1

M1 M1

d1 = dD1 = D

r1

(a)

= 1.5,
D1—–
d1

= 8,  t1 = t
d1—–
r1

M2 M2

d2 = dD2 = D

(b)

= 1.5,
D2—–
d2

= 4,  t2 = t
d2—–
r2

r2
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The design engineer is faced with two distinct tasks. The first task is to analyze the

behavior of proposed designs subjected to specified loadings. For simple structural

members and machine components the formulas in this book may be used to calcu-

late stress and deformation. If there are stress concentrations, the procedures of

Section 12.2 must be applied. For more complex members the finite element method
[Refs. 12-2, 12-3] is generally used to obtain the stress distribution and deformation.

In some cases, solutions may be obtained by using the theory of elasticity or the

theory of plates and shells. The other important task of the design engineer is to

determine what values of stress and/or deformation would constitute failure of the
object being designed.1 That is the subject we address in this section.

If a tension test is performed on a specimen of ductile material, the specimen

may be said to fail when the axial stress reaches the yield stress �Y, that is, the criterion
of failure is yielding. If the specimen is made of brittle material, the usual failure cri-

terion is brittle fracture at the ultimate tensile stress �U. But a machine component

or structural element is invariably subjected to a multiaxial state of stress, for which

it is more difficult to designate what value of stress produces failure.

A tension test is relatively easy to perform using the procedures described in

Section 2.4, and test results are published for many materials. But in order to apply

the results of a tension test (or a compression test, or a torsion test) to a member

that is subjected to multiaxial loading, it is necessary to consider the actual mecha-

nism of failure. That is, was failure caused by the maximum normal stress reaching

a critical value? Or was it due to maximum shear stress that reached a critical value,

or to strain energy or some other quantity having reached its critical value? In the

tension test, the criterion for failure can be easily stated in terms of the principal

(tensile) stress �1, but for multiaxial stress we must consider the actual cause of the

failure and say what combinations of stress would constitute failure.

In this section we consider four theories of failure.2 Two of these apply to mate-

rials that behave in a ductile manner, that is, to materials that yield before they frac-

ture. The other two theories apply to brittle materials. For plane stress, the failure

theories are expressed in terms of the principal stresses �1 and �2. For triaxial states

of stress, �1, �2, and �3 are used.

Ductile Materials. Two theories of failure for ductile materials will be discussed,

the maximum-shear-stress theory and the maximum-distortion-energy theory.

so, the increase in moment capacity is given by

Ans.

Therefore, by decreasing the sharpness of the notches we can increase

the applied moment by about 28% without increasing the value of the

maximum stress in the beam.

M2 � M1

M1

�
K1

K2

� 1 �
K1 � K2

K2

�
2.06 � 1.61

1.61
� 0.28

*12.3 FAILURE THEORIES

1In the remainder of this section we will only consider failures due to excessive static stress, not failures

due to excessive deflection or due to buckling.
2The theories presented here apply only to homogeneous, isotropic materials.
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Maximum-Shear-Stress Theory:3 When a flat bar of ductile material, like mild steel,

is tested in tension, it is observed that the mechanism that is actually responsible for

yielding is slip, that is, shearing along planes of maximum shear stress at 45� to the

axis of the member. Initial yielding is associated with the appearance of the first slip

line on the surface of the specimen, and as the strain increases, more slip lines ap-

pear until the entire specimen has yielded. If this slip is assumed to be the actual

mechanism of failure, then the stress that best characterizes this failure is the shear

stress on the slip planes. Figure 12.10 shows a Mohr’s circle of stress for this uniax-

ial stress state, indicating that the shear stress on the slip planes has a magnitude of

�Y/2. Therefore, if it is postulated that in a ductile material under any state of stress

(uniaxial, biaxial, or triaxial), failure occurs when the shear stress on any plane

reaches the value �Y/2, then the failure criterion for the maximum-shear-stress
theory may be stated as

(12.5)

where �Y is the yield stress determined by a simple tension test. Using Eq. 8.32 we

can express Eq. 12.5 in terms of principal stresses as

(12.6)

where �max is the maximum principal stress and �min is the minimum principal stress.4

For the case of plane stress, the maximum-shear-stress failure criterion may be

stated in terms of the in-plane principal stresses �1 and �2 as follows:5

and if �1 and �2 have same sign

if �1 and �2 have opposite signs

(12.7)

Equations 12.7 may be represented in the convenient graphical forms shown in Fig.

12.11. For a member undergoing plane stress, the state of stress at every point in the

body can be represented by a stress point (�1, �2) in the �1 � �2 plane, as indicated

in Fig. 12.11.6 If the state of stress for any point in the body corresponds to a stress

point that lies outside the hexagon of Fig. 12.11 or on its boundary, failure is said to

have occurred according to the maximum-shear-stress theory.

Maximum-Distortion-Energy Theory:7 Although the maximum-shear-stress theory

provides a reasonable hypothesis for yielding in ductile materials, the maximum-

distortion-energy theory correlates better with test data and is therefore generally

preferred. In this theory, yielding is assumed to occur when the energy associated

�s1 � s2� � sY

�s1� � sY if �s1� � �s2�

�s2� � sY if �s2� � �s1�
f

smax � smin � sY

t
max
abs �

sY

2
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FIGURE 12.10 Principal

stresses and maximum shear

stresses for a uniaxial stress

test.

( (

(b) Principal-stress element.

σ
2 =   3 = 0σ σ

τ

1 =   Yσ σ

σ , –

( (, 

σY

(c) Maximum-shear-stress element.

45°

(a) Mohr’s circle for    1 =    Y.

  Y—
2

σ  Y—
2

σ σ

σ  Y—
2

σ  Y—
2

σ  Y—
2

σ  Y—
2

σ  Y—
2

3The names of C. A. Coulomb, H. Tresca, and J. J. Guest are associated with this theory of failure 

[Ref. 12-7].
4Note that this theory of failure ignores the normal stresses acting on the planes of maximum shear stress.
5For the case of plane stress, the out-of-plane principal stress is called �3 (�3 0), even though it is not

necessarily the minimum principal stress.
6Although �1 and �2 are principal stresses, Eqs. 12.7 and Fig. 12.11 do not require that the principal axes

be labeled such that �1 � �2, as was done in Chapter 8.
7This theory is also called the maximum-octahedral-shear-stress theory. Credit for this theory is generally

given to M. T. Huber, R. von Mises, and H. Hencky, although it was earlier conjectured by J. Clerk

Maxwell [Ref. 12-7].

�
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with change of shape of a body undergoing multiaxial loading is equal to the energy

of distortion in a tensile specimen when yielding occurs at the uniaxial yield stress �Y.

Consider the strain energy stored in an element of volume, like the one shown

in Fig. 12.12a. The strain energy density due to multiaxial loading is given by Eq.

11.12. which can be written, using the three principal axes, in the form

(12.8)

Combining Eq. 12.8 with Hooke’s Law (Eq. 2.38 with �T � 0) we get

(12.9)

A portion of this strain energy can be associated with the change of volume of the

element, and the remainder of the strain energy is associated with change of shape,
that is with distortion. The change of volume is produced by the average stress

�avg � (�1 � �2 � �3), as illustrated in Fig. 12.12b. The net stresses shown in 

Fig. 12.12c produce distortion without any change of volume.

Experiments have shown that materials do not yield when they are exposed to

hydrostatic stresses8 of extremely large magnitude. Therefore, it has been postulated

that the stresses that actually cause yielding are the stresses that produce distortion.

This hypothesis constitutes the maximum-distortion-energy yield (failure) criterion,
which states:

Yielding of a ductile material occurs when the distortion energy per unit volume equals
or exceeds the distortion energy per unit volume when the same material yields in a
simple tension test.

When the distortion-producing stresses of Fig. 12.12c are substituted into Eq. 12.9

we get the following expression for the distortion-energy density,

(12.10)ud �
1

12G
 [(s1 � s2)2 � (s2 � s3)2 � (s1 � s3)2]

1
3

u �
1

2E
 [s2

1 � s2
2 � s2

3 � 2n(s1s2 � s2s3 � s1s3)]

u �
1

2
 (s1�1 � s2�2 � s3�3)
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FIGURE 12.11 Failure

hexagon for the maximum-

shear-stress theory (plane

stress).

FIGURE 12.12 (a) Triaxial stress state. (b) Stresses producing volume change. (c) Stresses

producing distortion.

σ2

σ1σY

σY

–σY

–σY

Experimental data from tension test.

8Figure 12.12b represents a hydrostatic state of stress, that is, equal stresses in all three principal directions.

σ3

σ1

= +
σ2

(a)

σavg

σavg

σavg

(b)

(σ1 – σavg)

(σ2 – σavg)

(c)

(σ3 – σavg)
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The distortion energy density in a tensile test specimen at the yield stress �Y is

(12.11)

since �1 � �Y and �2 � �3 � 0. Therefore, yielding occurs when the distortion en-

ergy for general loading, given by Eq. 12.10, equals or exceeds the value of 

in Eq. 12.11. Therefore, the maximum-distortion-energy failure criterion can be

stated in terms of the three principal stresses as

(12.12a)

In terms of the normal stresses and shear stresses on three arbitrary mutually

orthogonal planes, the maximum-distortion-energy failure criterion can be shown to

have the form9

(12.12b)

For the case of plane stress, the corresponding expressions for the maximum-
distortion-energy yield criterion can easily be obtained from Eqs. 12.12 by setting 

�3 � �z � �xz � �yz � 0. In terms of the principal stresses, then,

(12.13)

This is the equation of an ellipse in the �1 � �2 plane, as depicted in Fig. 12.13. For

comparison purposes, the failure hexagon for the maximum-shear-stress yield the-

ory is also shown in dashed lines in Fig. 12.13. At the six vertices of the hexagon the

two failure theories coincide; that is, both theories predict that yielding will occur if

the state of (plane) stress at a point corresponds to any one of these six stress states.

Otherwise, the maximum-shear-stress theory gives the more conservative (i.e.,

smaller-valued) estimate of the stresses required to produce yielding, since the

hexagon falls either on or inside the ellipse.

A convenient way to apply the maximum-distortion-energy theory is to take the

square root of the left-hand side of Eq. 12.12a (or Eq. 12.12b) to form an equivalent

stress quantity that is called the Mises equivalent stress. Either of the following two

equations can be used to compute the Mises equivalent stress, �M:

(12.14a)

or

(12.14b)

For the case of plane stress, the corresponding expressions for the Mises equivalent

stress can easily be obtained from Eqs. 12.14 by setting �3 � �z � �xz � �yz � 0.

sM �
12

2
[(sx �sy)2 � (sy �sz)2 � (sx �sz)2 � 6(t2

xy � t2
yz � t2

xz)]1/2

sM �
12

2
 [(s1 � s2)2 � (s2 � s3)2 � (s1 � s3)2]1/2

s2
1 � s1s2 � s2

2 � s2
Y

1

2
 [(sx � sy)2 � (sy � sz)2 � (sx � sz)2 � 6(txy

2 � tyz
2� � txz

2 )] � s2
Y

1

2
 [(s1 � s2)2 � (s2 � s3)2 � (s1 � s3)2] � s2

Y

(ud)Y

(ud)Y �
1

6G
 s2

Y
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FIGURE 12.13 Failure 

ellipse for the maximum-

distortion-energy theory

(plane stress).

σ2

σ1σY

σY

–σY

–σY(–σY, –σY)

(σY, σY)

Experimental data from tension test.
Maximum-shear-stress criterion.

9See Sections 78 and 90 of Ref. 12-1.
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By comparing the value of the Mises equivalent stress at any point with the

value of the tensile yield stress, �Y, it can be determined whether yielding is

predicted to occur according to the maximum-distortion-energy theory of failure.

Therefore, the Mises equivalent stress is widely used when calculated stresses are

presented in tabular form or in the form of color stress plots, as has been done 

for the finite element analysis results shown in the last picture in the color-photo

insert.
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E X A M P L E  1 2 . 3

A force P0 kips applied by a lever arm to the shaft in Fig. 1 produces

stresses at the critical point A having the values shown on the element in

Fig. 1. Determine the load PS cSP0 that would cause the shaft to fail ac-

cording to the maximum-shear-stress theory, and determine the load

PD cDP0 that would cause failure according to the maximum-distortion-

energy theory. The shaft is made of steel with �Y � 36 ksi.

Solution It will be helpful it we construct a Mohr’s circle for the plane

stress state in Fig. 1 and also sketch the failure envelopes for the two fail-

ure theories. Figure 2 is a Mohr’s circle for the given stresses at A.

Since �1 is positive and �2 is negative, we only need to sketch the

fourth quadrant of the failure envelope. This is shown in Fig. 3, Since the

stresses at point A are proportional to load, the stresses due to any load

cP0 will lie along the radial line identified in Fig. 3 as the load line. This

line passes through the origin of the �1 � �2 plane and through the stress

point (�1P � 20 ksi, �2P � �10 ksi) that corresponds to the principal

stresses due to load P0. Failure according to the maximum-shear-stress

theory occurs at the stress state marked S in Fig. 3, and failure according

to the maximum-distortion-energy theory occurs at point D.

Maximum-Shear-Stress Theory: Point S is the intersection of the load

line given by

(1)

and the maximum-shear-stress boundary line

(2)

Solving Eqs. (1) and (2) for �1 and �2 we get

Combining these values with �1 and �2 of Fig. 2 we get

Ans. cS � 1.2

 cS �
PS

P0

�
s1S

s1P
�

24 ksi

20 ksi
� 1.2

s2 s � �12 ksis1s � 24 ksi,

s1 � s2 � sY � 36 ksi

s1 � �2s2

�

�

P0

A x

y

14.14 ksi

10 ksi

A

Fig. 1

τ(ksi)

σ(ksi)
σ1 = 20 ksi5

14.14

X(10, 14.14)

5

σ2 = –10 ksi

Y(0, –14.14)

Fig. 2 Mohr’s circle for stress state at

point A.
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Failure Theories

Brittle Materials. Two theories of failure for brittle materials are presented, the

maximum-normal-stress theory and Mohr’s failure theory.

MDS12.1

Maximum-Distortion-Energy Theory: Point D in Fig. 3 is the intersec-

tion of the load line, given by Eq. (1), and the ellipse given by Eq. 12.13.

Thus,

(3)

Combining Eqs. (1) and (3) gives

Then, since �1 	 0 and �2 
 0, we get

Comparing these stresses with the principal stresses produced by P0

gives

Ans.

We could get this same result by noting that the factor of safety against

yielding, according to the maximum-distortion-energy yield criterion, is

given by

where �M is the Mises equivalent stress for the case of plane stress. For

the original load P0,

Then,

In summary, a 20% increase in the load would cause failure accord-

ing to the maximum-shear-stress theory, but a 36% increase would be

required to cause failure according to the maximum-distortion-energy

theory. That is, under load P0 the member would have a factor of safety

FSs � 1.2 with respect to failure according to the maximum-shear-stress

theory and a factor of safety of FSd � 1.36 with respect to failure accord-

ing to the maximum-distortion-energy of failure.

FSd �
sY

sM
�

36 ksi

26.46 ksi
� 1.36

sM � [s2
1 �s1s2 �s2

2]1/2 � [(20)2 � (20)(�10)� (�10)2]1/2 � 26.46 ksi

FSd � sY/sM

 cD � 1.36

 cD �
PD

P0

�
s1D

s1P
�

27.21 ksi

20 ksi
� 1.36

s2D � �13.61 ksis1D � 27.21 ksi,

7s2
2D � (36 ksi)2

s2
1D � s1Ds2D � s2

2D � s2
Y � (36 ksi)2

Fig. 3 Fourth quadrant of failure 

envelope.

–36

36

D
S

σ2(ksi)

σ1(ksi)

(20, –10)

Max.-distortion-
energy theory (ellipse)

Max.-shear-
stress theory Load line
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Maximum-Normal-Stress Theory:10 It was stated in Section 2.4 and illustrated in

Fig. 2.16b, that in a tension test, a brittle material fails suddenly by fracture, with-

out prior yielding. And it was stated in Section 4.4 and illustrated in Fig. 4.17b, that

in a torsion test, a bar made of brittle material also fails by fracture on planes of

maximum tensile stress. Experiments have shown that the value of the normal

stress on the failure plane for this biaxial state of stress is not significantly differ-

ent than the fracture stress �U in a uniaxial tensile test. Therefore, the hypothesis

of the maximum-normal-stress theory is that an object made of brittle material will

fail when the maximum principal stress in the material reaches the ultimate normal

stress that the material can sustain in a uniaxial tension test. This theory also as-

sumes that compression failures occur at the same ultimate stress value as do ten-

sion failures.

For the case of plane stress, the maximum-normal-stress failure criterion is given

by the equations

or (12.15)

These equations may be plotted on the �1 � �2 plane, as shown in Fig. 12.14.11

Mohr’s Failure Criterion:12 If the ultimate compressive strength of a brittle mate-

rial is not equal to its ultimate strength in tension, the maximum-normal-stress the-

ory should not be used. An alternative failure theory was proposed by Otto Mohr

and is called Mohr’s failure criterion. Figure 12.15a shows Mohr’s circles for a uni-

axial tensile test and for a uniaxial compression test for a brittle material having a

tensile ultimate strength �TU and an ultimate strength in compression of magnitude

�CU. By Mohr’s theory, when �1 and �2 have the same sign, failure occurs if either of

the following stress limits is reached:

or (12.16)smin � �sCUsmax � sTU

�s2� � sU�s1� � sU
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10Also called Rankine’s Theory after W. J. M. Rankine (1820–1872), an eminent professor of engineering

at Glasgow University in Scotland.
11As in Figs. 12.11 and 12.13 �1 is not necessarily the greater principal stress.
12This theory is named for the German engineer Otto Mohr (1835–1918), the developer of Mohr’s circle.

FIGURE 12.14 Failure 

diagram for the maximum-

normal-stress theory (plane

stress).

σ2

σ1σU

σU

–σU

–σU

Experimental data from tension test.

FIGURE 12.15 Mohr’s failure criterion (plane stress).

(a) (b)

σσTU

τ

Tension
test

Compression
test
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C

D

σ2

σ1σTU

σTU

–σCU

–σCU–σCU
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These equations are plotted as solid-line boundaries BD and CA, respectively, in

Fig. 12.15b. (Note that above the diagonal line CD, �2 	 �1, which would violate the

naming convention of principal stresses that �1 � �2.Thus, only stress states that fall

on or below this diagonal line CD need be considered.) For cases where �1 and �2

have opposite signs, Mohr proposed that the failure boundary be determined by

drawing tangents to the tension and compression circles, as illustrated by the dashed

lines in Fig. 12.15a. It can be shown (see Example 12.4) that the principal stresses for

all circles that have centers on the �-axis and are tangent to the dashed tangent lines

in Fig. 12.15a plot as points on the dashed-line boundaries in Fig. 12.15b. Stress

states with �1 	 0 and �2 
 0 fall in the fourth quadrant in Fig. 12.15b. For this case,

Mohr’s failure criterion states that failure occurs if the stress state falls on the

dashed line AB in Fig. 12.15b, that is, if

(12.17)

The combination of Eqs. 12.16 and 12.17 constitute Mohr’s Failure Criteria.
If torsion-test data or other plane-stress failure data are available, the failure

boundary AB in the fourth quadrant of Fig. 12.15b can be modified to incorporate

these experimental data (e.g., see Modified Mohr Theory in Ref. [12-8]).

s1

sTU
�
s2

sCU
� 1

767
Failure Theories

E X A M P L E  1 2 . 4

Show that, for �1 	 0 and �2 
 0, the stress points that lie on the dashed

line AB in Fig. 12.15b correspond to the principal stresses on Mohr’s cir-

cles that have centers lying between points C and T in Fig. 12.15a and are

tangent to the dashed lines in this figure.

Solution Let us redraw Fig. 12.15a and add an intermediate circle as

specified in the problem statement (Fig. 1). The equation of the dashed-

line AB in Fig. 12.15b is

(1)

We are to prove that this equation is the equation that relates the

principal stresses �1 and �2 for the circle with center at N in Fig. 1. From 

Fig. 1,

(2)

where �n is the normal stress corresponding to point N. Also, from Fig. 1,

the centers of the tension-test Mohr’s circle and the compression-test

Mohr’s circle are

(3)sc � �
sCU

2
st �

sTU

2
,

s2 � sn � NN¿,s1 � sn � NN¿,

s2 � sCU a s1

sTU
� 1b

σσTUσ1σ2

τ

T

T ′

NC

C′
N ′

–σCU

Fig. 1
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At some time or other you have probably held a paper clip in your hands and bent

the paper-clip wire back and forth several times until the wire finally broke in two.

The failure did not occur when the paper clip was first bent, even though the wire

experienced very large plastic deformation. Instead, failure occurred after a few re-

versals of flexural stress in the wire. This type of failure is called fatigue failure.13 If

the failure occurs after a few cycles of loading, perhaps up to a thousand cycles, it is

called low-cycle fatigue. However, many metal components experience fatigue fail-

ure only after millions of stress cycles. In any case, when failure occurs at a stress

level that is less than the level that would produce fracture under a single static

application of load, the failure is called a fatigue failure.

and their radii are

(4)

Let

That is,

(5)

Then, the radius will be linearly related to the radii and by

the equation

or

(6)

Combining Eqs. (2), (5), and (6), we get

(7)

The elimination of k from Eqs. (7) produces Eq. 1, the desired equation

of the dashed line AB in Fig. 12.15b. QED.

s2 � sCU(k � 1)s1 � ksTU,

NN¿ �
sCU

2
� k asCU

2
�
sTU

2
b

NN¿ � CC¿ � k(CC ¿ � TT ¿)

TT¿CC¿NN¿

sn � �
sCU

2
� k asTU

2
�
sCU

2
b

sn � sc � k(st � sc)

CC¿ �
sCU

2
TT ¿ �

sTU

2
,

13Fatigue failure of axles of railway cars was a source of great concern and study in the 1800s. The term

fatigue was used by Poncelet to denote this type of failure due to cyclic stresses. A Wöler (1819–1914),

a German railway engineer, is credited with developing the first fatigue testing machine. [Ref. 12-7]

*12.4 FATIGUE AND FRACTURE
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The types of fluctuating stresses that lead to fatigue failure in metals are illus-

trated in Fig. 12.16. Figure 12.16a is the type of fully reversed stress that would be

experienced by a railway-car axle as the train moves at constant speed along the

track. Figure 12.16b shows a superposition of a (constant) mean stress and a sinu-

soidally varying stress; Fig. 12.16c illustrates the more complicated type of fluctuat-

ing stress experienced, for example, by an airplane wing component during a single

flight. The fracture that occurs as a result of such fluctuating stresses usually begins

at a point of stress concentration (Section 12.2) like the edge of the fastener hole

in the splice plate shown in Fig. 12.17a and the airplane wing leading-edge nose

cap in Fig. 12.17b. The crack is initiated in a region of high stress intensity, usually

at some microscopic flaw or imperfection. Stress cycles cause the fatigue crack to

grow slowly in size until the crack reaches a critical crack length, at which point

the crack propagates at an explosive rate leaving the component unable to sustain

load. Figure 12.17c shows the typical “beach-sand markings” of a fatigue fracture

surface. Along the bottom edge of this photo, two points of initiation of the fatigue

FIGURE 12.16 Typical cyclic stresses that can produce fatigue failure.

(a) Fully reversed stress.

Alternating
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(b) Sinusoidally fluctuating stress.
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Stress
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Alternating stress In-flight loading
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(c) Ground-air-ground stress history
      for one airplane flight.

One flight

t

FIGURE 12.17 Examples of fatigue cracks. (Used with permission, Lockheed Martin, 1993.)
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(a) Fatigue crack in a 

splice plate. (b) Fatigue crack in a wing nose cap.

(c) The surface of a fatigue

crack.
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crack can be identified; the “ridges” on the fracture surface indicate the progress of

the crack as it propagated with successive cycles of stress.

To characterize the behavior of a material under repeated cycles of loading,

fatigue tests at various levels of stress are performed, and the results are plotted as an

S-N diagram, or endurance curve.14 Figure 12.18 is an S-N diagram based on a series

of tests on nominally identical test specimens. (Note that the diagram is a log-log

plot.) Several tests (e.g., ten tests at each stress level for Fig. 12.18) are conducted

with cyclic stress whose maximum amplitude is slightly less than the ultimate static

strength of the material. The number of cycles of stress required to cause fracture at

that stress level is recorded for each test. Similar test series are conducted at pro-

gressively lower levels of stress, and the results plotted as the number of cycles to

cause fatigue failure in each test. The scatter band for the tests at various stress levels

are indicated on Fig. 12.18.

The endurance curves for some materials have the form illustrated in Fig. 12.19,

where there is a stress level, called the fatigue level, or endurance limit, of the
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FIGURE 12.18 An 

S-N diagram for 7075-T6

aluminum-alloy notched tensile

specimens. (From Ref. 12-10).
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FIGURE 12.19 An S-N 

diagram for steel round-bar

rotating-beam specimens.

(From Ref. 12-11, maintained

and published by CINDAS/

Purdue University under

Cooperative Research and

Development Agreement with

the U.S. Air Force. Used with
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14Test procedures to produce S-N diagrams are described in ASTM Standards E466-E468. [Ref. 12-9]
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material, below which a virtually infinite number of stress cycles can be sustained

without resulting in a fatigue failure. Many steel alloys exhibit this type of behavior.

Fatigue limits for steel alloys, based on 107 stress cycles, are typically 35%-60% of

the ultimate tensile strength of the steel.15 As indicated in Fig. 12.19, notches or

other imperfections obviously degrade fatigue strength. Some materials, including

many aluminum alloys, do not exhibit a clearly defined endurance limit. In such

cases, if the material continues to undergo cyclic stressing, it will eventually fail, re-

gardless of how small the stress is.Tabulated “endurance limits” for aluminum alloys

indicate that they can sustain up to 5 � 108 stress cycles if the stress does not-exceed

about 25% of their ultimate tensile strength.16

From Figs. 12.18 and 12.19 and the preceding discussion, it is clear that fatigue
strength must be taken into consideration in the design of a component that is to be

subjected to cycles of stress during its service lifetime. One approach to fatigue de-

sign is called the safe-life design philosophy. Using endurance limit data and data

from fatigue tests of the actual structural component under realistic stress cycles

(see Fig. 12.16c), the design engineer establishes a safe lifetime for the component,

that is, the number of stress cycles that the component will be allowed to experience

before it must be retired from service.

As the desire has arisen to extend the useful lifetime of machines and structures

(e.g., commercial and military aircraft), and as the discipline of fracture mechanics
has matured, a new design philosophy has gained in importance—the fail-safe
design philosophy, or damage-tolerant design philosophy. This philosophy involves

the use of extensive fatigue testing, including careful observation of the initiation

and propagation of cracks, to determine the complex relationship between cyclic

loading and crack propagation. Then, with proper inspection, fatigue cracks can be

prevented from reaching critical length and damaged parts can be replaced before

leading to catastrophic failure of the entire structure or machine.17 Figure 12.20

771
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FIGURE 12.20 An air-

plane horizontal tail section

undergoing full-scale fatigue

testing. (Copyright © Boeing,

1995.)

15Structural Alloys Handbook. [Ref. 12-11]
16Aluminum Standards and Data. [Ref. 12-12] (See the source of these data for restrictions on their use

in design.)
17Reference 12-13 discusses fracture mechanics and describes fatigue-fracture control strategies.

Reference 12-14 discusses fatigue design methodologies in general, and Reference 12-15 applies the fail-

safe and safe-life fatigue-design methods to aircraft structural design.
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shows an airplane horizontal tail section undergoing full-scale fatigue testing to

identify the fatigue-critical parts of the structure and to determine how many stress

cycles could be applied before some component of the tail would fail by fatigue.This

information enables the airplane’s designers to ensure that no fatigue failure will

occur while the aircraft is in service.

In your future courses on machine design or design of structures, you will have

the opportunity to study and apply safe-life design and fail-safe design in much

greater depth.
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DProb. 12.2-1. For the flat tension bar with central hole

shown in Fig. P12.2-1, let D � 3 in., t � 0.5 in., and P � 8 kips.

Determine the maximum normal stress in the bar for the

following hole diameters: 0.5 in., 1.0 in., and 2.0 in.

DProb. 12.2-6. For the flat tension bar with stepped cross

section shown in Fig. P12.2-6, the fillets are quarter circles of

radius r � 10 mm. Let D � 80 mm and t � 20 mm for this

bar. (a) If the smaller width is d � 50 mm and the axial load

is P � 25 kN, what is the maximum normal stress in the bar?

(b) If the bar must be able to carry an axial load P � 35 kN

without the maximum normal stress exceeding �max � 60 MPa,

what is the minimum width, d, of the reduced-width cross

section?

12.5 PROBLEMS

DProb. 12.2-2. For the flat tension bar with central hole

shown in Fig. P12.2-2, let r � 20 mm, t � 12 mm, and P �
40 kN. Determine the maximum normal stress in the bar for

the following bar widths: D � 100 mm, D � 125 mm, and D �
150 mm.
DProb. 12.2-3. For the flat tension bar with central hole

shown in Fig. P12.2-3, let r � 15 mm, t � 20 mm, and �max �
75 MPa. Determine the maximum axial load that can be

applied to the bar for the following bar widths: D � 130 mm,

D � 150 mm, and D � 170 mm.
DProb. 12.2-4. For the flat tension bar with central hole

shown in Fig. P12.2-4, let D � 2 in., t � 0.5 in., and �max �
12 ksi. Determine the maximum axial load that can be 

applied to the bar for the following hole diameters: 0.75 in.,

1.0 in., and 1.50 in.
DProb. 12.2-5. For the flat tension bar with stepped cross

section shown in Fig. P12.2-5, the fillets are quarter circles

having the largest radius that is consistent with the two widths

D and d (i.e., r � (D-d)/2). Let D � 4.0 in. and t � 1.0 in.

Problems 12.2-1 through 12.2-8. In solving these stress-
concentration problems, assume that the axial load is
centrally applied at the ends of the flat bar and that the
material remains linearly elastic.

P12.2-1 through P12.2-4

2r

b/2

b/2

D

P

t

P

(a) If the smaller width is d � 3 in. and the axial load is 

P � 15 kips, what is the maximum normal stress in the bar?

(b) If the bar must be able to carry an axial load P � 15 kips

without the maximum normal stress exceeding �max � 8 ksi,

what is the minimum width, d, that can be used for the

reduced-width cross section?

P12.2-5

t

d

r

D

P

P

P12.2-6

t

d

r

D

P

P

DProb. 12.2-7. For the flat tension bar with stepped cross

section shown in Fig. P12.2-7, the hole is centered in the wide

portion of the bar and the fillets are quarter circles. Let D �
4 in., d � 2.5 in., and t � 0.5 in. for this bar, and let the max-

imum axial load be P � 10 kips. What is the maximum hole
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radius and what is the minimum fillet radius that may be

accommodated if the maximum normal stress in the bar is

not to exceed �max � 18 ksi? Select radii that are multiples

of 0.05 in.
DProb. 12.2-8. For the flat tension bar with stepped cross

section shown in Fig. P12.2-8, the hole is centered in the wide

portion of the bar and the fillets are quarter circles. Let 

D � 100 mm, t � 20 mm, and d � 65 mm for this bar, and let

the maximum axial load be P � 70 kN.What is the maximum

hole radius and what is the minimum fillet radius that may

be accommodated if the maximum normal stress in the bar

is not to exceed �max � 125 MPa? Select radii that are mul-

tiples of 1.0 mm.

were of uniform diameters D1 � d1 � 1 in. and D2 � d2 �
1.25 in., respectively.
DProb. 12.2-11. A stepped torsion bar with major diameter

D � 2 in. and minor diameter d � 1.25 in. is subjected to a

torque T � 3750 lb � in. If the allowable maximum shear

stress in the shaft is �max � 12 ksi, what is the minimum ra-

dius that may be used for the quarter-circular fillet at the

junction of the two segments of the shaft? The fillet radius

must be chosen as some multiple of 0.05 in. Show your cal-

culations for at least three different radii.
DProb. 12.2-12. A stepped torsion bar with major diameter

D � 50 mm and (quarter-circular) fillet radius 7 mm is sub-

jected to a torque T � 400 N � m. If the allowable maximum

shear stress in the shaft is �max � 70 MPa, what is the mini-

mum diameter that may be used for the smaller-diameter

segment of the shaft? The diameter must be chosen as some

multiple of 1 mm. Show your calculations for at least three

different diameters.
DProb. 12.2-13. A stepped torsion bar with major diameter

D � 2 in. and minor diameter d � 1.5 in. has a full quarter-

circular fillet at the junction of the two segments (i.e., r �
(D � d)/2). If the allowable maximum shear stress in the

shaft is �max � 16 ksi, and the shaft rotates at a constant an-

gular speed of 500 rpm, what is the maximum power (hp)

that may be delivered by the shaft?
DProb. 12.2-14. In Example Prob. 4.18 it was determined

that a -in.-diameter shaft would be required to transmit 10

hp at 875 rpm if the allowable maximum shear stress in the

shaft is 20 ksi. Can a stepped shaft with major diameter D �
1 in., and minor diameter d � 0.625 in. (i.e., in.) be used in-

stead of a uniform -in.-diameter shaft? If so, what is the

minimum radius that may be used for the quarter-circular

fillet at the junction of the two segments of the shaft? The

fillet radius must be chosen as some multiple of in. Show

your calculations for at least three different fillet radii.

1
16

5
8

5
8

5
8

P12.2-7 and P12.2-8

P

t

d

b/2

b/2

2rh

rf

D

P

Problems 12.2-9 through 12.2-14. In solving these torsional
stress-concentration problems, consider stepped, circular
shafts as shown here, and assume that the material remains
linearly elastic.

DProb. 12.2-9. A stepped torsion bar with major diameter 

D � 65 mm and minor diameter d � 40 mm is subjected to

a torque T � 100 N � m. (a) Determine the maximum shear

stress in the shaft for the following size fillets: r1 � 5 mm and

r2 � 10 mm. (b) Compare the shear stress results you

obtained in Part (a) with the maximum shear stress the shaft

would experience if it were of uniform diameter D � d �
40 mm.

P12.2-9 through P12.2-14

d

T
D

Quarter-circular fillet
Radius = r

T

DProb. 12.2-10. A stepped torsion bar has a major diameter

D � 1.5 in. and a full quarter-circular fillet (i.e., r � (D-d)/2).

It is subjected to a torque T � 1200 lb � in. (a) Determine

the maximum shear stress in the shaft for the following

minor diameters: d1 � 1 in., and d2 � 1.25 in. (b) Compare

the shear stress results you obtained in Part (a) with the

maximum shear stresses the shafts would experience if they

Problems 12.2-15 through 12.2-20. In solving these stress-
concentration problems, assume that the material remains
linearly elastic.

DProb. 12.2-15. The stepped-cross-section beam in Fig.

P12.2-15 has a constant thickness t � 15 mm, a major

depth D � 60 mm, and a minor depth d � 40 mm; and it is

subjected to a bending moment M � 100 N � m. (a)

Determine the maximum bending (normal) stress in the

P12.2-15, P12.2-16, and P12.2-17

t

d

r

D

M

M

773

c12SpecialTopicsRelatedToDesign.qxd  9/10/10  3:38 PM  Page 773



beam for the following sizes of quarter-circular fillets; r1 �
5 mm, and r2 � 10 mm. (b) Compare the bending stress re-

sults you obtained in Part (a) with the maximum flexural

stress the beam would experience if it were of uniform

depth D � d � 40 mm.
DProb. 12.2-16. The stepped-cross-section beam in Fig.

P12.2-16 has a major depth D � 1.5 in., and it has full quarter-

circular fillets joining the major depth and the minor depth

(i.e., d � D � 2r).The beam has a constant thickness t � 0.5 in.,

and is subjected to a bending moment M � 1200 lb � in. (a)

Determine the maximum bending (normal) stress in the

beam for the following minor depths: d1 � 1 in., and d2 �
1.25 in. (b) Compare the bending stress results you obtained

in Part (a) with the maximum flexural stresses the beams

would experience if they were of uniform depths D1 � d1 �
1 in. and D2 � d2 � 1.25 in., respectively.
DProb. 12.2-17. The stepped-cross-section beam in Fig.

P12.2-17 has a major depth D � 2.5 in., and it has full quar-

ter-circular fillets joining the major depth and the minor

depth (i.e., d � D � 2r). The beam has a constant thickness

t � 1.0 in., and is subjected to a bending moment M �
5 kip � in. If the allowable maximum normal stress is �max

� 12 ksi, determine the smallest minor depth d that may

be used. The depth d must be chosen as some multiple of

0.10 in. Show your calculations for at least three different

values of d.
DProb. 12.2-18. The beam in Fig. P12.2-18 has a constant

thickness t � 0.75 in., a minor depth d � 2 in., and symmet-

rical notches with semicircular roots of radius r � 0.125 in.

The beam is subjected to a bending moment M � 2500 lb �
in. (a) Determine the maximum bending (normal) stress in

the beam for the following major depths: D1 � 2.25 in., D2 �
2.5 in., and D3 � 2.75 in. (b) Compare the bending stress re-

sults you obtained in Part (a) with the maximum flexural

stress that a uniform beam of depth D � d � 2 in. (without

notches) would experience if subjected to the same bending

moment, M � 2500 lb � in.

beam would experience if they were uniform beams (i.e., no

notches), with D1 � d1 � 30 mm, D2 � d2 � 35 mm, and 

D3 � d3 � 40 mm, respectively.
DProb. 12.2-20. The beam in Fig. P12.2-20 has a constant

thickness t � 0.5 in., a major depth D � 2 in., a minor depth

d � 1.5 in., and symmetrical notches with semicircular roots

of radius r. The beam is subjected to a bending moment 

M � 1000 lb � in. If the allowable maximum normal stress is

�max � 12 ksi, determine the smallest notch radius r that

may be used. The radius r must be chosen as some multiple

of Show your calculations for at least three different

values of r.

1
32 in.

P12.2-18, P12.2-19, and P12.2-20

t

d

r

D

M

M

DProb. 12.2-19. The beam in Fig. P12.2-19 has a constant

thickness t � 12 mm, a major depth D � 50 mm, and sym-

metrical notches with semicircular roots of radius r � 5 mm.

It is subjected to a bending moment M � 100 N � m. (a)

Determine the maximum bending (normal) stress in the

beam for the following minor depths: d1 � 30 mm, d2 � 35 mm,

and d3 � 40 mm. (b) Compare the bending stress results you

obtained in Part (a) with the maximum flexural stress the

FAILURE THEORIES MDS 12.1▼

Problems 12.3-1 through 12.3-13. In solving these prob-
lems, assume that the members are made of materials
that behave in a ductile manner.

Prob. 12.3-1. At a point in a thin plate (Fig. P12.3-1) the

stresses �x, �y, and �xy are known, and the corresponding

principal stresses, �1 and �2, are of opposite sign. Express the

failure criterion of the maximum-shear-stress theory in

terms of �x, �y, and �xy.

Prob. 12.3-2. At a point in a thin plate (Fig. P12.3-2) the

stresses �x, �y, and �xy are known, and the corresponding

principal stresses, �1 and �2, are the opposite sign. Express

the failure criterion of the maximum-distortion-energy the-

ory in terms of �x, �y, and �xy.

P12.3-1 and P12.3-2

x
y

σx

σy

τxy

z

P12.3-3

27 ksi

12.5 ksi

σY = 36 ksi
x

y

Prob. 12.3-3. Would the maximum-shear-stress theory of

failure predict failure (yielding) if the components of plane

stress at a point in a steel structural member were to reach

the values shown in Fig. P12.3-3? What is the value of the

Mises equivalent stress for the given state of plane stress?

Would failure be predicted by the maximum-distortion-

energy theory?
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Prob. 12.3-4. Solve Prob. 12.3-3 for the stresses indicated in

Fig. P12.3-4.

DProb. 12.3-8. The components of stress at a highly stressed

point on the brass propeller shaft of a power boat (�Y � 60 ksi)

are shown in Fig. P12.3-8. (a) For this state of stress, what fac-

tor of safety, FSs, is predicted by the failure criterion of the

maximum-shear-stress theory of failure? (b) What is the

value of the Mises equivalent stress for the given state of

plane stress, and what is the factor of safety, FSd, predicted

by the failure criterion of the maximum-distortion-energy

theory of failure?

P12.3-4

105 MPa

40 MPa

125 MPa
σY = 250 MPa

x

y

Prob. 12.3-5. Solve the problem stated in Example Problem

12.3 if the force P0 produces the stresses depicted in Fig.

P12.3-5.

P12.3-5

14.7 ksi

6 ksi

x

y

Prob. 12.3-6. Would the maximum-shear-stress theory of

failure predict failure (yielding) if the components of

plane stress at a point in a member with yield stress 

�Y were to reach the values shown in Fig. P12.3-6? Would

failure be predicted by the maximum-distortion-energy

theory?

P12.3-6

2σ0 = 0.70 σY

σ0 = 0.35 σY

x

y

DProb. 12.3-7. The components of plane stress at a point on

the surface of a member made of soft bronze (�Y � 175 MPa)

are shown in Fig. P12.3-7. (a) For this state of stress, what is

the factor of safety, FSs, as predicted by the failure criterion

of the maximum-shear-stress theory of failure? (b) What is

the value of the Mises equivalent stress for the given state of

plane stress, and what factor of safety, FSd, is predicted by

the failure criterion of the maximum-distortion-energy the-

ory of failure?

P12.3-7

20 MPa

25 MPa

45 MPa

x

y

P12.3-8

17 ksi
8.5 ksix

z

y

DProb. 12.3-9. A section of double-extra-strong pipe made

of steel with yield strength �Y � 50 ksi is subjected to a bend-

ing moment M � 35 kip � in. and torque T � 175 kip � in., as

shown in Fig. P12.3-9. The outer diameter of the pipe is do �
3.5 in., and the inner diameter is di � 2.3 in. (a) For this load-

ing of the pipe, what factor of safety, FSs, is predicted by the

failure criterion of the maximum-shear-stress theory of fail-

ure? (b) What is the value of the Mises equivalent stress for

the given state of plane stress, and what is the factor of

safety, FSd, predicted by the failure criterion of the maxi-

mum-distortion-energy theory of failure?

P12.3-9 and P12.3-10

TM

T M
x

y

z

do
di
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D*Prob. 12.3-10. A section of steel pipe (�Y � 340 MPa) has

an inner diameter di � 60 mm and is subjected to a bending

moment M � 7 kN � m and torque T � 7.8 kN � m, as shown

in Fig. P12.3-10.This member is to be designed in accordance

with the maximum-distortion-energy criterion of failure,

with a factor of safety FSd � 2.0. To the nearest millimeter,

what outer diameter, do, is required?
D*Prob. 12.3-11. A square-cross-section aluminum-alloy bar

(�Y � 40 ksi) is subjected to a compressive axial force of

magnitude P � 48 kips and a torque T � 13 kip � in., as

shown in Fig. P12.3-11. This member is to be designed in ac-

cordance with the maximum-shear-stress criterion of failure,

with a factor of safety FSs � 2.0. To the nearest 0.1 in., what

is the minimum allowable cross-sectional dimension, b?

(Remember to use the theory of torsion of noncircular pris-

matic bars, which is discussed in Section 4.10.)

of FSs � 2.5, what is the allowable total force (i.e., 2P) that

should be advertised in the specifications for this bench-

press machine?

P12.3-11

y

x
b

b

z
T

P

Prob. 12.3-12. A rod with circular cross section and yield

stress �Y is subjected to a bending moment M and a torque

T, as shown in Fig. P12.3-12. Bending occurs in the xz plane.

Express the maximum-shear-stress criterion of failure for

this bar in terms of M, T, the rod diameter d, and the yield

stress �Y.

P12.3-12

TM

x

y
d

z

D*Prob. 12.3-13. The handlebar of a bench-press machine

has the “longhorn” shape shown in Fig. P12.3-13. You are to

analyze the configuration depicted in Fig. P12.3-13b, where the

(curved) axis of the handlebar lies in the xy plane and the force

P exerted by the athlete’s hand acts in the z direction.The han-

dlebar is formed from a solid circular-cross-section steel bar

having a diameter d � 1 in. and yield strength �Y � 50 ksi.

If the handlebar is to be designed according to the

maximum-shear-stress failure criterion with a factor of safety

P12.3-13

(a)

y

z

y

x

x

5 in.
5 in.

4 in.7 in.

P

A
A

B

C
D

(b)

Prob. 12.3-14. A rod with circular cross section and ulti-

mate tensile strength �TU is subjected to a tensile force P
and a torque T, as shown in Fig. P12.3-14. Express the

maximum-normal-stress criterion of failure for this bar in

terms of P, T, the rod diameter d, and the ultimate tensile

strength, �TU.

Problems 12.3-14 and 12.3-15. In solving these problems,
assume that the members are made of materials that
behave in a brittle manner.

P12.3-14

T
P

T

P

d

*Prob. 12.3-15. After failures occurred in several cast-iron

bearing housings, a decision was made to use strain-gage

rosettes (Section 8.10) to determine the operating stresses,

and then to perform a failure analysis using Mohr’s failure

criterion. During a prolonged period of operation, the most

critical combination of stresses was determined to be (�x � 0,

�y � 115 MPa, �xy � 75 MPa); and the tensile and compres-

sive ultimate strengths of the cast iron were determined to

be �TU � 170 MPa and �CU � 655 MPa, respectively. (a)

Determine the principal stresses �1 and �2 corresponding to

the given stress state. (b) Construct a Mohr failure diagram,

like the one in Fig. 12.15b, for the cast iron. (c) Using the re-

sults you obtained in Parts (a) and (b), can you explain why

failures have been occurring in the cast-iron bearing hous-

ings? Show your calculations.

776
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Section
Suggested

Review

Problems

C H A P T E R  1 2  R E V I E W — S P E C I A L  T O P I C S
R E L A T E D  T O  D E S I G N

12.2

The topic of Section 12.2 is Stress 
Concentrations. This is applied to stress

concentrations in:

• Axial deformation,

• Torsion, and

• Bending.

The increase in stress due to a localized 

application of a load or due to a nonunifor-

mity of the cross section is called a stress
concentration.

Figure 12.1b illustrates how a cross-

sectional discontinuity, like a hole, causes an

increase in stress near the hole, and Fig. 12.3

shows how the amount of stress increase

depends on the size of the hole.

Additional plots in Section 12.2 provide

values of the stress-concentration factor K
for the following cases:

Stress concentration in an axially loaded flat 

bar with central hole. (Fig. 12.1b)

12.2-7 

12.2-11

12.2-15

12.2-19

12.2-3

Stress concentration factor K for an axially loaded

flat bar with central hole. (Fig. 12.3)

• Flat bar in tension, with shoulder fillets 

(Fig. 12.4),

• Stepped shaft in torsion, with shoulder fillets 

(Fig. 12.7)

• Flat bar in pure bending, with shoulder fillets

(Fig. 12.8), and

• Flat bar in pure bending, with symmetric 

U-shaped notches (Fig. 12.9)

Unlike the stress-concentration-factor plot in

Fig. 12.3. which is a single curve, the stress-concen-

tration-factor plots listed above all have multiple

curves, which are related to some geometric

parameter of the member in question.

Section 12.3 Failure Theories and Section 12.4 Fatigue and Fracture are optional sections that present additional important

design-related topics.
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NUMERICAL ACCURACY;
APPROXIMATIONS

A.1 NUMERICAL ACCURACY; SIGNIFICANT DIGITS

The engineering quantities that enter into deformable-body mechanics problems

(e.g., force, length, strain) can usually be measured to an accuracy of about 1 part in

100 (1%) or, in some cases, perhaps to 1 part in 1000 (0.1%). In engineering calcu-

lations the accuracy of a number is indicated by the number of significant digits used

in stating the number. A significant digit is any digit from 1 to 9, or any zero that is

not used to show the position of the decimal point. For example, the numbers 27,

4.5, 0.30, and 0.0091 each has two significant digits. These could also be written in

powers-of-ten form as 27, 45 � 10 �1, 30 � 10 �2, and 91 � 10 �4, again indicating that

each number has two significant digits. Zeros immediately to the left of the decimal

point can lead to some ambiguity regarding the number of digits that are significant.

For example, to indicate that the number 30,000 has two significant digits, rather

than just one, it would be preferable to write it as 30 � 103.

It is tempting, when one uses a calculator or computer to make engineering

computations, to record all of the digits that are displayed in the computed result,

but this could give an unwarranted impression of the true accuracy of the number.

For example, it would be reasonable to see the value of a force stated as F � 426 lb,

but it would be quite unreasonable to see the same force recorded as F �
426.379 lb.

In engineering problems five types of numbers are encountered:

• Exact numbers (e.g., the 32 in the formula Ip � �d 4/32).

• “Formally exact’’ numbers (e.g., the value of �, or the value of sin �).1

• Given data.

• Intermediate results of calculations.

• Final results of calculations.

In this book the final results of calculations are reported according to the following

rules that are standard practice in engineering:

A-1

A

1The values of � and of trigonometric functions are calculated to many significant digits (ten or more)

within the calculator or computer.
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• Numbers that begin with the digits 2 through 9 are recorded to three signifi-

cant digits.

• Numbers that begin with the digit 1 are recorded to four significant digits.

In some instances (e.g., when data is read from a graph) fewer significant digits may

be recorded. Given data are assumed to be accurate to the number of significant

digits indicated above, even though fewer digits may actually be stated.

Intermediate results, if recorded for use in further calculations, are recorded to sev-

eral additional digits in order to preserve numerical accuracy.

A-2
Appendix A

A.2 APPROXIMATIONS

Power-series approximation formulas of two types are useful (e.g., in the discussion

of extensional strain in Section 2.3)—a trigonometric approximation and a binomial-
expansion approximation. Series expansions of the trigonometric functions sin �,

cos �, and tan � are:

Therefore, if , we can replace the trigonometric functions by the approxima-

tions:

(A-1)

A small quantity � may appear in an expression of the form (1 � �)n. The se-

ries expansion for this expression is

Therefore, if , the approximation

(A-2)

may be used. Equations (A-1) and (A-2) will be useful in many strain-displacement

analyses to reduce complex, nonlinear strain-displacement equations to simpler 

linear, small-displacement forms (e.g., see Example Prob. 2.5 and the discussion of

Small-Displacement/Small-Strain Behavior that follows Example Prob. 2.5).

(1 � b)n � 1 � nb

b V 1

(1 � b)n � 1 � nb �
n(n � 1)

2!
 b2 � p

sin u � u, cos u � 1, tan u � u

u V 1

 tan u � u �
u3

3
�

2u3

15
� p

 cos u � 1 �
u2

2!
�
u4

4!
� p

 sin u � u �
u3

3!
�
u3

5!
� p
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SYSTEMS OF UNITS

B.1 INTRODUCTION

The physical quantities encountered in science and engineering (e.g., force, mass,

length, time, and temperature) must be expressed in some system of units. The

International System of Units2 (SI) was established by international agreement to

provide a uniform system of units for measurement throughout the world. In the

United States, the U.S. Customary System of Units (USCS) is the most commonly

used system. Other important systems of units are non-SI forms of the metric system

and the British Imperial System of Units. For the foreseeable future, engineers in

the United States should be able to use either USCS or SI units, so both are used

throughout this book.

There are three classes of units: base units, derived units, and supplementary

units. The base units are defined in terms of specific physical standards. For example,

the standard unit of mass, the kilogram (kg), is defined by a bar of platinum-iridium

alloy that is kept at the International Bureau of Weights and Measures in Sèvres,

France. The second(s) is defined as the duration of 9 192 631 770 periods of the ra-

diation corresponding to the transition between the two hyperfine levels of the

ground state of the cesium 133 atom. The meter (m) is defined to be the distance

traveled by light in a vacuum during a time interval 1/299 792 458 of a second. Plane

angles and solid angles comprise a second group of units, called supplementary units.
Most units are derived units, which are related by an algebraic formula to base units

and, in some instances, to supplementary units.

B-1

B

2Guide for the Use of the International System of Units (SI ), NIST Special Publication 811, National

Institute of Standards and Technology, Gaithersburg, MD, 20899-0001.

B.2 SI UNITS

The International System of Units has four base units that are of importance in

mechanics: The unit of mass is the kilogram (kg), the unit of length is the meter 
(m), the unit of time is the second (s), and the unit of temperature is the kelvin 
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(K).3 The unit of force is the newton (N). This derived unit is based on Newton’s

Second Law, F � Ma. Thus, a newton is defined as the force required to give one

kilogram of mass an acceleration of one meter per second squared:

The SI units that are pertinent to the mechanics of deformable bodies are listed,

according to class, in Table B-1.

In the SI system (and in other metric systems), prefixes denoting powers of ten

are used to modify basic units (e.g., millimeter, kilonewton). Table B-2 lists the 

prefixes that are preferred in SI usage. Prefixes that do not signify powers of 103 

or 10 �3 (e.g., centi � 10�2) should be avoided. In units represented by fractions, use

a prefix in the numerator, rather than in the denominator (except that the symbol

for kilogram (kg) may appear in the denominator). For example, if the calculation

of a certain normal stress were to give the result � � 12.6 N/mm2, this result should

be recorded as 12.6 MPa ( 12.6 MN/m2).�

1 N � 1 kg � m/s2

B-2
Appendix B

3Neither the word degrees nor the symbol � is part of the name of the SI unit of temperature, as they are

in other systems of units (e.g., degrees Fahrenheit, �F).

T A B L E  B-1 . SI Units

Class Quantity Name of Unit SI Symbol Unit Formula

Base Length meter m —

Mass kilogram kg —

Time second s —

Temperature kelvin K —

Derived Area square meter m2 —

Volume cubic meter m3 —

Force newton N kg � m/s2

Stress, pressure pascal Pa N/m2

Work, energy joule J N � m

Power watt W N � m/s

Supplementary Plane angle radian rad —

T A B L E  B-2 . SI Prefixes

Prefix Symbol Multiplication Factor Exponential Form

giga G 1 000 000 000 109

mega M 1 000 000 106

kilo k 1 000 103

milli m 0.001 10�3

micro � 0.000 001 10�6

nano n 0.000 000 001 10�9
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In solving problems that involve stress (� F/A), it is convenient to use newtons

(N) or kilonewtons (kN) for the SI units of force and mm2 for area, noting that

• 1 N/mm2 1 MPa

• 1 kN/mm2 1 GPa

In SI usage, as shown in the third column of Table B-2, a space, rather than a

comma, is used to separate the digits of a numeric value into groups of three, both

before and after the decimal point. When there are four digits, the space is optional

(e.g., 5943 m, or 5 943 m).

�
�

B-3
U.S. Customary Units;

Conversion of Units

B.3 U.S. CUSTOMARY UNITS; CONVERSION OF UNITS

In the U.S. Customary System of Units (sometimes called the British gravitational

system) the base units are the following: the foot (ft) for length, the pound (lb) for

force, the second (s) for time, and the degree Fahrenheit (�F) for temperature. The

foot is defined by U.S. statute as exactly 0.3048 m. The pound is defined as the

weight at sea level and at a latitude of 45� of a platinum standard that is kept at 

the Bureau of Standards in Washington, DC. This platinum standard has a mass 

of 0.453 592 43 kg.

In the U.S. Customary System of Units, the unit of mass is a derived unit, called

the slug. One slug is the mass that would be accelerated at 1 ft/sec squared by a force

of 1 lb:

Conversion factors between SI units and USCS units are given in the table 

inside the front cover of this book.

1 slug � 1 lb � s2/ft
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GEOMETRIC PROPERTIES OF
PLANE AREAS

C.1 FIRST MOMENTS OF AREA; CENTROID

Definitions. The solutions of most problems in this book involve one or more

geometric properties of plane areas4—area, centroid, second moment, etc. The total

area of a plane surface enclosed by bounding curve B is defined by the integral

(C-1)

which is understood to mean a summation of differential areas dA over two spatial

variables, such as y and z Fig. C-1.

The first moments of the area A about the y and z axes, respectively, are 

defined as

(C-2)

Qy and Qz are called first moments because the distances z and y appear to the first

power in the defining integrals.

The centroid of an area is its “geometric center.” The coordinates of the

centroid C (Fig. C-2) are defined by the first-moment equations

(C-3)

For simple geometric shapes (e.g., rectangles, triangles, circles) there are closed-

form formulas for the geometric properties of plane areas. A number of these are

yA � �
A

 ydA, zA � �
A

 zdA

(y, z)

Qy � �
A

 zdA, Qz � �
A

 ydA

A � �
A

 dA

C-1

C

4The word area is used in two senses: In one sense, the word refers to the portion of a plane surface that

lies within a prescribed bounding curve, like the area bounded by the closed curve B in Fig. C-1; in the

second sense, the word refers to the quantity of surface within the bounding curve [Eq. (C-1)].

FIGURE C-1 A plane area.

FIGURE C-2 Location of

the centroid of an area.

z

B

y
y

z

O

dA

A

z

y
y

z

O

A

C–

–
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given in a table inside the back cover of this book.5 An area may possess one of the

three symmetry properties illustrated in Fig. C-3. If an area has one axis of symme-
try, like the vertical axis of the C-section in Fig. C-3a, the centroid of the area lies on

that axis. If the area has two axes of symmetry, like the wide-flange shape in Fig. C-3b,

then the centroid lies at the intersection of those axes. Finally, if the area is symmet-
ric about a point, like the Z-section in Fig. C-3c, the center of symmetry is the cen-

troid of the area.

Composite Areas. Many structural shapes are composed of several parts, each

of which is a simple geometric shape. For example, each of the areas in Fig, C-3 can

be treated as a composite area made up of three rectangular areas. Since the inte-

grals in Eqs. (C-1) through (C-3) represent summations over the total area A, they

can be evaluated by summing the contributions of the constituent areas Ai, giving

(C-4)

Note that in Fig. C-4 can be determined directly from the symmetry of the figure

about the z� axis.

y

A � a
i

Ai, Qz � yA � a
i

yiAi, Qy � zA � a
i

ziAi

C-2
Appendix C

FIGURE C-3 Three types

of area symmetry.

5The reader may consult textbooks on integral calculus or statics for exercises in evaluating the integrals

in Eqs. C-1 through C-3 for specific shapes.

COMPOSITE-AREA PROCEDURE FOR LOCATING THE CENTROID

1. Divide the composite area into simpler areas for which

there exist formulas for area and for the coordinates of

the centroid. (See the table inside the back cover.)

2. Establish a convenient set of reference axes (y, z).

3. Determine the area, A, using Eq. (C-4a).

4. Calculate the coordinates of the composite centroid,

, using Eqs. (C-4b, c).(y, z)

FIGURE C-4 A composite

area.

C
C

C

(a) (b) (c)
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E X A M P L E  C - 1

Locate the centroid of the L-shaped area in Fig. 1.

Solution A—Addition Method Following the procedure outlined

above, we divide the L-shaped area into two rectangles, as shown in Fig. 2.

The y and z axes are located along the outer edges of the area, with the

origin at the lower-left corner. Since the composite area consists of only

two areas, the composite centroid, C, lies between C1 and C2 on the line

joining the two centroids, as illustrated in Fig. 2.

Area: From Eq. (C-4a),

(1)

Centroid: From Eqs. (C-4b) and (C-4c),

Ans. (2)

Ans. (3)

Solution B—Subtraction Method Sometimes (although not in this par-

ticular example) it is easier to solve composite-area problems by treating

the area as the net area obtained by subtracting one or more areas from

a larger area. Then, in Eqs. (C-4), the Ai’s of the removed areas are sim-

ply taken as negative areas. This method will now be applied to the 

L-shaped area in Fig. 1 by treating it as a larger rectangle from which a

smaller rectangle is to be subtracted (Fig. 3). Area A1 is the large rectan-

gle PQRS; area A2 is the smaller unshaded rectangle.The composite cen-

troid, C, lies along the line joining the two centroids, C1 and C2, but it

does not fall between them.

z �
22t3

14t2
�

22

14
 t � 1.57t

zA � z1A1 � z2A2 � (3t)(6t2) � (t/2)(8t2) � 22t3

y �
43t3

14t2
�

43

14
 t � 3.07t

yA � y1A1 � y2A2 � (t/2)(6t2) � 5t(8t2) � 43t2

A � A1 � A2 � (6t)(t) � (8t)(t) � 14t2

Fig. 1

Fig. 2

Fig. 3

C-3

C
h = 6t

b = 9t

t

t

C

C2

C1

y2 = 5t

y

z

–

z1 = 3t–

z2 = t/2

y1 = t/2–

–y

z–
–

C

P

C2

C1

y2 = 5t

y

z–

–
y1 = 4.5t–

z1 = 3t– z2 = 3.5t–

–y

z–

Q R

S
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Area: From Eq. (C-4a),

(4)

Centroid: From Eqs. (C-4b) and (C-4c),

Ans. (5)

Ans. (6)z � 22t3�14t2 � 1.57t

zA � z1A1 � z2A2 � (3t)(54t2) � [(3.5t)(�40t2)] � 22t3

y � 43t3/14t2 � 3.07t

yA � y1A1 � y2A2 � (4.5t)(54t2) � [(5t)(�40t2)] � 43t3

A � A1 � A2 � (9t)(6t) � [�(8t)(5t)] � 14t2

Definitions of Moments of Inertia. The moments of inertia of a plane area

(Fig. C-5) about axes y and z in the plane are defined by the integrals

(C-5)

These are called the moment of inertia with respect to the y axis and the moment of
inertia with respect to the z axis, respectively. Since each integral involves the square

of the distance of the elemental area dA from the axis involved, these quantities are

called second moments of area.These moments of inertia appear primarily in formu-

las for bending of beams (see Chapter 6).

The moments of inertia defined in Eqs. (C-5) are with respect to axes that lie in

the plane of the area under consideration. The second moment of area about the 

x axis, that is, with respect to the origin O, is called the polar moment of inertia of

the area. It is defined by

(C-6)

Since, by the Pythagorean theorem, �2 � y2 � z2, I� is related to Iy and Iz by

(C-7)Ir � Iy � Iz

Ir � �
A

 r2dA

Iy � �
A

 z2dA, Iz � �
A 

y2 dA

C.2 MOMENTS OF INERTIA OF AN AREA

FIGURE C-5 A plane

area.

C-4

z

y
y

z

O

ρ
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Since Eqs. (C-5) and (C-6) involve squares of distances, Iy , Iz, and Ip are always

positive. All have the dimension of (length)4 � in4, mm4, etc.

A table listing formulas for coordinates of the centroid and for moments of in-

ertia of a variety of shapes may be found inside the back cover of this book. The

most useful formulas for moments of inertia and for polar moment of inertia are de-

rived here.

Moments of Inertia of a Rectangle: For the rectangle in Fig. C-6a, Eq. (C-5a) gives

where the y axis passes through the centroid and is parallel to the two sides of length

b, Iz may be derived in an analogous manner, so the moments of inertia of a rectan-

gle for the two centroidal axes parallel to the sides of the rectangle are:

(C-8)

Polar Moment of Inertia of a Circle about its Center: Letting dA � 2��d�, the area

of the dark-shaded ring in Fig. C-6b, and using Eq. (C-6), we can determine the polar

moment of inertia of a circle about its center:

(C-9)

Radii of Gyration. A length called the radius of gyration is defined for each mo-

ment of inertia by the formulas

(C-10)

These lengths are used to simplify several formulas in Chapters 6 and 10. If these

formulas are written in the form

I � Ar2

ry �
B

Iy

A
, rz �

B

Iz

A

Ir �
pr4

2
�
pd4

32

Ir � �
A

 r2dA � �
r

0

 r2(2prdr) �
pr4

2

Iy �
bh3

12
, Iz �

hb3

12

Iy � �
A

 z2dA � �
h/2

�h/2

 z2(bdz) � b
z3

3
` h/2

�h/2

�
bh3

12

C-5
Moments of Inertia of an 

Area

FIGURE C-6 Notation for

calculating moments of inertia

and polar moment of inertia.

h–
2

h–
2

dz
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(a) A rectangular area. (b) A circular area.
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then it is clear that the radius of gyration is the distance at which the entire area

could be concentrated and still give the same value I, of moment of inertia about a

given axis.

Parallel-Axis Theorems for Moments of Inertia. Let the (y, z) pair of axes

be parallel to centroidal axes (yC, zC), as shown in Fig. C-7.The centroid, C, is located

with respect to the (y, z) axes by the centroidal coordinates . Since, from 

Fig. C-7, , the moment of inertia Iy is given by

(C-11a)

The term vanishes since the yC axis passes through the centroid; the term

is the centroidal moment of inertia about the yC axis.The term is the moment

of inertia that area A would have about the y axis if all of the area were to be con-

centrated at the centroid. Since this term is always zero or positive, the centroidal

moment of inertia is the minimum moment of inertia with respect to all parallel

axes.

By the same procedure that was used to obtain Eq. (C-11a), we get

(C-11b)

Equations C-11 are called parallel-axis theorems for moments of inertia.

As a simple example of calculations based on the parallel-axis theorem, let us

determine the moment of inertia of the rectangle in Fig. C-8 about the y� axis along

an edge of length b. From Eq. (C-11a),

(C-12)

In a similar manner, a parallel-axis theorem for the polar moment of inertia
may be derived. From Eq. (C-6) and Fig. C-7, the polar moment of inertia about

Iy¿ � (z¿)2A � IyC
� ah

2
b2

(bh) �
bh3

12
�

bh3

3

Iz � y2A � IzC

z2AIyC

�AzCdA

Iy � z2A � IyC

 � z2A � 2z �
A

 zCdA � �
A

 z2
CdA

 Iy � �
A

 z2dA � �
A

(z � zC)2dA

z � z � zC

(y, z)

C-6
Appendix C

FIGURE C-7 Notation for deriving parallel-axis theorems.

FIGURE C-8 A rectangu-

lar area with two sets of axes.
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point O is

(C-13)

since , and . Note that

Eq. (C-13) follows easily from Eq. (C-7) and Eqs. (C-11).

Moments of Inertia of Composite Areas. The moments of inertia of a com-

posite area, like the one in Fig. C-4, may be computed by summing the contributions

of the individual areas:

(C-14)

As an efficient procedure for calculating moments of inertia of composite areas, the

following is suggested.

Iy � a
i

(Ay)i, Iz � a
i

(Iz)i

�A(y2
C � z2

C)dA � IpC
y2 � z2 � r2, �AyCdA � �AzCdA � 0

IpO
� r2A � IpC

 � �
A

(y2 � 2yyC � y2
C � z2 � 2zzC � z2

C)dA

 � �
A

[(y � yC)2 � (z � zC)2]dA

 IrO
� �

A
 r2dA � �

A
(y2 � z2)dA

C-7
Moments of Inertia of an 

Area

COMPOSITE-AREA PROCEDURE FOR CALCULATING SECOND MOMENTS

1. Divide the composite area into simpler areas for which

there exist formulas for centroidal coordinates and mo-

ments of inertia. (See the table inside the back cover.)

2. Locate the centroid of each constituent area and estab-

lish centroidal reference axes (yC, zC) parallel to the given

(y, z) axes.

3. Employ Eqs. (C-11) to compute the moments of inertia of

the constituent areas with respect to the (y, z) axes and

Eq. (C-14) to sum them.

The next example problem illustrates this procedure.

E X A M P L E  C - 2

Determine the centroidal moment of inertia Iy for the L-shaped section

in Example C-1. (Here, in Fig. 1, the origin of the (y, z) reference frame

is at the centroid of the composite area. The centroidal reference axes 

for the rectangular “legs” of the L-shaped area are (y1, z1) and (y2, z2),

respectively.)

Solution We can combine Eqs. (C-14) with the parallel axis theorems,

Eqs. (C-11), to compute the required moments of inertia.

(1)

where ( )i is the moment of inertia of area Ai about its own centroidal

y axis, and is the z-coordinate of the centroid Ci measured in the (y, z)zi

IyC

Iy � (Iy)1 � (Iy)2 � [(IyC
)1 � A1z2

1] � [(IyC
)2 � A2z2

2]

Fig. 1

C

C2

C1

5t
9t

y

z

3t

6t

t/2

t/2

y1

z1

y2

z2

43 –– 
14

t

22 –– 
14

t
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FIGURE C-9 A rectangu-

lar area with two sets of axes.

reference frame with origin at the composite centroid, C. Referring to

Fig. 1, we get

Ans (2) �
842

21
 t4 � 40.1t4

 � 18t4 �
600

49
 t4 �

2

3
 t4 �

450

49
 t4

 � c 1

12
(8t)(t)3 � (t)(8t) a1

2
 t �

22

14
 tb2 d

 � c 1

12
 (t)(6t)3 � (t)(6t) a3t �

22

14
 tb2 d

 Iy � (Iy)1 � (Iy)2

Definition of Product of Inertia. Another geometric property of plane areas

is called the product of inertia, which is defined by (refer to Fig. C-1)

(C-15)

The product of inertia is required in the study of bending of unsymmetric beams

(Section 6.6).

As an example, let us determine the product of inertia of a rectangular area with

respect to two sets of axes (Fig. C-9).

From Eq. (C-15) and Fig. C-9(a),

(C-16)

Now consider the product of inertia with respect to the (y�, z�) axes in 

Fig. C-9b. The y� axis is an axis of symmetry, and it passes through the centroid C.

Iyz � �
A

 yzdA � �
h

0
�

b

0

 yz dy dz �
b2h2

4

Iyz � �
A

 yzdA

C.3 PRODUCT OF INERTIA OF AN AREA

C-8

h

b

z

z

yy

dA

z′

y′

y1′ = y2′

dA1 = dA

C

⎥z2′⎥h–
2

h–
2 z1′

z2′ = –z1′

dA2 = dA

(a) (b)
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As is clear from Fig. C-9b, when either reference axis is an axis of symmetry of the

area, like the y� axis in this figure, the product of inertia is zero, since

and, because of symmetry (since y�2 � y�1, but z�2 � �z�1), the contributions of dA1

and dA2 to the integral cancel each other. Therefore,

(C-17)

if either they y axis or the z axis is an axis of symmetry of the area.

Parallel-Axis Theorem for Product of Inertia of an Area. The procedure

used to derive parallel-axis theorems for moments of inertia, leading to Eqs. (C-11)

and (C-13), may be applied to derive a parallel-axis theorem for products of inertia.

From Eq. (C-15) and Fig. C-7,

Therefore, since yC and zC are coordinates in a centroidal reference frame, the parallel-
axis theorem for products of inertia of an area is

(C-18)

Just as for the moments of inertia, Iyz has one term that represents the product of

inertia of an area A concentrated at the centroid, plus a centroidal product of inertia
.

Product of Inertia for Composite Areas. The summations for moments of

inertia in Eqs. (C-14) are readily extended to the product of inertia of an area com-

posed of several constituent areas:

(C-19)Iyz � a
i

(Iyz)i

IyCzC

Iyz � y zA � IyCzC

 � y zA � y�
A

zCdA � z�
A

yCdA � IyCzC

 Iyz � �
A

 yz dA � �
A

(y � yC)(z � zC)dA

Iyz � 0

Iy¿z¿ � �
A

 y¿z¿dA

C-9
Product of Inertia of an Area

E X A M P L E  C - 3

For the L-shaped area in Example C-2, use the composite-area proce-

dure to determine the centroidal product of inertia, Iyz. (Note: Here the

(y, z) reference frame is a centroidal reference frame for the whole area;

(y1, z1) and (y2, z2) are centroidal reference frames for the constituent

areas A1 and A2, respectively.) The centroidal product of inertia relative

to the (y, z) axes is given by

Iyz � (Iy1z1
� A1y1z1) � (Iy2z2

� A2y2z2)
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It is very important to note that etc., are signed values, that is, some

of them could be negative. By Eq. (C-17), . Therefore,

or

Ans.

Note that, since the centroid C1 lies in the second quadrant and C2 lies in

the fourth quadrant, both A1 and A2 make negative contributions to Iyz.

Iyz � �
270

7
 t4

 � (8t2) a5t �
43

14
 tb a�22

14
 t �

1

2
 tb

 � (6t2) a�43

14
 t �

1

2
 tb a3t �

22

14
 tb

 Iyz � A1y1z1 � A2y2z2

Iy1z1
� Iy2z2

� 0

y1, z1,

FIGURE C-10 Transformation of coordinates in a plane.

C.4 AREA MOMENTS OF INERTIA ABOUT INCLINED AXES;
PRINCIPAL MOMENTS OF INERTIA

In some applications, especially in unsymmetric bending of beams (Section 6.6), it is

necessary to determine the moments and products of inertia relative to inclined

axes (y�, z�) when Iy, Iz , and Iyz are known. The coordinate transformation relating

coordinates (y�, z�) to coordinates (y, z) can be deduced from Fig. C-10.

The angle � is measured positive counterclockwise from y to y� (and z to z�).

(C-20)
z¿ � �y sin u � z cos u

y¿ � y cos u � z sin u

C-10

z

y

y′

y

y′

z

θ

θ

θ

O

z cos θ

y sin θ

y cos θ

z sin θ

z′

z′

dA

BMappC.qxd  12/13/10  1:26 PM  Page C-10



From Eqs. (C-5), (C-15), and (C-20),

(C-21)

Expanding each of the above integrands and recognizing that and so

forth, we get

These equations may be simplified by using the trigonometric identities sin 2� �
2 sin � cos � and cos 2� � cos2 � � sin2 �. Thus,

(C-22)

Note the similarity between these equations and the stress-transformation equa-

tions, Eqs. 8-5.6

Principal Moments of Inertia. From Eqs. (C-22) it may be seen that Iy� and

Iy�z� depend on the angle �. We will now determine the orientations of the y� axis for

which Iy� takes on its maximum and minimum values. The axes having these orien-

tations are called the principal axes of inertia of the area, and the corresponding mo-

ments of inertia are called the principal moments of inertia. To each point O in an

area, there is a specific set of principal axes passing through that point. The princi-

pal axes that pass through the centroid of the area, called the centroidal principal
axes, are the most important. The orientations of the centroidal principal axes for

several unequal-leg angles are given in Appendix D.6.

The moment of inertia Iy� will have a maximum, or minimum, value if the y� axis

is oriented at an angle � � �p that satisfies the equation

Therefore,

(C-23)

Figure C-11 illustrates how to use the tangent value given by Eq. (C-23) to

determine the angles �p. There are two distinct angles that satisfy Eq. (C-23). As

tan 2up �
� Iyz

aIy � Iz

2
b

dIy¿

du
� �2 aIy � Iz

2
b sin 2u � 2Iyz cos 2u � 0

Iy¿z¿ �
Iy � Iz

2
 sin 2u � Iyz cos 2u

Iy¿ �
Iy � Iz

2
�

Iy � Iz

2
 cos 2u � Iyz sin 2u

 Iy¿z¿ � (Iy � Iz) sin u cos u � Iyz(cos2 u � sin2 u)

 Iy¿ � Iy cos2 u � Iz sin2 u � 2Iyz sin u cos u

�A y
2 dA � Iz,

Iy¿z¿ � �
A

y¿z¿ da � �
c
(y cos u � z sin u)(�y sin u � z cos u)dA

Iy¿ � �
A

(z¿)2dA � �
A

(�y sin u � z cos u)2dA

C-11
Area Moments of Inertia

about inclined Axes; Principal
Moments of Inertia

6There is a sign difference between the �nt-type terms and the Iyz-type terms, however.

FIGURE C-11 Orientation

of the principal axes of inertia.

–Iyz

Iyz

R

R

Iy – Iz–––––
2(        )

Iy – Iz–––––
2(        )–

⎥2θp1⎥

2θp2
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illustrated by Fig. C-11, these two values of 2�p, labeled and , differ by

180�, so the principal axes are oriented at 90� to each other (as they must be).

From Fig. C-11, the hypotenuse of either of the shaded triangles is given by

(C-24)

Also, from Fig. C-11, the angles and satisfy

(C-25a)

(C-25b)

Substituting these sines and cosines into the equation for Iy�, Eq. (C-22a), we get the

following expressions for the two principal moments of inertia:

(C-26)

If Eqs. (C-25a) or Eqs. (C-25b) are substituted into Eq. (C-22b), it is found that

(C-27)

That is, the product of inertia with respect to the principal axes of inertia is equal 

to zero.

By adding Eqs. (C-26a) and (C-26b) we get

(C-28)

Thus, the sum of the moments of inertia about any pair of mutually perpendicular

axes passing through a given point in a given plane is constant.

Ip1
� Ip2

� Iy � Iz

Ip1 p2
� 0

 Imin K Ip2
�

Iy � Iz

2
�

B
aIy � Iz

2
b2

� I2
yz

 Imax K Ip1
�

Iy � Iz

2
�

B
aIy � Iz

2
b2

� I2
yz

 sin 2up2
�

Iyz

R
,  cos 2up2

�

� aIy � Iyz

2
b

R

 sin 2up1
�

�Iyz

R
,  cos 2up1

�

aIy � Iz

2
b

R

2up2
2up1

R �
B
aIy � Iz

2
b2

� I2
yz

2up2
2up1C-12

Appendix C

E X A M P L E  C - 4

For the L-shaped area in Fig. 1 of Example C-2, (a) determine the ori-

entation of the centroidal principal axes and show the orientation on a

sketch. (b) Determine the principal moments of inertia.

 Iyz �
�270

7
 t4 � �38.57t4

 Iy �
5894

147
 t4 � 40.10t4,  Iz �

33,103

294
 t4 � 112.60t4
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Mohr’s Circle for Moments and Products of Inertia. Equations (C-22)

have the same basic form as Eqs. 8.5, which were used to develop Mohr’s circle 

for stress.7 Therefore, by a procedure that is virtually identical to that in Section 

8.5, it can be shown that a Mohr’s circle plotted as in Fig. C-12 can be used to 

Solution (a) From Eq. (C-23),

Then, as illustrated in Fig. 1,

Ans.

(b) From Eq. (C-26a),

or

Ans.

Similarly, from Eq. (C-26b),

Ans.Ip2
� 23.4t4

Ip1
� 129.3t4

 � 129.28t4

 �
40.10t4 � 112.60t4

2
�

B
a40.10t4 � 112.60t4

2
b2

� (�38.57t4)2

 Ip1
�

Iy � Iz

2
�

B
aIy � Iz

2
b2

� I2
yz

up1
� 66.6°, up2

� �23.4°

2up1
� 133.22°, 2up2

� �46.78°

tan 2up �
�Iyz

aIy � Iz

2
b

�

�a�270

7
b

11,788 � 33,103

2(294)

� �1.064

7There is a difference between the signs preceding the 	xy-type terms in Eqs. 8.5 and the signs preceding

the corresponding Iyz-type terms in Eqs. (C-22). Thus, for Mohr’s circle for moments and products of 

inertia, the Iy�z� axis is positive upward, not positive downward, as it was for Mohr’s circle for stress.

FIGURE C-12 Mohr’s cir-

cle for moments and products

of inertia.

C-13

Fig.  1

C
y

z
p1

p2
θp1 = 66.6°

CP2

R2θp2
2θy′

β = ⎥2θp1⎥

P1

Y(Iy, Iyz)

Y ′(Iy′, Iy′z′)

Z(Iz, –Iyz)

Iy′

Iy′z′
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compute Iy� and Iy�z� for any (y�, z�) axes located at angle � counterclockwise from the

given (y, z) axes. And the Mohr’s circle provides a convenient way to calculate the

orientation of the principal axes of inertia and the principal moments of inertia,

and , given moments of inertia Iy and Iz and the corresponding product of inertia

Iyz. To an angle � measured counterclockwise (or clockwise) on the planar area A,

there corresponds an angle 2� measured counterclockwise (or clockwise) on Mohr’s

circle.

The following procedure will facilitate your calculation of moments and prod-

ucts of inertia with respect to rotated axes.

Ip2

Ip1

MOHR’S-CIRCLE PROCEDURE FOR MOMENTS AND PRODUCTS OF INERTIA

1. Establish a set of Mohr’s-circle axes (Iy�, Iy�z�), as shown in

Fig. C-12. (Note that the positive Iy�z� axis is counter-

clockwise 90� from the Iy� axis, unlike the �nt axis for

Mohr’s circle of stress in Chapter 8.)

2. Plot points Y:(Iy, � Iyz) and Z:(Iz, � Iyz), respectively.

3. Draw a straight line joining points Y and Z. The intersec-

tion of the Y Z line with Iy� axis is the center of the Mohr’s

circle passing through points Y and Z.

4. Point Y�, located at angle 2�y� counterclockwise from the

line CY, as shown in Fig. C-12, locates the point whose co-

ordinates are (Iy�, � Iy�z�).

5. Points P1 and P2 locate the two principal axes at and

, respectively, as shown in Fig, C-12.The principal mo-

ments of inertia are and , which are also given by

Eqs. (C-26).

Ip2
Ip1

2up2

2up1

E X A M P L E  C - 5

(a) Draw the Mohr’s circle for the centroidal moments and products of

inertia for the L-shaped area in Fig. 1 of Example C-2, given that:

 Iyz �
�270

7
 t4 � �38.57t4

 Iy �
5894

147
 t4 � 40.10t4,    Iz �

33,103

294
 t4 � 112.60t4

Fig.  1 Mohr’s circle for centroidal inertias of an L-shaped area.

C-14

50t4

50t4

76.35t4 36.25t4

P2

Ip2
 = 23.4t4

P1

C

R = 52.93t4

Z(112.60t4, 38.57t4)

Y(40.10t4, –38.57t4)

2θzp1 
(clockwise)

100t4

–50t4

Ip1
 = 129.3t4

Iy′z′

Iy′
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C-15

(b) Use the Mohr’s circle constructed in Part (a) to compute the princi-

pal moments of inertia and and to locate the principal axes. Show

the orientation of the principal axes on a sketch.

Solution (a) Sketch Mohr’s circle and calculate the principal moments

of inertia. Points Y and Z are plotted and Mohr’s circle is then drawn

(Fig. 1). From the circle,

Ans. (a)

(b) Determine the orientation of the principal axes and show them on a

sketch.

Therefore, � 46.78� (clockwise), so

clockwise Ans. (b)

Note that the orientations of the principal axes in Fig. 2 are such that

the contributions to of the areas in the four quadrants cancel out,

giving � 0.Ip1p2

Ip1p2

uzp1
� uyp2

� 23.4°

2uzp1

tan �2uzp1
� �

38.57t4

a112.60t4 � 40.10t4

2
b

� 1.064

 Ip2
� Iavg. � R � 23.4t4

 Ip1
� Iavg. � R � 129.3t4

R �
B
a112.60t4 � 40.10t4

2
b2

� (38.57t4)2 � 52.93t4

Iavg. �
40.10t4 � 112.60t4

2
� 76.35t4

Ip2
Ip1

The results obtained from Mohr’s circle are the same as those obtained by the

use of formulas in Example C-4. However, mistakes are less likely to be made if

Mohr’s circle is carefully drawn and it is recalled that an angle 2� on Mohr’s circle

corresponds to an angle � on the planar area A, and that angles are taken in the

same sense on Mohr’s circles as on the planar area.

Beam Cross-Sectional Properties—Section Properties is an MDS com-

puter program module for calculating section properties of plane areas: area, loca-

tion of centroid, moments of inertia, product of inertia, orientation of principal axes,

etc., properties that are defined and illustrated in Appendix C. The Section
Properties module is closely linked with the Flexure module.

MDS 6.1

Fig.  2 Principal axes of inertia.

C
y

z p1

p2
θp1 = 66.6°

θzp1 = 23.4° (clockwise)
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SECTION PROPERTIES OF SELECTED
STRUCTURAL SHAPES

Tables D.1 through D.10 give the cross-sectional properties of structural shapes

made of aluminum, steel and wood. The tables for steel shapes and for aluminum

shapes were compiled from more extensive tables given in the following references;

they are used with permission:

• Table D.1 and Tables D.3–D.7: Manual of Steel Construction—Load and
Resistance Factor Design, American Institute of Steel Construction, Inc., 400

N. Michigan Ave., Chicago, IL, 60611-4185.

• Table D.2: Metric Properties of Structural Shapes, American Institute of Steel

Construction, Inc., 400 N. Michigan Ave., Chicago, IL, 60611-4185.

• Tables D.9 and D.10: The Aluminum Design Manual, The Aluminum

Association Inc., 900 19th Street, NW, Washington, DC, 20006.

The cross-sectional axes in the following tables (e.g., X � X) are those of the

original sources of the tabular data.

Nomenclature
I � moment of inertia

J � polar moment of inertia (pipe sections)

S � elastic section modulus

Z � plastic section modulus

r � � radius of gyration2I/A

D-1

D
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Y

X
tw

tf

bf

D-2
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D-3

X

Y

d

Y

X
tw

tf

bf
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X

Y

d

Y

X
tw

tf

bf

D-4
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e0

X
C

d

Y

Y

X S

tw

xc

bf

tf

D-5
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C

α Z
Y

Y

X X

Z

xc

yc

2α

X(Ix, Ixy)

Z

Y(Iy, – Ixy)

Ix′

Ix′y′

D-6

1. The Z � Z axis is the axis of minimum moment of inertia, that is, I2 Iz � Arz
2.

2. The product of inertia, Ixy, for these angle cross sections may be calculated to within

the accuracy permitted by the tabular data by use of the formula

The product of inertia is negative for all table entries because of the orientation 

of the angle cross section relative to the xy axes.

Ixy � Ar2
z � Ix

�
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C

α Z
Y

Y

X X

Z

xc

yc

D-7

1. The Z � Z axis is the axis of minimum moment of inertia, that is, I2 Iz � Arz
2.

2. The product of inertia, Ixy, for these angle cross sections may be calculated to within

the accuracy permitted by the tabular data by use of the formula

The product of inertia is negative for all table entries because of the orientation 

of the angle cross section relative to the xy axes.

Ixy �
(Iy � Ix)

2
 tan(2a)

�

2α

X(Ix, Ixy)

Z

Y(Iy, – Ixy)

Ix′

Ix′y′
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D-8

BMappD.qxd  12/13/10  11:42 AM  Page D-8



D-9

h

2

2

1 1

b

D.8. Properties of Structural Lumber* (U.S. Customary Units)
Sectional properties of American Standard Lumber (S4S)*
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D-10

X
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d

Y

X

R
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b
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D-11

R

C
X X

Y

Y
tf

xc

tw

b

d
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DEFLECTIONS AND SLOPES OF
BEAMS; FIXED-END ACTIONS

E-1

E

E.1. Deflections and Slopes of Cantilever Uniform Beams*

Notation

y(x) � deflection in the y direction

y�(x) � slope of the deflection curve

�B y(L) � deflection at end B

�B y�(L) � slope at end B

1

2

3

4

 dB �
Pa2

6EI
 (3L � a)  uB �

Pa2

2EI

 y �
Pa2

6EI
 (3x � a)  y¿ �

Pa2

2EI
  a � x � L

 y �
Px2

6EI
 (3a � x)  y¿ �

Px
2EI

 (2a � x)  0 � x � a

 dB �
PL3

3EI
  uB �

PL2

2EI

 y �
Px2

6EI
 (3L � x)  y¿ �

Px
2EI

 (2L � x)

 dB �
M0a

2EI
(2L � a)  uB �

M0a

EI

 y �
M0a

2EI
(2x � a)  y¿ �

M0a

EI
  a � x � L

 y �
M0 x2

2EI
  y¿ �

M0 x

EI
  0 � x � a

 dB �
M0L2

2EI
  uB �

M0L

EI

 y �
M0x2

2EI
  y¿ �

M0 x

EI

�

�

Bθ

δB

x
A

B
x

y

v(x)

L

EI = const

M0

M0

ba

P

P

ba

(continued)
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5

6

7

8

9

*Beam-deflection theory is covered in Chapter 7. The sign convention used here is the same as in Chapter 7.

 dB �
2p0L4

3p4EI
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p(x) = p0 cos ( (  x—–
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π
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E.1. Deflections and Slopes of Cantilever Uniform Beams* (continued )
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E.2. Deflections and Slopes of Simply-Supported Uniform Beams*

Notation

y(x) � deflection in the y direction

y�(x) � slope of the deflection curve

�A y�(0) � slope (angle) at end A

�B �y�(L) � angle of rotation at end B

xm � distance from end A to the point of maximum deflection

�C |y(L 2)| � deflection at the center of the beam

�max max|y(x)| � maximum deflection

1

2

3

4

If a � b, xm �
B

L2 � b2

3
 and dmax �

Pb(L2 � b2)3� 2

923LEI

 uB �
Pab(L � a)

6LEI

 uA �
Pab(L � b)

6LEI

 y¿ �
Pb

6LEI
 (L2 � b2 � 3x2)  0 � x � a

 y �
Pbx

6LEI
 (L2 � b2 � x2)  0 � x � a

 dC � dmax �
PL3

48EI
  uA � uB �

PL2

16EI

 y¿ �
P

16EI
 (L2 � 4x2)  0 � x �

L
2

 y �
Px

48EI
 (3L2 � 4x2)  0 � x �

L
2

 uA �
�M0

6LEI
 (6aL � 3a2 � 2L2)  uB �

�M0

6LEI
 (3a2 � L2)

 y¿ �
�M0

6LEI
 (6aL � 3a2 � 2L2 � 3x2)  0 � x � a

 y �
�M0x

6LEI
 (6aL � 3a2 � 2L2 � x2)  0 � x � a

 xm � L a1 �
23

3
b and dmax �

M0L2

923EI

 uA �
M0L

3EI
  uB �

M0L

6EI

 y¿ �
M0

6LEI
 (2L2 � 6Lx � 3x2)

 y �
M0x

6LEI
 (2L2 � 3Lx � x2)

�

��

�

�θBv(x) δmax

L

x

A

y

B x

θA

EI = const

M0

M0

ba

P

L––
2

L––
2

P

ba
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*Beam-deflection theory is covered in Chapter 7. The sign convention used here is the same as in Chapter 7.
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a
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L
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E.2. Deflections and Slopes of Simply-Supported Uniform Beams* (continued )

BMappE.qxd  12/14/10  8:50 AM  Page E-4



E.3. Fixed-End Actions for Uniform Beams*

Shear and Moment Reactions†

Loading End A End B

1

2

3

4

5

6

*This table provides fixed-end actions for use with Section 7.7.
†For all fixed-end actions tabulated, the positive sense for shear and moment reactions are the same as those shown in the first table entry.

MB � �
6EI

L2
 dBMA � �
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a
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a b
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L
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A B
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MECHANICAL PROPERTIES OF
SELECTED ENGINEERING MATERIALS

Mechanical properties of engineering materials vary significantly as a result of heat

treatment, mechanical working, moisture content, and various other factors. The

properties listed in Tables F.1 through F.3 are representative values that are in-

tended for educational purposes only, not for commercial design of members.

Additional information is available from suppliers of engineering materials, from

various websites, and from several other sources, including the following: Annual
Book of ASTM, American Society for Testing Materials, Philadelphia, PA; Metals
Handbook ASM International, Materials Park, OH; Aluminum and Aluminum
Alloys and Aluminum Standards and Data, The Aluminum Association,

Washington, DC; Wood Handbook, U.S. Department of Agriculture, Washington,

DC; Marks’ Standard Handbook for Mechanical Engineers, McGraw-Hill, Inc., New

York, NY; and CRC Materials Science and Engineering Handbook, CRC Press, Inc.,

Boca Raton, FL.

F-1

F
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F-2

T A B L E  F. 1 . Specific Weight and Mass Density

Specific Weight (�) Mass Density (�)

Material lb/in3 Ib/ft3 kN/m3 slugs/ft3 kg/m3

Aluminum Alloys 0.096–0.103 165–180 26–28 5.2–5.5 2600–2800

Alloy 2014-T6 0.101 175 27 5.4 2800

Alloy 6061-T6 0.098 170 27 5.3 2700

Brass 0.301–0.313 520–540 82–85 16–17 8300–8600

Red Brass (85% Cu, 35% Zn) 0.313 540 85 17 8600

Cast Iron 0.252–0.266 435–460 68–72 13–14 7000–7400

Gray, ASTM-A48 0.260 450 71 14 7200

Malleable, ASTM-47 0.264 456 72 14 7300

Steel 0.284 490 77 15.2 7850

Titanium 0.162 280 44 8.7 4500

Concrete
Plain 0.081–0.087 140–150 22–44 4.4–4.7 2200–2400

Lightweight 0.052–0.067 90–115 14–18 2.8–3.6 1400–1800

Reinforced 0.087 150 24 4.7 2400

Glass 0.087–0.104 150–180 24–28 4.7–5.6 2400–2900

Plastics
Nylon, type 6 6 (molding cpd.) 0.041 70 11 2.2 1100

Polycarbonate 0.043 75 12 2.3 1200

Vinyl, rigid PVC 0.048–0.052 82–90 12.9–14.1 2.6–2.8 1320–1440

Wood 0.014–0.026 25–45 3.9–7.1 0.78–1.4 400–720

Douglas Fir 0.019 32 5.0 1.0 510

Southern Pine 0.022 38 6.0 1.2 610

�

BMappF.qxd  12/13/10  1:32 PM  Page F-2



TABLE F.2. Modulus of Elasticity, Shear Modulus of Elasticity, and
Poisson’s Ratio

Modulus of Shear Modulus
Elasticity (E) of Elasticity (G)

Poisson’s
Material 103 ksi GPa 103 ksi GPa Ratio (�)

Aluminum Alloys 10.0–11.4 70–79 3.8–4.3 26–30 0.33

Alloy 2014-T6 10.6 73 4.0 27 0.33

Alloy 6061-T6 10.0 70 3.8 26 0.33

Brass
Red Brass (85% Cu, 15% Zn)

Cold-rolled 15 100 5.6 37 0.34

Annealed 15 100 5.6 37 0.34

Cast Iron
Gray, ASTM-A48 10 70 4.1 29 0.22

Malleable, ASTM-47 24 165 9.4 65 0.27

Steel
Structural, ASTM-A36 29 200 11.2 78 0.29

Stainless, AISI 302

Cold-rolled 28 195 10.8 75 0.30

Annealed 28 195 10.8 75 0.30

High-strength, low alloy, 29 200 11.2 78 0.29

ASTM-A242

Quenched & tempered, 29 200 11.2 78 0.29

ASTM-A514

Titanium
Alloy (6% Al, 4% V) 16.5 115 6.2 43 0.33

Concrete1 0.1–0.2

Medium Strength 3.6 25 — — —

High Strength 4.5 31 — — —

Glass 8.7 60 — — 0.2–0.3

Plastics
Nylon, type 6/6 (molding cpd.) 0.4 2.8 — — 0.4

Polycarbonate 0.35 2.4 — — —

Vinyl, rigid PVC 0.4 2.8 — — —

Wood2

Douglas Fir 1.75 12 — — —

Southern Pine 1.75 12 — — —

1Concrete properties are for compression.
2Timber properties are for loading parallel to the grain.

F-3
Mechanical Properties of

Selected Engineering
Materials
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TABLE F.3. Yield Strength, Ultimate Strength, Percent Elongation in 2 Inches, and Coefficient of
Thermal Expansion

Yield Coefficient ofUltimate
PercentStrength Thermal ExpansionStrength

Elongation(�U)1(�Y)1,2 (�)
over 2 in.

Material ksi MPa ksi MPa Gage Length 10�6/�F 10�6/�C

Aluminum Alloys 11.7–13.3 21–24

Alloy 2014-T6 60 410 70 480 13 12.8 23.0

Alloy 6061-T6 40 275 45 310 17 13.1 23.6

Brass

Red Brass (85% Cu, 15% Zn)

Cold-rolled 60 410 75 520 4 10.4 19

Annealed 15 100 40 275 50 10.4 19

Cast Iron

Gray, ASTM-A48 — — 25 170 0.5 6.7 12

Malleable, ASTM-47 33 230 50 345 10 6.7 12

Steel

Structural, ASTM-A36 36 250 58 400 20 6.5 12

Stainless, AISI 302

Cold-rolled 75 520 125 860 12 9.6 17

Annealed 38 260 95 655 50 9.6 17

High-strength, low alloy, ASTM-A242 50 345 70 480 22 6.5 12

Quenched & tempered, ASTM-A514 100 690 110 760 18 6.5 12

Titanium

Alloy (6% Al, 4% V) 120 830 130 900 10 5.3 9.5

Concrete3

Medium Strength — — 4 28 — 5.5 10

High Strength — — 6 40 — 5.5 10

Glass4 — — (4) (4) — 3–6 5–11

Plastics5

Nylon, type 6/6 (molding cpd.) 8.0 55 11 75 50 17 30

Polycarbonate 8.5 60 9.5 65 110 3.8 6.8

Vinyl (rigid PVC) 6 40 7 50 1–10 28–33 50–60

Wood5

Douglas Fir — — 7.5 50 — — —

Southern Pine — — 8.5 60 — — —

1For ductile metals, the strength in compression is generally assumed to be equal to the tensile strength.
2For most metals, this is the 0.2% offset value.
3Concrete properties are for loading in compression.
4Glass properties vary widely. For example, glass fibers may have tensile strengths to 1,000 ksi (7000 MPa) or more.
5Timber properties are for loading in compression parallel to the grain.

F-4

BMappF.qxd  12/13/10  1:32 PM  Page F-4



COMPUTATIONAL MECHANICS

There are two primary ways in which the computer can be of valuable assistance to

you as you study the topics in this Mechanics of Materials text. First, you can use

math application software or a spreadsheet program or a programming language of

your own choice to write a computer program to solve a mechanics of materials

problem. There are twenty such exercises in the book. For example, there are three

computer-based design problems (Probs. 2.8-16 through 2.8-18) that ask you to use

the computer to obtain a plot that will enable you to select the best design for a simple

truss structure. By writing your own computer programs for several of these exer-

cises, you will not only gain experience in programming, but you should also gain

valuable experience in organizing efficient, systematic solutions of mechanics of 

materials problems.

Use of the award-winning MDSolids educational software is another way in

which the computer can be of valuable assistance to you. MDSolids, which is avail-

able from the website www.wiley.com/college/craig, is described in Appendix G.1.1

Since MDSolids is written in Visual Basic, it is only available for use on computers

running a Windows operating system (Windows 95, Windows 98, Windows NT,

Windows XP, Windows Vista, or Windows 7).2

G-1

G

1The MDSolids educational software package is copyrighted by its author, Dr. Timothy A. Philpot. It was

a winner of the 1998 Premier Award for Excellence in Engineering Education Courseware. The

MDSolids website is (www.mdsolids.com).
2Windows is a registered trademark of the Microsoft Corporation.

G.1 MDSolids

The MDSolids software package and ninety special MDSolids-based example prob-

lems that are provided with Mechanics of Materials, 3rd edition will enable you to use

the computer for solving problems in axial deformation, torsion, bending, combined-

loading, and buckling of the type treated in Chapters 2 through 12 of the book.

MDSolids provides both systematic problem-solving procedures and a user-friendly

graphical interface, and through its use you can gain valuable insight into the behav-

ior of structural members and systems under various loading conditions.
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MDSolids Modules. MDSolids consists of modules, which are similar to book

chapters in that each module focuses on specific mechanics of materials concepts

and problem-solving methods. There are currently twelve MDSolids modules:

• Basic Stress and Strain Problems

• Beam and Strut Axial Structures

• Truss Analysis and Stresses

• Statically Indeterminate Axial Structures

• Torsion Members

• Determinate Beams

• Flexure

• Section Properties

• Column Buckling

• Mohr’s Circle Analysis

• General Analysis of Axial, Torsion, and Beam Structures

• Pressure Vessels

The modules can be accessed in any sequence. MDSolids is powerful enough so that

many different structural configurations and loadings can be analyzed with each

separate module, but the modules are also coordinated so that results from one

module are available for use in related modules.

How to Acquire MDSolids. MDSolids is an educational software package 

developed specifically for the introductory mechanics of materials course. The ver-

sion of MDSolids that is provided with this Mechanics of Materials textbook con-

sists of two closely integrated parts: (1) the basic MDSolids educational software,

and (2) a special supplement of ninety example problems.

MDSolids is available from either the Instructor Companion Website or the

Student Companion Website at www.wiley.com/college/craig. Students who wish to

download the software must first register on the Wiley Student Companion Website.

For details, please see the registration card that is provided in this book.

Features of the MDSolids Software: Some of the key features of the basic

MDSolids software are:

• Versatility: As indicated above, MDSolids has computational modules per-

taining to all of the topics taught in a typical mechanics of materials course.

The scope of MDSolids offers routines to help students at all levels of under-

standing.

• Ease of Input: Graphic cues are provided to guide users in entering data, so

that the student is able to define a problem intuitively and directly without

the need for a user’s manual.

• Visual Communication: Each MDSolids routine features a picture, sketch, or

plot that graphically depicts important aspects of the problem. For a number

of topics, including stresses in beams, deflection of beams, Mohr’s Circle for

stress and strain, and others, plots that show the results are generated.

• Correct Solution and Intermediate Results: MDSolids is an “electronic solu-

tions manual,” giving not only the correct solution for each problem but also

providing intermediate steps that can be used to confirm the problem-solving

approach.

G-2
Appendix G
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• Text-based Explanations: Many of the MDSolids modules provide extra 

explanations to describe in words how the calculations are performed.

• Help Files: The MDSolids Help Files contain instructions for using the soft-

ware, but, more importantly, they contain theoretical background and practi-

cal suggestions for solving various types of problems.

Features of the Special MDSolids-based Example Problems: To accom-

pany this Mechanics of Materials textbook, the author of MDSolids has created

ninety (90) additional special example problems. The key features of these special

example problems are:

• Close Ties with the Textbook: At the point in the book where one of these 

example problems can serve to supplement the text discussion and the text

example(s), there is an MDS icon that “points” to one or more of these spe-

cial MDS example problems. In the homework problem sections, an MDS

icon precedes the group of homework problems of the type that is covered

by the identified special MDS example problem(s).

• Complete, Textbook-style Format: The special example problems are written

in the same style and with the same nomenclature, sign conventions, etc. as

the example problems in the book. They are not just computer-generated 

numerical solutions.

• Broad Range of Topics and Level of Difficulty: There are special MDSolids

examples for Chapters 2 through 12. Many of these are illustration-of-

concept type examples that will be of special help to those students who need

a “tutor” to supplement the book and the instructor’s lectures. There are also

“end-to-end” type examples that illustrate the power of the linking of

MDSolids modules (e.g., section properties, shear-force and bending-

moment in beams, flexural and shear stresses in beams, and Mohr’s circle).

• Close Ties with the MDSolids Modules: The special example problems are

treated as help files of the basic MDSolids software. For example, the user

can close an example problem and immediately be in the appropriate

MDSolids module(s) with the data of the example problem already entered

into the correct MDSolids input boxes. See “Suggestions on How to Use

MDSolids” below.

Suggestions on How to Use MDSolids. Ideally, the MDSolids software

modules and the special example problems will initially be used in the following

manner. After reading the text material on a topic and studying the example prob-

lem(s) in the book, look at the problem statement of a relevant special MDS exam-

ple; next, attempt to work the example by hand; then, consult the complete, textbook-

style solution; and, finally, move directly to the relevant MDSolids module(s) and

enter different input to see how the different input affects the solution. At each step

you will get accurate, immediate, and often pictorial feedback. Then, you can move

on to the assigned homework or to related homework-type problems, working them

by hand and using MDSolids as an “electronic solutions manual” to provide feed-

back. Once you are familiar with how MDSolids works, you will be able to go directly

to the MDSolids modules and obtain solutions to a broad range of mechanics of 

materials problems, including complex design-type problems.

G-3
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ANSWERS TO SELECTED 
ODD-NUMBERED PROBLEMS

A file entitled “ANSWERS TO SELECTED ODD-NUMBERED PROBLEMS” can be found on the Student Companion

Website at www.wiley.com/college/craig.

ANS-1
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INDEX

A
Absolute maximum shear stress, 564–568

plane stress case, 566–568

Accuracy, numerical, A-1–A-2

Allowable-stress design, 59–62

of beams, 371–374

Aluminum-alloy columns, buckling of,

665–666

Analysis, 3

Angle of rotation, 239–240, 254, 259–260

Angle of twist, 246–247, 254, 259, 265, 278, 281

Approximation, A-2

Areas, plane, geometric properties of,

C-1–C-15, table of, see inside 

back cover

Axial deformation, 118–236

analogy between axial deformation and

torsion, 238

basic theory of, 118–126

defined, 118

Displacement Method and, 168–180

distributed loading, 130–131

elastic behavior of uniform members,

123–126

elastic-plastic analysis of statically 

indeterminate structures, 198–205

elastic strain energy and, 691–692

equilibrium and, see Equilibrium

Force Method and, 180–189

geometric misfits, 163–168

geometry of deformation, 118–121

elastic-plastic analysis of statically 

indeterminate structures, 199

geometric misfits and, 163–168

inelastic deformation, 197

kinematic assumptions, 119

thermal stresses and, 152–162

of homogeneous linearly elastic member,

123

inelastic, 197–209

elastic-plastic analysis of statically 

indeterminate structures, 198–205

equilibrium equations, 197

I-1

fundamental equations and, 197–198

geometry of deformation, 197

material behavior and, 198

uniform end-loaded element, 198

material behavior and, 121, 123–126

elastic-plastic analysis of statically i,

199–204

inelastic deformation, 198

nonuniform, 126–131

residual stress, 205

Saint-Venant’s principle and, 68

strain-displacement analysis, 118–121

strain distribution, 120

stress resultants and, 27–28, 121–122

thermal stress and, 152–162

torsion, analogy between axial 

deformation and, 238

uniform, in structures, 123–126

of uniform linearly elastic member, 123–126

varying cross section and, 128–130

Axial displacement, 119

Axial force, 12–14, 121–122

sign convention, 11, 13–14, 121

Axial loading:

normal stress due to, 23–25, 121–122

stress concentrations and, 754–756

Axial strain, 120

Axial stress, 29

Axial (normal) stress, see Normal stress

Axial stress in cylindrical pressure vessels,

606

B
Ball joints, 11

Basic Force Method, 145–147

axial deformation and, 145–147, 159,

162, 164–167

torsion of circular shafts and, 260–261

uniform torsion members and, 260–264

Beams. See also Deflection of beams

bending-moment diagram, 321–339

bending moment in, 312–314

bending of, 351–352

Bernoulli-Euler assumptions, 354–355

built-up, shear in, 421–425

cantilever, 310, E-1–E-2

continuous, 311

defined, 309

deflection of, see Deflection of beams

deformation terminology, 351–354

discontinuity functions and:

for deflection, 488–495

representing equilibrium, 333–340

equilibrium of, 314–326

bending moment and, 319–321

discontinuity functions, 335–340

loads and, 311, 314–321

discontinuity functions, 335–340

Macaulay functions, 334–337

shear force and, 319–321

discontinuity functions, 335–340

singularity functions, 334–337

using finite free-body diagrams (FBD),

314–318

using infinitesimal free-body diagrams,

318–321

linear shear connectors, 422

moment-curvature equation, 363, 376,

380, 398–400

moment-curvature formulas for inelastic,

bending, 398–399

moment diagram, 321–333, 339

multi-interval, 467–468, 476–482

neutral axis:

for elastic-plastic bending, 394–395

for nonhomogeneous beams, 376, 380

for symmetric bending, 355, 362

for unsymmetric bending, 384–385, 389

neutral surface, 352, 355, 362–363, 391–392

nonhomogeneous, flexural stress in, 375–382

overhanging, 311

principal axes of inertia, 387–388, C-10–C-15

propped-cantilever, 311

pure bending, 352–354, 404

pure bending of, 352–354, 404

shear center, 425–430

BMindex.qxd  12/13/10  9:30 PM  Page I-1



Beams (continued)
shear flow, 411–412

in closed thin-wall beams, 418–421

in the flanges, 412–414

shear-force diagram, 321–339

shear in built-up beams, 421–425

sign conventions:

for displacements, 358, 465, 467

for external loads, 319, 467

for stress resultants, 314, 358, 363, 467

simply supported, 310, E-3–E-4

statically determinate:

slope and deflection by integration,

470–482

slope and deflection by superposition,

496–502

statically indeterminate:

slope and deflection by Displacement

Met, 513–519

slope and deflection by integration,

482–488

slope and deflection by superposition,

502–512

strain-displacement analysis, 354–359

strain-displacement equation, 356, 375, 393

strain in:

extensional strain (longitudinal), 355–359

shear-strain distribution, 404

transverse strain, 356–357

strength, design of beams for, 369–375

stresses in, 360–369

allowable-stress design, 371–372

Bernoulli-Euler beam theory and,

354–365

closed, thin-wall beams, 418–421

from combined loading, 611–616

discrete shear connectors, 422–423

doubly symmetric beams with inclined

load, 383–387

elastic-plastic bending, 394–402

flexural stress

direct method, 375–379

in linearly elastic beams, 360–369

in nonhomogeneous beams, 375–382

transformed-section method, 379–382

flexure formula, 363, 377, 379, 381,

383–384, 388–389

inelastic bending and, 392–402

residual stresses, 400–401

shear stress

distribution of, 406–409, 415

formula, 406–407

limitations on, 408–410

and shear flow, 412

in web-flange beams, 412–418

thin-wall beams, 411–421

transformed-section method, flexural

stress, 379–382

unsymmetric bending, 383–392

arbitrary-axis method, 388–391

maximum flexural stresses, 385–389

principal-axis method, 391–392

thin-wall, stresses in, 411–421

types of, 310–311

in the web, 414–415

Euler buckling load, 641

ideal fixed-pinned column, 644–647

ideal pin-ended column, 638–643

imperfections in columns, 657–658

inelastic buckling of ideal columns,

658–662

secant formula, 653–655

structural steel columns, 663–665

timber columns, 666–668

design procedure for, 663

types of end conditions of, 644

Combined loading, stresses due to, 616–624

Compatibility, 5, 137, 140–141, 144–146,

164–166, 180–181, 259, 503

Complementary energy methods, see Energy

methods

Composite materials, 44–45, 87–88

effective Young’s modulus, 87–88

iso-strain and iso-stress, 87–88

mechanical properties of, 87–88

types of reinforcement, 87

Compression, 21

Compressive force, 14

Compressive stress, 23–25

brittle material and, 619, 766–767

columns, buckling under, in concrete,

37–39, 44, 619

maximum, in beams, 389, 611–616

tests, 37–39, 44

Computer-Aided-Design (CAD), 4

Computer exercises, 104–105, 227, 347, 676, 677

Computer programs, G-1–G-3

Concentrated loads, 9–10

Connections, types of, 10–11

Consistent Deformations, Method of, 181

Constant-strain experiment, 47

Constant-stress experiment, 46

Constitutive properties of materials, 5, 39n.

See also Material behavior

Constraints, 5, 10, 146, 483

Continuity conditions (CC), deflection of

beams, 468–469

table of, 469

Conversion factors, between SI units and

U.S. Customary units, see inside

front cover

Core, of cross section, 619

Creep, 46

Cross section, 11, 23

closed, 412n

open, 412n

Crotti-Engesser theorem, 728–731

Cup and cone fracture, 40

Cylindrical pressure vessels, stresses in,

605–607

D
Deflection of beams, 463–519

deflections and slopes of uniform 

cantilever beams, table of, E-1–E-2

deflections and slopes of uniform simply

supported beams, table of, E-3–E-4

deflection curve, 351–355, 463

boundary conditions (BC), 468–469

continuity conditions (CC), 468–469

Beam-column behavior, 651–653

Bending:

pure, in beams, 352–354, 404

stress concentrations and, 757–760

Bending-moment diagrams, 321–333,

336–339

Bending moments, 12, 74, 311–314

and beams, equilibrium of, 314–321

discontinuity functions representing,

335–339

Bernoulli-Euler beam theory, 354–355

Biaxial stress, 543

Body forces, 9

Boundary conditions (BC), deflection 

of beams, 468

table of, 469

Brittle materials, 42–44

in compression, 619, 766–767

failure theories for, 765–768

in tension, 43–44

in torsion, 251

Brooklyn Bridge, 3–4, 132

Buckling of columns, see Columns,

buckling of

Built-up beams, shear in, 421–425

Bulk modulus, 112

C
Cable, see Wire rope

Cable-stayed suspension bridge, 132

Cable supports, 11

Cantilever supports, 11, 310

Cartesian components of stress, 82–85

Castigliano’s theorems:

first, strain energy methods, 719–721

second, 702–708

Center of curvature:

longitudinal, of beams, 353–358

transverse, of beams, 356–357

Centrally loaded columns, design of, 662–668

Circular bars/members, torsion of, see
Torsion

Clebsch’s Method, 489n

Closed, thin-wall beams, stresses in, 418–421

Codes, for design of deformable bodies,

59, 369, 662

Coefficient of thermal expansion, 36, 152

Columns:

buckling of, 635–682

aluminum-alloy columns, 665–666

beam-column behavior, 651–653

buckling load

ideal fixed-pinned column, 644–647

ideal pin-ended column, 641

centrally loaded columns, design of,

662–668

critical load, 635, 641

defined, 636–638

design procedure for, 663

eccentric loading, 651–657

effective length of columns, 647–648

end-condition effects, 644–651

equilibrium and, 639–640, 644–645

differential equation of, 640, 645

stability of, 636–638
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differential equations of, 464–470

load-deflection equation, 467

moment-curvature equation,

363, 465–467

discontinuity functions determining,

488–495

fixed-end actions for uniform beams,

table of, E-5

fixed-end solutions, 485–488, 514

shear and moment closure equations, 490

slope and deflection by Displacement

Method, 513–519

force-deformation equations for 

uniform, 513–514

linearly varying distributed load, 513–514

procedure, 514–515

uniform Bernoulli-Euler beam element,

513–514

slope and deflection by integration:

statically determinate beams, 470–482

statically indeterminate beams, 483–488

slope and deflection by superposition,

495–512

differential-load superposition,

495–496, 501–502

Force Method, 496n, 503n

statically determinate beams, 496–502

statically indeterminate beams, 502–512

work-energy principle for calculating,

697–702

Deformable bodies (deformation), 1–2, 31

axial, see Axial deformation

bending, see Deflection of beams

design and, see Design

geometry of, see Geometry of deformation

impact loading on, 732–736

mechanics of, 1–6

strain, see Strain

superplastic, 43

terminology, beams, 309–311, 351–354

torsion, see Torsion

virtual work for, 715–717

Design:

allowable-stress:

for axial loads and direct shear, 59–62

of centrally loaded columns, 662–668

factor of safety and, 59–62, 371

for flexure in beams, 369–374

codes for, 59, 369, 662

computer-aided, 3–4, 62–65

damage-tolerant, 771

fail-safe, 771–772

failure theories, 760–768

brittle materials, 765–768

ductile materials, 760–765

fatigue and fracture, 768–772

load and resistance factor design (LRFD),

60n, 371n

philosophies of, 59–60, 371, 771–772

probability-based, 60n

properties of materials, 42–43

safe-life, 771

special topics on, 753–777

stress concentrations and, see Stress 

concentrations

Differential-load superposition, slope and

deflection by, 495–496, 501–502

Digits, significant, A-1–A-2

Direct method, flexural stress in 

nonhomogeneous beams, 375–379

Discontinuity effects, in pressure vessels,

thin-wall, 608–609

Discontinuity functions, and beams 

deflection of, 488–495

equilibrium of, 333–339

Discrete shear connectors, in beams, 422–425

Displacement:

axial, 119

strain-displacement analysis, 32–35,

118–120

torsional, strain-displacement analysis,

239–241

transverse, of beams, 463

strain-displacement analysis, 354–360

Displacement Method:

axial deformation, 168–180

compared with Force Method,

168–169, 185–186

planar trusses, 193–196

slope and deflection of beams, 513–519

strain energy and, 722

torsion of circular shafts, 266–272

Distortion-energy theory, maximum, 761–765

Distributed loads on beams, linearly varying,

513–514

Doubly symmetric beams with inclined

loads, stresses in, 383–387

Ductile materials, 42–44

failure in torsion, 251

failure theories for, 760–765

Dynamic loading, 733–736

E
Eccentric loading, columns, 616–619

Effective length of columns, 647–648

Effective slenderness ratio, 648

Effective Young’s modulus, 87, 88

Elasticity:

elastic behavior of materials, 40, 45–46

elastic-plastic analysis:

bending of beams, 394–402

of statically indeterminate structures,

198–205

torque-twist analysis, 285–289

limits on, 46

linear, 48–50

Hooke’s Law for isotropic materials,

84–86

strain energy and, 689–690

modulus of, see Young’s modulus

Elastic stretch, 132, 133

Elementary beam theory, 611

Element force-deformation behavior 

axial-deformation, 146, 164

Bernoulli-Euler beam, 513–514

torsion, 253–254

truss, 190

End attachments, for wire rope, 134

End closure effects, of pressure vessels,

thin-wall, 608–609

End condition effects, columns, buckling of,

644–651

Endurance curve, 770

Endurance limit, 770–771

Energy methods, 683–752

axial deformation, elastic strain and,

691–692

beams, bending of:

elastic strain and, 693–697

flexural strain energy, 693–694

shear strain energy, 694–695

Castigliano’s first theorem, 719–722

Castigliano’s second theorem, 702–708

complementary, 722–731

complementary work and 

complementary stress, 722–723

Crotti-Engesser theorem, 728–731

Principle of Virtual Forces, 724–728

virtual forces and, 723–728

Displacement Method related to, 722

dynamic loading, 732–736

elastic strain energy, 686–697

flexural strain energy, 693–694

Force Method related to, 726–728

impact loading, 732–736

on deformable bodies, 733–736

linearly elastic behavior, 686

strain energy density and, 689–690

shear-strain energy, 694–695

strain energy:

and complementary energy, 722, 731

density of, for linearly elastic bodies,

689–690

elastic, for various types of loading,

691–697

methods, 717–722, 731

Principle of Virtual Displacements,

717–719

torsion of circular members, 692–693

unit-load method, 708–713

virtual displacements, 714–722

virtual forces, 723–728

virtual work, 713–717

work and complementary work,

684–686, 722

work-energy principle for calculating 

deflections, 697–702

Equilibrium, 4–5, 8–17

axial deformation and Basic Force

Method, 146

distributed axial load, 122–123

elastic-plastic analysis of statically i, 199

geometric misfits, 164

inelastic deformation and, 197–198

stress resultants and, 121–122

thermal stress and, 155–156

of beams, see Beams

of buckled columns, 639–640, 644–645

of circular rods in torsion, 241–242,

276–278, 285

of cylindrical pressure vessels, 605–606

differential equation of, and columns,

buckling of, 639–640, 644–645

inelastic bending of beams, 393–394

of planar trusses, 189–190
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Equilibrium (continued)
requirements, shear and, 55–56, 82–83

of spherical pressure vessels, 607

stability of, and columns, buckling of,

636–638

static, 8–17

external loads, 9–10

free-body diagram (FBD), 12–13

internal resultants, 10–12

member connections, support reactions

an, 10–11

torsion of circular rods, 241–242

inelastic, 285

uniform torsion members, 258–259

and transformation of stress, 545–546

and virtual displacements, 715

Euler buckling load, 641

Extensional strain, 31–32, 119–120

defined, 78–80

Extensometer, 38

F
Factor of safety, 58–60, 371, 662–667

Fail-safe design, 772

Failure, 635

buckling, 635

fatigue and fracture, 768–772

load, 58

modes, 57–58

theories of, 760–768

brittle materials, 765–768

ductile materials, 760–765

Fatigue:

defined, 768–770

and fracture, 768–772

level, 770–771

strength, 771

Fibers:

glass, 45

longitudinal, in beams, 352, 355, 361, 363

Finite element analysis (FEA), 2–4, 614

Finite element method, (see Color-Photo 

Insert), 2–4, 614, 722, 760

Fixed-end solutions, deflection of beams,

485–488, 514

Flexibility coefficient:

axial deformation, 125, 686

and statically determinate structures,

136

torsion, 253–254

Flexibility Method, 181

Flexural rigidity, 363, 464, 467

Flexural stress:

in linearly elastic beams, 360–369,

375–392

in nonhomogeneous beams, 375–382

Flexure formula, 363, 377, 379, 381,

383–384, 388–389

Fluids, mechanics of, 1

Force. See also Element force-deformation

behavior

axial, 12–14, 121–122

normal, defined, 12

resultant, see Stress

shear, defined, 11–12

Force Method:

axial deformation, 180–189

compared with Displacement Method,

185–186

planar trusses, 191–193

slope and deflection by superposition,

496n, 503n

Fourth-order method for beam deflection,

467–470

Fracture:

brittle, 43–44, 251

cup and cone, 40–41

ductile, 251

fatigue and, 768–772

stress, 40, 42

torsion testing and, 251

Free-body diagrams (FBD), 9, 12–13

axial deformation, 118–123

of columns, 639, 645

finite, and beams, equilibrium of, 314–318

fourth-order solutions and, 482

infinitesimal, and beams, equilibrium of,

318–321

of pressure vessels, 639, 645

Fully plastic moment, 395–399

Fundamental equations, 4–6

axial deformation, elastic-plastic analysis,

198–205

axial deformation, inelastic, 197–198

bending of beams, inelastic, 392–394

circular torsion members:

inelastic, 284–285

linearly elastic, 245–246

G
Gage length, 38–39

Generalized force, 719

General state of stress:

absolute maximum shear stress, 564–571

principal stresses, 564–565

Geometric compatibility/incompatibility,

see Compatibility

Geometric misfits, axial deformation and,

163–168

Geometric properties of plane areas,

see inside back cover

Geometry of deformation, 4–5, 31

axial deformation, 118–121, 190

geometric “misfits” and, 163–168

strain-displacement analysis, 118–121

thermal stresses and, 156, 169

of circular rods, in torsion, 238–241

inelastic, 284

uniform torsion members, 254–256

elastic-plastic analysis of statically 

indeterminate structures, 199

inelastic axial deformation, 197

inelastic bending of beams, 393

planar trusses, 190

in relationship between E and G, 69–71

Gravitational potential energy, 732–733

H
Hardening, strain, 40

Homogeneous linearly elastic member, 123

Hooke’s Law, 48–49, 83–85, 242

for isotropic materials, 83–85

for shear, 57, 84, 242

Hoop stress, 605–607

I
Ideal columns:

fixed-pinned, buckling load of, 644–647

inelastic buckling of, 658–662

pin-ended, buckling load of, 638–643

Idealized model, 5–6

Impact loading, 732–736

on deformable bodies, 733–736

Inclined loads, doubly symmetric beams

with, 383–387

Inclined planes, stresses on, 65–67

Inelasticity:

in axial deformation, see Axial deformation

and beams, stresses in, 392–402

of ideal columns, 658–662

in torsion of circular rods, 284–290

Inertia, principal axes of, beams, 387–388,

C-11–C-15

Initial stresses, 163n

Integration, slope and deflection by statically

determinate beams, 470–482

statically indeterminate beams, 483–488

Internal resultants, 10–12, 73–74

Iso-strain, 87–88

Iso-stress, 87–88

Isotropic materials:

definition, 83

Hooke’s Law for, 69–72, 83–85

K
Kern, of a cross section, 619

Kinetic energy, converted to strain energy,

733

L
Lap joint, 53

Length, effective, of columns, 647–648

Linear elasticity, 48–50

axial deformation and, 121–122

in beams, flexural stress and, 360–363

energy methods and, 686, 731

and Hooke’s Law for isotropic materials,

83–85

and strain energy density, 686

of torsion members, 242–243

Linearly elastic-perfectly plastic behavior, 46

Linearly varying distributed loads on beams,

513–514

Line loads, 9–10

Loads:

allowable:

for columns, 663

and factor of safety, 58

for wire rope, 133

in beams:

distribution of, effect on shear stress, 410

equilibrium of, 318–321

discontinuity functions representing,

335–339

external, 9–10
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Load and resistance factor design (LRFD),

60n, 371n

Load-deflection equation, for beams, 467

Load-deformation behavior, 37

Longitudinal plane of symmetry (LPS),

351–352, 383

Longitudinal strain, in beams, 355–356

Longitudinal stress, in cylindrical pressure

vessels, 606

Luders’ bands, 67

M
Macaulay functions, 334–335

“Massless” linear springs, and strain energy,

732–733

Material behavior, 4–5. See also Mechanical

properties of materials

axial deformation and, 121, 125, 152–153,

164, 169, 181, 193, 198

circular rods in torsion:

inelastic, 285

linearly elastic, 242

elastic, see Elasticity

force-temperature-deformation behavior,

152–153, 169, 181, 182, 193

inelastic:

axial deformation and, 198–201

bending of beams, 394

torsion of circular rods, 285

plane stress, 69–71

Mathematical model, 6

Matrix phase, 87

Maximum bending moment, 371

Maximum-distortion-energy theory,

ductile materials, 761–765

Maximum-normal-stress theory of failure,

brittle materials, 766

Maximum shear stress:

absolute, 564–568

in-plane, 553–554

Maximum-shear-stress theory of failure,

ductile materials, 761

Maximum stress, in beams allowable-stress

design and, 371–372

under combined flexure and shear, 611–616

unsymmetric bending, 385, 389

MDSolids, 30, G-1–G-3

Mechanics:

defined, 5

deformable body, see Deformable bodies

of materials, 1–2

Mechanical properties of materials, 22,

37–42. See also Material behavior

composite materials, 87–88

design properties, 42–44

elasticity and plasticity, 45–46

Hooke’s Law for linearly elastic materials,

48–49, 69–71, 83–85

Hooke’s Law for plane stress, 69–71

in shear, 57

temperature effects on, 47–48

time-dependent, 46–47

Member connections, support reactions and,

10–11

Method of joints, 13, 169

Method of sections, 13, 30, 169, 312, 314

Microstrain, 31, 582–586

Mises equivalent stress, 763–764

Misfits, geometric:

axial deformation and, 163–168

torsion and, 264–265

Modulus of elasticity, see Young’s modulus

Mohr’s circle:

for moments and products of inertia,

C-13–C-15

for plane stress:

derivation of, 557–559

properties of, 559–561

sign convention, 557–558

for two-dimensional strain, 576–582

Mohr’s failure criterion, 766–768

Moment(s):

bending, see Bending moments

fully plastic, 395–399

maximum elastic, 395

resultant, 12

twisting, see Torque

yield, 395–399

Moment-curvature equation, 363

beams:

deflection of, 464–467

inelastic bending of, 398–399

nonhomogeneous, 376–377, 380

Moment diagram, bending, 321–339

Moments of inertia, 362, C-4–C-8, C-10–C-15

for composite areas, C-7

Multi-interval beams, 333–334, 477

N
Necking, 40

Neutral axis, 362, 384–385, 389, 394

Neutral surface, 352

Noncircular prismatic bars, torsion of,

280–284

Nonhomogeneous axial deformation,

126–128

Nonhomogeneous bending, of beams,

375–382

direct method, 375–379

transformed-section method, 379–382

Nonlinear elastic behavior, 46

Normal force, 23–24, 27–28, 74

Normal stress, 23–31

average, 24

axial, 28–29, 121–122

constant, 28

defined, 24–25, 72–73

flexural, inelastic, in beams, 394

flexural, in linearly elastic beams,

360–369, 376–377, 381

on inclined plane, 65–67

maximum, theory of failure for brittle 

materials, 766

positive in tension, 24

resultant, 28

uniform, 28–29

Notation convention:

transformation of stress and strain,

544–545

uniform torsion members, 254

O
Offset yield stress, 41–42

Optimal design, 62–65

Orthogonal faces, plane stress on, 549

P
Parallel-axis theorems, C-6–C-7

Percent elongation, 43

Percent reduction in area, 43

Perfectly plastic zone, 40, 286–287, 395

Permanent set, 46, 287, 400–401

Permanent stretch, 132, 133

Pin supports, 11, 638

Piobert’s bands, 67

Planar trusses, see Trusses, planar

Plane of symmetry, longitudinal (LPS),

351–352, 355

Plane strain:

defined, 571–572

Mohr’s circle for two dimensional strain,

576–582

three-dimensional analysis, 587–588

transformation of strain, 572–575

Plane stress, 69–71, 542–544

absolute maximum shear stress and,

564–568

Hooke’s Law for, 69–71, 542–544

Mohr’s circle for, 557–561

and principal stresses, 551–561

transformation of stress, 544–551

Plasticity, 40, 45–46

Plastic moment (fully), 395–396, 399

Plastics and composites, 44–45

Poisson’s-ratio effect, 49–50, 356

Polar moment of inertia, 243, C-5

Power, 273

Power transmission shafts, 272–275

Pressure vessels, thin-wall, 605–611

absolute maximum stress in, 607–608

cylindrical, 605–607

discontinuity effects, 608–609

end closure effects, 608–609

spherical, 607

Prestrain effects, 163n

Principal axes of inertia, beams, 387–388,

C-10–C-15

Principal stresses, 551–554, 561

three-dimensional stress states, 564

Principle of Virtual Displacements,

717–722

Principle of Virtual Forces, 724–728

Prismatic bars, torsion of noncircular,

280–284

Probability-based design, 60n

Problem-solving procedures, 6–8

Product of inertia, 387–388, C-8–C-10

Properties, geometric, of plane areas,

C-1–C-15, table of, see inside 

back cover

Properties, mechanical, of selected 

engineering materials, F-1–F-4

Properties, section, of selected structural

shapes, D-1–D-11

Pure bending, beams, 352–354

Pure shear, 55–56, 249–250, 543
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R
Reactions, 10–11

Reduced-modulus formula, 660

Redundant force, 146, 181, 182

Redundant reactions, 483, 502

Redundant supports, 9

Reinforcement phases, 87

Released structure, 502

Residual strain, 46

Residual stress:

axial deformation, 205–209

in beams, 400–402

torsion of circular bars, 287–289

Resultants, see Stress

Resultant normal force, 28

Right-hand rule, 74, 239–240

Rigidity, 5

of connections, 11

flexural, 363, 376

torsional, 243, 278

Rod supports, 11

Roebling, Johann, 3

Roebling, Washington, 3

Roller supports, 11

S
Safe-life design, 771

Saint-Venant’s principle, 29, 67–68, 611, 753

Secant formula, columns, 653–657

Second-order method for beam deflection,

466–467, 469–470

Shape factor, 396

Shear, 51–57

in axial-deformation members, 66–67

in built-up beams, 421–425

design for, 57–62

direct, 51–53, 57–62

double, 52–55

equilibrium requirements, 55–56,

82–83

material properties in, 57

pure, 55–56, 70, 249–250, 543

single, 52–55

Shear center, of beams, 425–431

Shear diagrams, 321–339

Shear flow:

shear stress and, in beams, 402–408

in thin-wall beams, 411–416

in thin-wall torsion members, 276–278

Shear force, 12, 74

and beams, equilibrium of, 312–313, 319–320

discontinuity functions representing,

335–338

Shear modulus, 57

torsion testing and, 250–251

Young’s modulus and, 69–72

Shear strain, 56–57

defined, 80–81

Shear-strain distribution, in beams, 404

Shear-strain energy, elastic strain and,

690, 694–695

Shear stress, 51–56

absolute maximum, 564–568

defined, 51, 72–73

direct, 51–53

distribution of:

in bending of beams, 403–404, 407–408,

412, 415–418

in torsion, 241–245, 249–250, 276,

281–282, 285–286

equilibrium requirements, 55–56, 82–83

formula, 406–410

limitations on, 408–410

cross-sectional shape, effect of, 408–410

length of beam, effect of, 410

load distribution on beam, effect of, 410

maximum:

absolute, 564–568

ductile materials, 761

on inclined plane, 65–67

in-plane, 553–554

and shear flow, 405–406, 411–416

in web-flange beams, 412–418

Sign conventions, 13

for axial deformation, 13–14, 119, 121, 639

for beams, 314, 319, 363

for extensional strain, 31, 78, 119–120

for normal stress and shear stress,

66, 73, 82, 544–545

for shear strain, 56, 80

for torsion, 239–240, 254

Significant digits, A-1–A-2

Single shear, 52–55

Singularity functions, 334–335

Slenderness ratio, effective, 642–643, 648

Slip, 46

Slip bands, 66–67

Slope and deflection, see Deflection of beams

Small-displacement/small-strain behavior,

34–35

S-N diagram, 770

Solids, mechanics of, 1

Spherical pressure vessels, stress and, 607

Spring, linear, 125

Spring constant, 125

Stability of equilibrium, 636–637

Statically determinate structures:

axial-deformation, 123, 136–142

beams:

slope and deflection by integration,

470–482

slope and deflection by superposition,

496–502

Castigliano’s second theorem applied to,

703–704

residual stress and, 205

Statically indeterminate structures:

axial-deformation, 123, 143–152

beams:

slope and deflection by integration,

483–488

slope and deflection by superposition,

502–512

Castigliano’s second theorem applied to,

705–708

Principle of Virtual Displacements 

applied to, 717–719

residual stress and, 205–209

Static equilibrium, see Equilibrium

Static tension test, 39

Stiffness, 2, 47

Stiffness coefficient for uniform axial-

deformation members, 125, 686

for torsion of uniform circular members,

253–254

Stiffness Method, 172

Strain, 22. See also Stress-strain behavior

axial, 32

constant, experiment, 47

displacement analysis, see
Strain-displacement analysis

distribution of, 2

circular rods in torsion, 239–241

extensional, in axial deformation,

31, 118–121

extensional, in bending of beams,

355–356, 393–394

shear, in bending of beams, 404

shear, in torsion of circular rods, 240, 284

extensional, 32–35, 118–121

defined, 31, 78

longitudinal, in beams, 355–356

measurement of, 582–587

Mohr’s circle, for two-dimensional,

576–582

normal, 31

plane:

defined, 571–572

transformation of strain, 572–575

residual, 46

rosettes, 582–587

shear, 56–57

defined, 80

stress and strain transverse, in beams,

356–357

thermal, 35–36, 152

three-dimensional analysis, 587–588

transformation of, see Transformation of

true, 41

two-dimensional, Mohr’s circle for, 576–582

Strain-displacement analysis:

for axial deformation, 32–35, 118–121

for beams, 355–356

for circular rods in torsion, 239–241

Strain energy, 686–697

axial-deformation, 691–692

and complementary energy, 731

defined, 686

flexural, in beams, 693–694

of “massless” linear spring:

gravitational potential energy 

converted, 732–733

kinetic energy converted to, 733

methods, 717–722

shear, in beams, 694–695

Strain hardening, 40

Strength, 2, 42

design of beams for, 369–375

ultimate, 40, 42

yield, 41–42

Stress, 22. See also Stress-strain behavior

allowable, 59–62

axial, see Normal stress

in beams, see Beams

biaxial, 543
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buckling:

allowable, 663–668

of eccentrically loaded columns, 654

effective slenderness ratio and, 641–643,

648

of ideal pin-ended columns, 641–642

of imperfect columns, 658

cartesian components of, 82

from combined loading, 604, 616–624

beams, stress distribution in, 611–616

pressure vessels, thin-wall, 605–611

compressive, see Compressive stress

constant, experiment, 46

defined, 23, 72–73

distribution of, 2

circular rods in torsion, 249–250

flexual, in bending of beams, 361–363,

384, 394

normal, in axial deformation, 121–122

shear, in bending of beams, 408–409, 415

shear, in torsion, 241–242, 276, 281–282,

286

fracture, 40, 42

general state of:

absolute maximum shear stress, 564–566

principal stresses, 564–565

hoop, in cylindrical shells, 606–607

on inclined plane, 65–67

longitudinal, in cylindrical shells, 606

Mohr’s Circle for, 557–561

normal, see Normal stress

offset yield, 41–42

plane, 542–544

three-dimensional analysis, 566–568

transformation of, see Transformation 

of stress and strain

pressure vessels, thin-wall, 605–611

principal:

Mohr’s circle and, 560–563

plane stress case, 551–553

three-dimensional stress states, 564

pure shear, 55–56, 70, 249–250, 543

residual:

axial deformation, 205–209

beams, 400–402

torsion of circular bars, 287–289

resultants. See also Stress resultants

axial deformation and, 205–209

of circular bars in torsion, 241–242

of thin-wall torsion members, 277–278

shear, see Shear stress

tensile, see Tensile stress

thermal, in axial deformation,

35n, 152–162, 190

transformation of, see Transformation 

of stress and strain

true, 41

ultimate (strength), 40, 42

uniaxial, 121, 543

Stress concentrations, 753–760

axial loading, 754–756

bending, 757–760

effect of, 4

torsion, 756–757

Stress contours, in beams, 614

Stress relaxation, 47

Stress resultants, 28, 73–78, 121–122, 311–314

Stress-strain behavior, 2. See also Material

behavior

of circular rods in torsion, 242, 285–286

diagrams of, 37–44

linear, 48–49, 83–85

stress-strain-temperature equation, for

axial deformation, 152–156

time-dependent, 46–47

uniaxial, 121

Stress-strain tests, 22

Stress trajectories, in beams, 613–614

Structural steel columns, buckling of,

663–665

Superplastic deformation, 43

Superposition, slope and deflection by, see
Deflection of beams

Supports:

reactions, and member connections, 10–11

types of, 11, 469, 644

Surface loads, 9

T
Tangent-modulus formula, 660

Temperature effects:

on properties of materials, 47–48

stress-strain-temperature equation, for

axial deformation, 152–156

thermal strain, 35–36

Tensile stress, 24

in beams, maximum, 385, 389

tests, 37–39

Tension, 21

Testing machine, 37

Thermal effects, see Temperature effects

Thermal strain, 35–36, 152

Thermal stress, in axial deformation,

152–162, 190

equilibrium equation and, 155

Thin-wall members:

beams, stress in, 411–421

shear center for, 425–431

torsion members, stress in, 275–280

Three-dimensional analysis:

plane strain, 587–588

plane stress, 566–570, 588

strain, 587–588

stress states, 542, 564–571

Timber columns, buckling of, 666–668

Time-dependent stress-strain behavior,

46–47

Torque, 12, 74, 237, 240–242, 285. See also
Torsion

internal (resisting), 239

notation convention, 254

plastic, 287

sign convention, 239–240, 243, 254

yield, 286

Torque-twist equation, 243, 246, 253, 278,

282, 285–287

Torsion, 237–308

and axial deformation, analogy between,

238

and axial deformation, combined, 619–621

of circular rods/members:

angle of rotation, 239–240, 246, 254,

259–260

angle of twist, 246, 254, 278, 281, 282

compatibility equation, 259

deformation assumptions, 239

elastic-plastic torque-twist analysis,

285–287

elastic strain energy and, 692–693

equilibrium, stress resultants and,

241, 258–259, 276–278, 285

geometry of deformation and, 238–239,

259, 284

of homogeneous linearly elastic rods,

245–246

inelastic, 284–290

power transmission shafts, 272–275

residual stress, 287–289

shear flow, 276–278

sign convention for, 239–240, 254

strain-displacement analysis, 239–241,

244, 250–251

strain distribution, 240, 250–251, 284

stress distribution, 241–243, 249–250, 281

stress resultants and equilibrium,

241–242, 277–278

stress-strain behavior, 242, 250, 285–287

torsional deformation, 238–241

torsion testing and, 251

twist rate, 240, 284

unloading; residual stress, 287–289

formula, 243, 245

linearly elastic behavior of a uniform 

torsion member, 246

of noncircular prismatic bars, 280–284

sign convention for, 239–240, 254

statically determinate assemblages,

254–258

statically indeterminate assemblages,

254–272

stress concentrations and, 756–757

of thin-wall members, 275–280

uniform torsion members:

assemblages of, 254–265

Basic Force Method, 260–264

element torque-twist behavior,

246, 253–254, 259

equilibrium, 258–259, 261, 266

fundamental equations, 258–259

geometry of deformation, 259

linearly elastic behavior of, 253–254

notation convention, 254

sign convention, 254

Torsional rigidity, 243, 278

Transformation of stress and strain,

544–556

plane strain, 571–572

plane stress, 542–551

Mohr’s circle for, 557–564

derivation of, 557–559

procedure for drawing, 560

properties of, 559–561

sign convention, 557–560

notation and sign convention, 544–545

on orthogonal faces, 549–551
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Transformation of stress and strain (continued)
state of, at a point, 544

stress transformation for, 544–551

principal stresses, 549–553

shear stress:

absolute maximum, 564–568

maximum in-plane, 553–554

strain measurement, 582–587

strain rosettes, 582–587

strain transformation, 572–575

three-dimensional strain analysis, 587–588

three-dimensional stress states - principal

stresses, 564

Transformed-section method, flexural stress

and, 379–382

Transverse strain, in beams, 356–357

True strain and true stress, 41

Trusses, planar, 189–196

behavior, 190

buckling of, member, 635–636

Displacement Method for, 193–196

equilibrium of, 189–190

Force Method for, 191–193

geometry of deformation, 190

statically determinate, 191

statically indeterminate, 193

unit-load method for, 709–713

Twist angle, see Angle of twist

Twisting moment, see Torque

Two-dimensional state of stress, 542–544

Two-dimensional strain, Mohr’s circle for,

576–582

U
Ultimate strength, 40, 42

Uniaxial stress, 121, 543

Uniform axially loaded element inelastic, 198

linearly elastic, 125

planar truss, 190

with temperature change, 155, 156

Uniform Bernoulli-Euler beam element,

513–514

Uniform end-loaded torsion element,

246, 253

Uniform normal (axial) stress, 28–29, 122

Units, systems of, B-1–B-3

conversion of, B-3; see inside front cover 

SI, 23, B-1–B-3

U.S. Customary, 23, B-3

Unit doublet function, 334–335

Unit impulse function, 334–335

Unit-load method, 708–713

Unit Macaulay functions, 334

Unit ramp function, 334

Unit step function, 334

Unloading:

axial deformation, 205–209

bending of beams, 400–402

torsion of circular rods, 287–289

Unsymmetric bending, beams, 383–392

V
Virtual displacements, 714–722

Virtual Displacements, Principle of,

717–722

Virtual forces, 723–728

Virtual Forces, Principle of, 724–728

Virtual work, 713–717

W
Web-flange beams, shear stress in,

412–418

Wire rope, 126, 131–135

allowable load, 133

end attachments, 134

rope geometry, 132

rope modulus, 133

Work, 684–686

complementary, 722

virtual, 713–717

Work-energy principle for calculating 

deflections, 697–702

Y
Yield moment, 395–399

Yield point, 39

Yield strength, 41–42

Young’s modulus, 39, 49

effective, 87, 88

and shear modulus, 69–72
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GEOMETRIC PROPERTIES OF PLANE AREAS*

Notation†

� moment of inertia with respect to the y� axis

Ip � Iy � Iz � polar moment of inertia about the centroid C

Iyz � product of inertia with respect to the y and z axes

Iy¿A � area

� coordinates of centroid C

Iy, Iz � moments of inertia with respect to the y and z
axes, respectively

y¿, z¿,

*Basic formulas for area properties may be found in Appendix C.

Rectangle

Right Triangle

Triangle

 Ip �
bh
36

 (h2 � b2 � bc � c2)

 Iy¿ �
bh3

12

 Iyz � �
bh2

72
 (b � 2c)

 Iz �
bh
36

 (b2 � bc � c2)

 z¿ �
h
3
  Iy �

bh3

36

 A �
bh
2
  y¿ �

b � c
3

 Iy¿ �
bh3

12
  Ip �

bh
36

 (b2 � h2)

 Iz �
hb3

36
  Iyz � �

b2h2

72

 z¿ �
h
3
  Iy �

bh3

36

 A �
bh
2
  y¿ �

b
3

 Iy¿ �
bh3

3
  Ip �

bh
12

 (b2 � h2)

 Iz �
hb3

12
  Iyz � 0

 z¿ �
h
2
  Iy �

bh3

12

 A � bh  y¿ �
b
2

†Note: The y and z axes are centroidal axes.

Circle

Circular Ring (t r small)

Semicircle

 Iy¿ �
pr4

8

 Iz �
pr4

8
  Iyz � 0

 Iy �
(9p2 � 64)r4

72p

 A �
pr2

2
  z¿ �

4r
3p

 Ip � 2pr3t �
pd3t

4

 Iyz � 0

 Iy � Iz � pr3t �
pd3t

8

 A � 2prt � pdt

�

 Ip �
pr4

2
�
pd4

32

 Iy¿ �
5pr4

4
�

5pd4

64

 Iyz � 0

 Iy � Iz �
pr4

4
�
pd4

64

 A � pr2 �
pd2

4

b

h C

y′

z′

z′ z

y′

y

b

h

C

z′
z

y′

y

y′

z′

b

h

z′

y′

C

zc

y

y′

z′

C

z

d = 2r

y′

y

r

d = 2r

C

z

y

r

t

C

z, z′

y′

y
r

z′
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Quartercircle

Circular Sector (� � angle in radians: � � � 2)
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